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A Model for Extra-Axonal Diffusion Spectra with
Frequency-Dependent Restriction

Wilfred W. Lam,* Saâd Jbabdi,y and Karla L. Millery

Purpose: In the brain, there is growing interest in using the
temporal diffusion spectrum to characterize axonal geometry

in white matter because of the potential to be more sensitive
to small pores compared to conventional time-dependent dif-
fusion. However, analytical expressions for the diffusion spec-

trum of particles have only been derived for simple, restricting
geometries such as cylinders, which are often used as a

model for intra-axonal diffusion. The extra-axonal space is
more complex, but the diffusion spectrum has largely not been
modeled. We propose a model for the extra-axonal space,

which can be used for interpretation of experimental data.
Theory and Methods: An empirical model describing the
extra-axonal space diffusion spectrum was compared with

simulated spectra. Spectra were simulated using Monte Carlo
methods for idealized, regularly and randomly packed axons

over a wide range of packing densities and spatial scales. The
model parameters are related to the microstructural properties
of tortuosity, axonal radius, and separation for regularly

packed axons and pore size for randomly packed axons.
Results: Forward model predictions closely matched simula-

tions. The model fitted the simulated spectra well and accu-
rately estimated microstructural properties.
Conclusions: This simple model provides expressions that

relate the diffusion spectrum to biologically relevant micro-
structural properties. Magn Reson Med 73:2306–2320, 2015.
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INTRODUCTION

Diffusion-weighted magnetic resonance imaging has
enormous potential to noninvasively estimate the geo-
metric properties of biological tissues. This remarkable
capability is grounded in the sensitivity of the natural
motion of water molecules to their microenvironment,
which imparts a characteristic change to water diffusion.
This altered diffusion provides a signature of the size
and shape of the compartments to which it is confined
(1–3). For example, in the brain, the diameter of axons in
white matter alters the apparent diffusion coefficient of
water depending on the time that molecules are allowed
to explore the intra-axonal space (4–10). With suffi-
ciently accurate models for how this behavior translates
into a detectable change in the diffusion-weighted mag-
netic resonance imaging signal, one can infer geometric
properties of the tissue microstructure. In the context of
biological tissues, many of these geometric properties
relate to tissue function and health (11), making such a
technique of great interest as a biomarker.

An alternative to this traditional approach of measuring
at a range of diffusion times is to consider the translational
motion of the diffusing molecules. This so-called diffusion
spectrum DðvÞ decomposes molecular movement into a
range of temporal frequencies (x), resulting in a frequency-
dependent diffusion coefficient. The diffusion spectrum
should not be confused with the unrelated technique of
diffusion spectrum imaging, which aims to estimate the
diffusion propagator. Formally, DðvÞ is defined as the Fou-
rier transform of the velocity autocorrelation function of
diffusing particles (12). The velocity autocorrelation func-
tion describes how long particles continue in their current
direction until they change direction or speed, either due
to scattering against another particle or encountering a bar-
rier. For a given particle, its velocity over time can be
expressed in terms of a weighted sum of velocity at differ-
ent temporal frequencies (i.e., a Fourier transform of the
velocity time course). The diffusion spectrum is the equiv-
alent decomposition of the expected (ensemble average)
velocity autocorrelation. Equivalently, the diffusion spec-
trum is the velocity power spectrum of an ensemble of dif-
fusing particles. This diffusion “power spectrum” relates to
the geometry of the environment to which molecules are
confined, and thus geometric properties of the environment
can be estimated from DðvÞ, given an appropriate model.

Measurements of the diffusion spectrum require the use
of oscillating gradients, rather than the more conventional
pair of gradients pulses (13). These oscillating gradients
cause a given water molecule to accrue a large positive
(or negative) phase offset if a significant component of
motion of the molecule along the direction of the gradient
is positively (or negatively) correlated with the gradient
waveform. Molecular motion at other frequencies will be
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orthogonal to the gradient waveform, resulting in negligi-
ble phase offsets and making the MR signal insensitive to
this motion. An ensemble of molecules, each with ran-
dom phase offset at a given frequency, will thus accrue a
distribution of phase offsets. This will, in general, lead to
signal loss (similar to conventional diffusion weighting)
and, under some circumstances, a coherent phase offset
(14–16). Oscillating gradient measurements have been
demonstrated for both in vivo (17–20) and ex vivo (21,22)
brain tissue. Most in vivo measurements have been made
on preclinical scanners due to the difficulty of achieving
sufficient diffusion weighting using clinical scanners (23).

