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Abstract: Magnetic and magnetocaloric properties of the amorphous Fe92−xZr8Bx ribbons were
studied in this work. Fully amorphous Fe89Zr8B3, Fe88Zr8B4, and Fe87Zr8B5 ribbons were fabricated.
The Curie temperature (Tc), saturation magnetization (Ms), and the maximum entropy change with
the variation of a magnetic field (−∆Sm

peak) of the glassy ribbons were significantly improved by the
boron addition. The mechanism for the enhanced Tc and −∆Sm

peak by boron addition was studied.
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1. Introduction

With the rising concerns on environmental pollution and the higher and higher cost of energy,
it is an urgent need recently to develop energy-saving and environmental-friendly materials, such as
new energy storage materials, magnetocaloric materials, giant impedance materials, thermoelectric
materials, and magneto-strictive materials [1–5]. Magnetocaloric materials are the materials that exhibit
an adiabatic temperature change when they experience a magnetization or demagnetization process,
which is called the magnetocaloric effect (MCE). Magnetic refrigerators using the magnetocaloric alloys
or compounds as working materials are believed to be more compact (because of solid refrigerant) and
efficient (due to their lower energy consumption) than the traditional vapor compression/expansion
refrigerator. Furthermore, the magnetic refrigerators are considered to be safer to the environment
because they do not emit ozone-depleting gases [6,7]. Therefore, the magnetocaloric materials have
recently attracted more and more attention, and as a result, a great number of magnetocaloric alloys or
compounds have been developed in the past several decades [8–10].

The amorphous alloys, which exhibit higher corrosion resistance and better mechanical properties
than the crystalline alloys, are considered to be suitable candidates for magnetic refrigerants because
they exhibit rather broad magnetic entropy change (−∆Sm) peak [11,12]. The broadened −∆Sm peak
and the resulted high value of refrigeration capacity (RC) lead to a rather wide working temperature
range and a large amount of cooling, which is an important indicator that helps to obtain the maximum
cooling capacity in the Ericsson cycle [13]. The amorphous alloys can be fabricated within a large
compositional range, indicating that the Curie temperature (Tc) and properties, depending on the alloy
compositions, can be easily tuned [14].

Among the amorphous alloys that have been studied so far, Gd-based amorphous alloys and
some high-entropy alloys show good reversible magnetocaloric effects [15–17]. Usually, the large
maximum −∆Sm (−∆Sm

peak) value of these amorphous alloys only obtained at low temperatures and
their high cost limit their industrial applications. Although some amorphous alloys with reduced Gd
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content can achieve application conditions in the room temperature range, they still have shortcomings
in terms of cost, magnetocaloric effect, and forming ability [18,19]. In contrast, the low-cost transition
metal (TM)-based amorphous alloys represented by the Fe-based amorphous alloy gained more and
more attention.

In previous studies, Fe100−xBx (x = 12–28) amorphous alloy exhibits good soft magnetic
properties [20,21], However, almost all the compositions of the Curie temperatures, Tc, are above room
temperature. By adding Nb, Y, Nd, or Mn elements to amorphous system, the Curie temperature
is greatly reduced, but it fails to increase the magnetic entropy change value of the alloy or even
deteriorate [22]. On the other hand, FeZr binary system alloys exhibit excellent soft magnetic properties
near room temperature and are accompanied with a −∆Sm

peak close to about half of the Gd [23,24].
As a result, substitution of Fe by transition metals Nb, Mn, Y, or metalloid elements B can significantly
change the magnetic properties [25–27]. In particular, the addition of B can even make the alloy appear
ferromagnetic near room temperature. For the purpose of meeting the requirements of magnetic
refrigerants in a domestic refrigerator, recently, many multicomponent Fe-based amorphous alloys with
excellent magnetocaloric properties have been synthesized based on the ternary Fe-Zr-B glass-forming
alloys [27–30]. The lower Zr content Fe-B-Zr amorphous alloys usually have a lower MCE with the
−∆Sm

peak about 1.04 J K−1 kg−1 for a field change of 0–15 kOe in the Fe94−xZr6Bx (x = 5, 6, 8, and 10)
amorphous alloys. When the Zr content is increased, the ∆Sm of the alloy becomes significantly
improved: for instance, the magnetic properties, phase transitions, and MCE were systematically
studied in amorphous Fe89−xBxZr11 (x = 0–10) alloys and the Tc got enhanced with B addition and the
−∆Sm value to be about 1.73 J K−1 kg−1 for the Fe79Zr11B10 sample. Meanwhile, the addition of a series
of 3D elements, such as Cu, Cr, Mn, Co, Ni..., also obtained a series of FeZrB-based amorphous alloys
with a good ∆Sm value near room temperature [31–36]. Recently, related studies have shown that
FeZrB(Cu,Co...) amorphous alloys also have dispersed nanocrystalline particles on the amorphous
matrix [37,38]. Appropriate selection and control methods of heat treatment can make nanocrystalline
particles aggregate and grow, further, by selectively removing the surface nanocrystalline particles,
the amorphous materials with nanoporosity on the surface can be obtained. However, after the
selective dealloying treatment of nanocrystalline amorphous alloys, it is found that the magnetization
of the alloys is improved. This is mainly related to the increase in the concentration of ferromagnetic
atoms in the system, which also provides a way to further improve the magnetic properties of the
amorphous alloys.