Microstructural characterization of tissue typically
begins by assuming some simple geometry for which the
diffusion spectrum has been derived and relating this to
the diffusion-weighted magnetic resonance imaging sig-
nal in an oscillating gradient experiment. In the brain,
cylinders are often used to model axons (24–26). This is
typically combined with a second compartment intended
to account for the extra-axonal space (EAS). The diffu-
sion spectrum of the EAS is known not to be spectrally
flat (27,28) owing to the tortuous nature of the EAS (29).
This has also been observed in nonoscillating gradient
experiments (30). However, in certain models, the EAS
diffusion spectrum has been approximated as a constant
over all frequencies, implying that “hindered” diffusion
in the EAS is spectrally equivalent to free diffusion, but
with a lower diffusion coefficient (i.e., diffusion is slow,
but the spectrum has no shape) (31). This approximation
is valid at low frequencies, but will likely lead to biases
in fitting geometric parameters such as restricted volume
fraction or axon diameter at higher frequencies, as will
be demonstrated here through simulations.

The goal of the current work is to propose a model for
the diffusion spectrum in the EAS with improved accu-
racy that may yield white matter microstructural informa-
tion. Models of the intra-axonal space typically assume
that water molecules strictly remain inside axonal cylin-
ders over the time scale of a measurement (“restricted”
diffusion). By comparison, an EAS model must describe a
more complicated geometry in which water molecules
will tend to remain in the confining space between axons
where they are at the beginning of a measurement, but
will occasionally diffuse outside to an adjacent space.
Closed-form solutions are unlikely to describe such com-
plicated geometries, particularly biological systems with a
distribution of confining space sizes and random packing.
Instead, the proposed EAS model aims to retain much of
the simplicity of previous work by considering the confin-
ing spaces between axons to be approximated by cylin-
ders, while encapsulating the ability of molecules to
diffuse between these spaces with a component that is
spectrally flat. This hybrid approach can be considered as
a kind of exchange model in which water molecules move
between regimes of restriction (when confined to an extra-
axonal “cylinder”) and hindrance (when diffusing between
cylinders) and can be compared to the work of Callaghan
et al. (3) and Kuchel et al. (32). Versions of the model are
presented for both periodically packed, uniform cylinders
and randomly packed cylinders with a distribution of
radii. The accuracy of these models is assessed through
comparison with Monte Carlo simulations of these geome-

tries at a range of spatial scales, demonstrating good agree-
ment despite the simplified nature of this model.

THEORY

In this section, we present a conceptual framework for
the diffusion spectrum in the EAS. We begin with a
description of the properties of the diffusion spectrum
and then present simulations of diffusion in the EAS.
Next, we build on this to present a new model for the
EAS that aims to strike a balance between simplicity and
explanatory power.

The Diffusion Spectrum

The diffusion spectrum DðvÞ is the Fourier transform of
the particles’ average velocity autocorrelation; that is, the
power spectrum of particle velocities. In the absence of
barriers, diffusion is “free” and is driven simply by the
scattering of molecules with each other. The velocity
autocorrelation for free diffusion is effectively instanta-
neous decorrelation (a delta function), which Fourier
transforms to a constant diffusion spectrum.

This default shape of the diffusion spectrum is altered by
the presence of any barriers that impede movement. This
general property holds for both confining spaces from
which particles cannot escape (restricted diffusion) and
porous microstructure with communicating spaces (hin-
dered diffusion). The primary difference between restriction
and hindrance is that the latter enables molecules to dis-
place an arbitrary distance given sufficient time, although
displacement rates are slower than for free diffusion.

As we will see, confining spaces (whether restrictive
or hindering) correspond to a reduction of the diffusion
coefficient at low frequencies, while high frequencies are
less affected. In restricting geometries, particles must
have Dðv ¼ 0Þ ¼ 0 in order for particles to remain inside
the confining space; for hindering geometries, the diffu-
sion spectrum is reduced, but nonzero, at zero frequency.
Reduced diffusion under hindrance is characterized by
the microstructural “tortuosity” (27), defined by the ratio
of displacements for hindered and free diffusion at v ¼ 0
(33). Tortuosity has been derived analytically for certain
regular geometries (34,35), but is more difficult to calcu-
late for arbitrary geometries.

This leads to the general property that, in the presence
of restricting or hindering barriers, the diffusion spec-
trum transitions from free diffusion behavior at high fre-
quencies (Dðv!1Þ ¼ Df , the free diffusion coefficient)
to reduced diffusion at low frequencies. The transition
from Dðv ¼ 0Þ to Df is well-studied for pure restriction,
resulting in a known relationship between the length
scale of the restrictions and the specific shape of the dif-
fusion spectrum (12,31). In contrast, the shape of the dif-
fusion spectrum has received less attention for hindered
geometries, which are more complicated and often less
suited to closed-form calculations.

Preliminary Simulations

Throughout this work, Monte Carlo simulations are used
as a ground truth to establish the properties of the diffu-
sion spectrum of water in the space surrounding
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different geometric configurations of cylinders represent-
ing the EAS. We present simulated geometries that range
from regular lattices of cylinders with uniform radii to
random packings with a distribution of radii. The full
details of these can be found in the Monte Carlo simula-
tions subsection. In this section, we consider a prelimi-
nary set of simulations of the EAS to demonstrate the
characteristic features of this space and motivate the
EAS model that follows. The diffusion spectra for the
intra- and extracylinder spaces of a simple square pack-
ing geometry are shown in Figure 1.

The spectrum for the interior of an impermeable
(restrictive) cylinder approaches Dcyl ¼ 0 at low frequency
and asymptotes to Dcyl ¼ Df at high frequency with a sig-
moidal transition between these two regimes (12). This
behavior directly follows from the fact that a constant or
slowly varying velocity (low frequency) results in a large
net displacement. Restrictive spaces like impermeable cyl-
inders thus place limitations on velocity at low frequen-
cies; in particular, v ¼ 0 corresponds to mean velocity
autocorrelation, and any nonzero mean velocity autocorre-
lation would eventually cause a particle to leave the com-
partment. Restrictive compartments are thus characterized
by Dcylðv ¼ 0Þ ¼ 0 and, more generally, a damping of
mean velocity at low frequencies.

Unlike restricted geometries, molecules in hindered
spaces like the EAS can displace an arbitrary distance
given sufficient time. Based on this observation, EAS
molecules have been argued to behave like a slower ver-
sion of free diffusion with a nonzero diffusion coefficient
at v ¼ 0 (i.e., some average velocity). Recall that the
mean squared free diffusion displacement x in one
dimension is described by Einstein’s equation (36)

hx2i ¼ 2tDf ; [1]

where s is the diffusion time of the measurement. The
ratio of free to hindered mean diffusion displacements
(33) is referred to as “tortuosity” (denoted k):

l2 ¼ hx2
f i=hx2

hi

¼ Df=Dðv ¼ 0Þ
[2]

Analytical expressions for the tortuosity of the space
around periodically packed cylinders are given in

(34,35), and one can then rearrange the equations above
to write

Dðv ¼ 0Þ ¼ Df=l
2 [3]

This property holds at v ¼ 0 by definition (since a net
displacement is associated with zero frequency).
Although the diffusion spectrum of the EAS is known
not to be spectrally flat (27,28), some previous models
(31) have further assumed that this value holds at all fre-
quencies resulting in a flat spectrum that is similar to
free diffusion, but with a reduced diffusion coefficient

Interestingly, our basic Monte Carlo simulations
(described in detail below) demonstrate that the EAS
spectrum has a shape similar to the spectrum for an
impermeable cylinder (intra-axonal). While diffusion for
restrictive and hindering geometries deviates at low fre-
quencies, they are observed to be convergent at high fre-
quency. Diffusion at high frequency has been related to
the surface-to-volume ratio (S/V) of the environment
(37). This property is similar to that of short diffusion
time, pulsed gradient measurements: for short diffusion
time (or high oscillation frequencies), only molecules a
very short distance from a reflecting surface experience
altered diffusion behavior, while all other molecules in
the volume experience free diffusion.