Through the previous study on the Fe88Zr8B4 amorphous alloy [30,39,40], it is found that a
moderate Zr content makes the alloy exhibit good magnetic properties near room temperature. However,
the mechanism for their good magnetocaloric properties has not been investigated systematically.
Therefore, the detailed investigation on the magnetic and magnetocaloric properties of Fe-Zr-B ternary
metallic glasses may be helpful for the understanding of the tailorable magnetic and magnetocaloric
properties near room temperature in the multicomponent Fe-Zr-B-based metallic glasses. In the present
work, we fabricated Fe92−xZr8Bx (x = 3, 4, 5) amorphous samples in the shape of ribbons with an
average thickness of 0.04 mm. Magnetic properties of the amorphous samples were measured and their
magnetocaloric properties were obtained. The dependence of Tc as well as −∆Sm

peak on the composition
of the metallic glasses were constructed for the purpose of revealing the mechanism involved.

2. Experiments

Alloy ingots with a nominal composition of Fe92−xZr8Bx (x = 3, 4, 5) were prepared by arc
melting a mixture of high-purity (99.95 wt%) Fe, Zr metallic pieces and Fe-B pre-alloy for at least
four times in a non-consumable electrode high vacuum arc melting furnace. Fe92−xZr8Bx ribbons
with an average thickness of ~0.04 mm were prepared by ejecting the melts from the quartz tube
to the surface of a rotating copper wheel under a pure Ar atmosphere. The surface speed of the
copper wheel was optimized at 30 m/s. Structure of the ribbons was checked by X-ray diffraction
(XRD) using the Kα radiation of Cu on a Rigaku diffractometer (model D/max-2550) (Rigaku, Tokyo,
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Japan). Thermal properties about the glass transition temperature (Tg), crystallization temperature (Tx)
and the liquidus temperature (Tl) of the amorphous ribbons were measured by a Netzsch DSC-404C
differential scanning calorimetry (DSC) (Netzsch, Selb, Germany) under a purified argon atmosphere
at a heating rate of 20 K/min. Microstructures of the amorphous ribbons were observed by a JEOL
JEM-2010F (JEOL, Tokyo, Japan) high-resolution electron microscope (HREM). The specimens for
HREM observations were prepared by ion-polishing under a pure argon atmosphere using the GATAN
691 precision ion-polishing system (AMETEK, Berwyn, PA, USA). Magnetic properties of the as-spun
ribbons were measured by a Quantum Design Physical Properties Measurement System (Ever cool II):
the temperature dependence of the magnetization (M-T) curves were obtained under a field of 0.03 T in
the cooling process; hysteresis loops were measured under a field of 5 T at 10 K and 380 K, respectively;
isothermal magnetization (M-H) curves were obtained at various temperatures under a field of 5 T.
The heat capacity (Cp(T)) of the Fe87Zr8B5 amorphous ribbon was also measured by PPMS near its Tc

under a zero magnetic field.

3. Results and Discussion

X-ray diffraction patterns of the Fe92−xZr8Bx (x = 3, 4, 5) ribbons are presented in Figure 1. Only one
typical broadened diffraction hump was observed between 2θ of 30◦ and 35◦ on each pattern; and the
absence of visible crystalline peaks are present on the XRD curves of the ribbons. It indicates that the
Fe92−xZr8Bx ribbons are fully amorphous structures.
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Figure 1. XRD patterns of the Fe92−xZr8Bx (x = 3, 4, 5) as-spun ribbons.

The amorphous feature of the Fe92−xZr8Bx ribbons prepared under the linear velocity of 30 m/s can
be further confirmed from their differential scanning calorimetry (DSC) trace (Figure 2). The obvious
endothermic glass transition behaviors before the crystallization and the visible crystallization
exothermic peak (see the small figure in Figure 2) also verify the amorphous characteristics of
the ribbon. As seen from the DSC trace, the onset temperatures of glass transition (Tg) of Fe92−xZr8Bx

(x = 3, 4, 5) are about 798 K, 805 K, 807 K; and crystallization (Tx) is about 827 K, 834 K and
837 K, respectively.