The diffusion spectrum for a hindering extracylinder
space, which is a compelling model for extra-axonal
microstructure, to date, remains impartially described.
Previous models of the EAS spectrum are accurate for
low (27) and high (37) frequency asymptotes. The transi-
tion between these extremes is the subject of the present
work, which aims to present a simple model that approx-
imates the entire spectrum.

Basic Exchange Model

The observed shape of the EAS spectrum shown in Fig-
ure 1c is perhaps not surprising given what we know of
the space between cylinders. For cylinders that are com-
pletely abutting, the EAS water is trapped in restrictive
“pores,” much like the water inside impermeable cylin-
ders. As we loosen the cylindrical packing (reduce tortu-
osity), gaps appear through which water can
communicate between pores. EAS water will still tend to

FIG. 1. a: Square packed cylinders (axial view) of radius R with representative paths of diffusing intra- (blue) and extracylinder (red) par-
ticles. The corresponding diffusion spectra for the (b) intra- and (c) extracylinder spaces for three different cylinder radii (with a cylinder
center-to-center separation to diameter ratio of 1.12). Df is the free diffusion coefficient.
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remain trapped in the pores, but will also occasionally
diffuse between them. Thus, depending on the packing
(tortuosity), water molecules can be considered to spend
a variable fraction of their time behaving as restricted
(trapped in pores) or free (moving between pores).

This description is at the heart of our proposed model,
which expresses the EAS diffusion spectrum as a combi-
nation of free and restricted diffusion:

DextðvÞ ¼ ffDf þ ð1� ffÞDrðvÞ; [4]

where ff represents the fraction of the time a given particle
is “free” (moving between pores), while for the remainder
of time the particle is “restricted” to a pore. The model
assumes that, as molecules migrate between pores, during
the migration period they are characterized by a flat spec-
trum and at all other times by a restricted spectrum. We
can thus consider this to be a type of exchange model, in
which a given molecule exchanges between different
regimes of behavior (rather than physical compartments).
For this to be true, there must be fast exchange between
the two regimes. Order of magnitude calculations (not
shown) indicate the measurement is in the fast exchange
limit described by Lee and Springer (38). Also simulations
at b¼ 0.5, 1, and 2 ms/mm2 for regular and random pack-
ing yield the same diffusion spectrum.

The free diffusion spectrum is frequency independent
and simply given by the diffusion coefficient of free
water (i.e., it is identical to the spectrum for free diffu-
sion). Given that Drð0Þ ¼ 0, we can combine Eqs. [2] and
[4] to determine that

ff ¼ 1=l2 [5]

This states that the more tortuous the EAS (large k),
the less time molecules spend freely diffusing between
pores.

The form that the restricted component should take is
less obvious given the complicated geometry of the EAS
(i.e., the space between cylinders shown in Fig. 1a). Figure
2a isolates the restricted component by subtracting ffDf

from a simulated EAS spectrum. It is clear that the shape
of the restricted spectrum is similar to that of an imperme-
able cylinder DcylðvÞ (12) given in Appendix A and, in
fact, comparing the spectrum of the EAS to that of a cylin-
der with the same total volume as the EAS gives a surpris-
ingly reasonable prediction (dashed green line) of DrðvÞ.

However, this simple model for the restricted compo-
nent (a cylinder of matched volume) does deviate signifi-
cantly from the simulated spectrum in the transition
region. Were we to use this model, we would expect a sig-
nificant bias in any fit to data. Comparing simulations to
restricted cylinders at a range of radii (not shown), it is
clear that no radius captures the shape of the restricted
component of the EAS spectrum. In particular, the EAS
spectrum approaches the Df asymptote more slowly than
the spectrum for a restricted cylinder. This difference is
likely due to the deviation of the shape of the EAS from a
cylinder. While one might hope to derive a complicated
expression for the geometry external to abutting cylinders,
such a model would further need to capture the change in
geometry with looser packing to be useful. We instead take
the approach of extending the cylinder model, which has
the benefit of both simplicity and similarity to the EAS.