In order to verify the above assumption more intuitively, high-resolution electron microscope
(HREM) micrographs of the Fe88Zr8B4 sample were performed and depicted in Figure 3. The HREM
image reveals the fully amorphous characteristics with only short-range order in the disordered matrix.
Similar features in XRD patterns and the DSC curves of these samples indicates the approximate
structural features in all other samples studied.
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Figure 2. Differential scanning calorimetry (DSC) traces of the Fe92−xZr8Bx (x = 3, 4, 5) alloys with the
heating curves obtained at 20 K/min; the inset is the melt DSC trace.
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Coercivity and saturation magnetization (Ms) of the Fe92−xZr8Bx (x = 3, 4, 5) glassy ribbons were
obtained from the hysteresis loops measured at 10 K under 5 T. As shown in Figure 4a, the nearly
zero coercivity of all the Fe92−xZr8Bx (x = 3, 4, 5) glassy samples indicates that the metallic glasses
are soft magnetic properties at 10 K. Ms of the Fe92−xZr8Bx (x = 3, 4, 5) glassy ribbons obtained from
their hysteresis loops are about 107.5 Am2/kg for x = 3, 109.2 Am2/kg for x = 4, and 110.7 Am2/kg for
x = 5, respectively. The dependence of Ms on the boron content of the three glassy samples, as plotted
in the inset of Figure 4a, shows a roughly linear relationship between Ms and x. The increasing Ms

with x in the Fe92−xZr8Bx metallic glasses is most likely related to the improved Fe-B interactions with
increasing B content [27,39]. The enhanced Ms implies the improvement of MCE by boron addition in
the Fe92−xZr8Bx amorphous alloys because Ms or −∆Sm depends on the ordering of magnetic moments
in metallic glasses upon magnetization.

In addition, unlike the rare earth (RE)-transition metal (TM)-based (RE-TM-based) metallic glasses,
the enhanced interaction by boron addition may result in the improvement of Tc in Fe92−xZr8Bx

glassy alloys because Tc of the Fe-based metallic glass samples primarily depend on the 3d-3d direct
interaction [27,29,34–37]. Figure 4b shows the variation of magnetization on the temperature (M-T
curves) of the Fe92−xZr8Bx glassy samples measured under 0.03 T. Tc derived from the M-T curves is
about 271 K for Fe89Zr8B3, 291 K for Fe88Zr8B4, and 306 K for Fe87Zr8B5 amorphous ribbons. The Curie
temperatures of the glassy samples were located in the working temperature range of a domestic
refrigerator, which indicates that the Fe92−xZr8Bx glasses ribbons may be the good working medium of
magnetic refrigeration when the −∆Sm

peak of these alloys are high enough.
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Figure 4. (a) Hysteresis loops of the Fe92−xZr8Bx (x = 3, 4, 5) amorphous ribbons measured at 10 K
under a field of 5 T; the inset is the relationship between the Ms and x. (b) The M-T curves of the
Fe92−xZr8Bx (x = 3, 4, 5) amorphous alloys measured under a field of 0.03 T.

By measuring the isothermal magnetization (M-H) curves of the Fe92−xZr8Bx glassy ribbons at
various temperatures, we can calculate the −∆Sm of these amorphous alloys. Figure 5 shows the −∆Sm

plots at different temperatures under the magnetic fields of 1 T, 1.5 T, 2 T, 2.5 T, 3 T, 3.5 T, 4 T, 4.5 T,
and 5 T. According to the trend, with a flat and continuously changing value, shown in the −∆Sm-T
curves, it can be seen that the Fe92−xZr8Bx (x = 3, 4, 5) metallic glasses exhibit the secondary magnetic
phase transition features of a soft magnetic alloy. −∆Sm

peak values of the glassy ribbons under 1 T, 2 T,
3 T, 4 T, and 5 T are listed in Table 1. The −∆Sm∝Hn relationship for the three samples were constructed
and the n values at different temperatures were obtained. Figure 6a illustrates the ln(−∆Sm) vs. ln(H)
plots near the Curie temperature of the three glassy samples and their linearly fitted lines. n is about
0.771 for Fe89Zr8B3 at 270 K, 0.769 for Fe88Zr8B4 at 290 K, and 0.766 for Fe87Zr8B5 at 305 K. The values
of n near Tc are approximately consistent in the alloys, and the alloys with fully amorphous structures
exhibit 2rd magnetic phase transition [17,41,42]. The n-T curves for the Fe92−xZr8Bx glassy samples,
seen in the inset of Figure 6a, display typical magnetocaloric behaviors of soft magnetic metallic glasses:
n is nearly 1 at low temperature when the sample is ferromagnetic, then gradually reduces to a minimum
value near Tc, and finally increases dramatically to a value up to 2 at the paramagnetic state [18,43].
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Table 1. Curie temperature, Tc, and −∆Sm
peak of the several Fe-Zr-B-based amorphous samples.

Composition
−∆Sm

peak * (J kg−1 K−1)
Tc (K) Ref.

1 T 1.5 T 2 T 3 T 5 T

Fe89Zr8B3 0.79 1.08 1.35 1.85 2.75 271
Present workFe88Zr8B4 0.88 1.20 1.50 2.06 3.04 291

Fe87Zr8B5 0.94 1.29 1.61 2.19 3.25 306

Fe88Zr9B3 0.94 1.28 1.59 2.16 3.17 286
[29]Fe87Zr9B4 0.99 1.35 1.67 2.26 3.29 304

Fe86Zr9B5 1.02 1.39 1.72 2.3 3.34 327

Fe88Zr8B4 0.87 1.2 1.5 2.06 3.04 292
[34]Fe87Co1Zr8B4 0.93 1.29 1.61 2.2 3.24 317

Fe86Co2Zr8B4 0.98 1.35 1.69 2.31 3.38 340

Fe87Zr8B4Sm1 0.98 1.33 1.65 2.24 3.27 308
[35]Fe86Zr8B4Sm2 1.04 1.41 1.73 2.32 3.35 325

Fe85Zr8B4Sm3 1.09 1.47 1.81 2.44 3.55 333

Fe87Zr7B4Co2 1.01 1.38 1.72 2.34 3.42 333 [36]

* The maximum magnetic entropy change (−∆Sm) value in the −∆Sm-T curves.
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−∆Sm
peak of Fe92−xZr8Bx amorphous alloys, as predicted above, increases with boron addition:

−∆Sm
peak under 5 T at x = 5 is about 6.9% higher than the −∆Sm

peak value at x = 4 and about 18.2%
higher the −∆Sm

peak value at x = 3. The increasing −∆Sm
peak as well as Ms with boron addition is most

likely due to the exciting of free electrons in Fe atoms to a high spin state and thus strengthening
the overall magnetic moments by adding of nonmagnetic B element. Therefore, the dependence of
−∆Sm

peak on Tc of the Fe92−xZr8Bx metallic glasses is contrary to the −∆Sm
peak-Tc relationship proposed

by Belo et al. [44] in the RE-based glassy samples. The −∆Sm
peak (under 5 T) vs. Tc plots in several

Fe-Zr-B-based amorphous samples (listed in Table 1), and their linear fitting (dash line) is illustrated in
Figure 4b. −∆Sm

peak for these Fe-Zr-B-based glassy ribbons increases monotonically with the Cutie
temperature, which is possibly because the magnetic interactions in the Fe-Zr-B-based glass is not so
complicated as the situation in the RE-based amorphous samples.

It is worthy to note that the Fe87Zr8B5 amorphous alloy exhibits a rather high −∆Sm
peak at the

temperature near 305 K. For instance, the −∆Sm
peak under 5 T of the Fe87Zr8B5 glassy sample reaches

to 3.25 J K−1 kg−1 at 305 K, which is comparable to that of the Fe87Zr8B4Sm1 amorphous ribbon
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(3.27 J K−1 kg−1 at 308 K) and the Fe87Zr9B4 amorphous ribbon (3.29 J K−1 kg−1 at 304 K), but is larger
than that of the Fe87Zr6B6Cu1 (3 J K−1 kg−1 at 300 K) metallic glass [29,30,35]. In order to reveal the
refrigeration efficiency of the Fe87Zr8B5 amorphous alloy, we calculate the temperature rise under an
adiabatic condition (∆Tad) of the sample according to

∆Tad(T, 0→ H) = −
T

Cp(T)
∆Sm(T, 0→ H) (1)

The ∆Tad-T curve of the Fe87Zr8B5 glassy ribbon is shown in Figure 7, the inset is the Cp(T)) curve.
The maximum ∆Tad for the Fe87Zr8B5 metallic ribbon is about 0.76 K under 1.5 T, and 1.98 K under
5 T, respectively.
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4. Conclusions

In summary, the Fe92−xZr8Bx (x = 3, 4, 5) glassy ribbons were successfully prepared. The magnetic
and magnetocaloric behaviors of these glassy samples were studied. Tc of the Fe92−xZr8Bx glassy
samples is about 271 K at x = 3, about 291 K at x = 4, and about 306 K at x = 5. It was found that
Tc, −∆Sm

peak, and Ms of the Fe92−xZr8Bx amorphous samples show an increase trend with the boron
content. The simultaneously increasing Ms, Tc, and −∆Sm

peak with boron content in the Fe92−xZr8Bx

amorphous alloys is mostly likely attributed to the enhanced interaction between the Fe-B atoms by
boron addition. The high −∆Sm

peak and ∆Tad of the Fe87Zr8B5 metallic ribbon near 305 K indicate
that the amorphous sample may be a good candidate for the magnetic refrigerants of a domestic
magnetic refrigerator.
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