Improved Exchange Model with Variable Radius

The agreement of the model with the simulated spectrum
can be improved by allowing the radius of the cylinder
to vary with frequency according to

RðvÞ ¼ ðR0 � R1Þe�v=vd þ R1 [6]

vd ¼ 2p
2Df

R2
0

; [7]

in which R0 and R1 are the radii at v ¼ 0 and v ¼ 1,
respectively, and vd describes an exponential rate of
decay between the two values. The expression for vd is
adapted from the equation for mean diffusion displace-
ment (Eq. [1]). That is, 2p=vd corresponds to the diffu-
sion time, which is the time required for one standard
deviation of diffusing particles to displace by x ¼ R0. At
v� vd, particles have diffusion displacements consist-
ent with those within a cylinder of radius R0. At v � vd,
particles have displacements consistent with those
within a cylinder with a radius between R0 and R1.

The improvement in model agreement is demonstrated
in Figure 2a (solid line), suggesting that the EAS can be
described by a restrictive component with an effective
radius that depends on frequency. The dependence of R
on frequency is plotted in Figure 2b.

To calculate the EAS diffusion spectrum for randomly
packed cylinders, we consider R0 to be a distribution

FIG. 2. a: The “restricted component” of a simulated EAS spec-

trum (�) calculated by subtracting ffDf from the EAS spectrum of
square packed cylinders. Overlaid are the diffusion spectra of a

cylinder of radius R (– –) with the same volume as the EAS and
that of the proposed variable radius model (–). b: The variable
radius corresponding to RðvÞ in a.
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and perform a weighted sum of the diffusion attenuation
of each pore:

EextðvÞ ¼
Z

FðR0Þexp f�b½ffDf þ ð1� ffÞDrðR0;vÞ�gdR0

[8]

where F is the distribution of R0, weighted by R2
0, and

normalized by its sum and b is the diffusion weighting.
Note again that completely parallel cylinders are
assumed. In the case of any orientation distribution, this
equation will need to be modified to account for the pro-
jections along the gradient direction. We can then con-
vert to an effective diffusion spectrum for all the pores:

DextðvÞ ¼ �
1

b
ln ðEextðvÞÞ [9]

As will be demonstrated in the Results section, Eqs.
[4]–[9] closely match the simulated DextðvÞ for regularly
and randomly packed cylinders.

Interpretation of Model

For square and hexagonally packed uniform cylinders
and randomly packed cylinders with a gamma distribu-
tion of radii, we found the following relations to agree
with simulated spectra across a wide range of cylinder
sizes and packing densities (as will be shown in the
Results section).

R0 ¼ Rpore 1� 1

l2

� �
p2 [10]

R1 ¼ 3ðS=VÞ�1 1� 1

l

� �
p; [11]

where the effective pore radius Rpore is the mean dis-
tance between the center of the pore and the walls of the
cylinders and p is the fractional separation between adja-
cent cylinders. We define the fractional separation as

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fint;max=fint

q
; [12]

where fint;max is the maximum cylinder volume fraction
for a set of cylinders with a given radius distribution and
packing type (e.g., square, hexagonal, and random) and
fint is the cylinder volume fraction. p¼1 for abutting cyl-
inders. fint;max is p=4 � 0:7854 for square packed uniform
cylinders; p=ð2

ffiffiffi
3
p
Þ � 0:9069 for hexagonally packed uni-

form cylinders; and can be determined numerically for
randomly packed cylinders with a distribution of radii
(� 0:8433 for the distribution used in this work). For the
two cases of regular packing, p is also equivalent to the
ratio of cylinder center-to-center separation to cylinder
diameter, which we denote as L and Labut, respectively.

The behavior of the model parameters and their subfac-
tors as a function of p is plotted in Figure 3. The symbols
used in the model are summarized in Table 1. The

FIG. 3. Plots of the model parame-

ters (a) R0 and (b) R1 and their sub-
factors (normalized to Rmin, an
equivalent radius for the EAS area

under the tightest possible packing)
as a function of fractional separation

p for square packed cylinders. The
value of p (denoted p0), when R0 for
abutting and nonabutting cylinders

are equal, and the abutting cylinder
volume fraction fint;max are indicated.

The curves for hexagonal packing
(not shown) are similar.

Table 1
List of Symbols in the EAS Diffusion Spectrum Model

Symbol Description

Df Free diffusion coefficient

k EAS tortuosity (Eq. [2])
DextðvÞ EAS diffusion spectrum (Eq. [4])

ff Fraction of EAS particles behaving as if freely
diffusing (Eq. [5])

RðvÞ Radius of restricted diffusion component (Eq. [6])

R0 Radius of restricted diffusion component
at v ¼ 0 (Eq. [10])

R1 Radius of restricted diffusion component

as v!1 (Eq. [11])
vd Transition rate from R0 to R1 (Eq. [7])

Rpore Effective pore radius
S/V Ratio of pore surface area to volume
P Fractional cylinder separation

fint;max Cylinder volume fraction under tightest
possible packing

fint Cylinder volume fraction

2310 Lam et al.



remainder of this section gives a qualitative explanation
of Eqs. [10] and [11].

The R0 parameter represents the effective radius of
the restricted component when particles have had suf-
ficient time to thoroughly sample the EAS (at low fre-
quencies). When the cylinders are abutting, R0 ¼ Rpore.
When the cylinders are slightly nonabutting, Rpore over-
estimates R0 because particles within the narrow
“channels” between cylinders experience a more
restricted space. However, as the gap between adjacent
cylinders becomes greater, these channels decrease in
significance and the value of R0 becomes increasingly
driven by Rpore. This transition occurs at the value of p
where R0 for nonabutting and abutting cylinders are
equal, which we denote as p0. Indeed, for square and
hexagonally packed cylinders, p0 corresponds within
6% to the packing density at which the gap between
adjacent cylinders is equal to the pore radius for abut-
ting cylinders (i.e., L � Labut ¼ R0ðp ¼ 1Þ; noted as p0 in
Fig. 3a). For randomly packed cylinders, Rpore varies
with each pore leading to a distribution of R0, but these
general principles otherwise hold.

The R1 parameter represents the effective radius of
the restricted component at high frequencies, reflecting
short time periods during which particles only sample
the EAS close to their initial position. This overall pat-
tern is indicated in Figure 3b.

We would like to emphasize that the combination of
our improved model with frequency-dependent radius,
on the one hand, and Eqs. [10]–[12], on the other, serve
two purposes. The frequency dependence allows us to
have a good fit to the data at all frequencies. The
empirically derived relationships described in Eqs.
[10]–[12] give a description for this frequency depend-
ence that is valid over a wide range (three orders of
magnitude) of pore sizes, as will be clear in the Results
section.

METHODS

Monte Carlo Simulations

This model was applied to the periodically and ran-
domly packed cylinders illustrated in Figure 4. Periodi-
cally packed cylinders were chosen for ease of relating
model parameters to the cylinder geometry (packing
type, cylinder radius, and cylinder separation). Ran-
domly packed cylinders were chosen to approximate
axon bundles and test the applicability of this model
with more realistic but complex geometries.

We conducted extensive Monte Carlo simulations to
define the ground truth for diffusion spectra over a range
of geometries surrounding different packings of cylinders.
MR signal attenuation was simulated in Camino (39,40)
for the geometries depicted in Figure 4.

For square and hexagonally packed cylinders, the vari-
ous environments were explored by varying the cylinder
radii and the packing density (specified by p). The cylin-
der radii were chosen to yield a useful range of EAS
cross-sectional areas (EAS areas) under the abutting case.
That is, the cylinder radii were chosen such that abut-
ting EAS areas had specific target radii Rmin. The value
of Rmin reflects the EAS area under the tightest possible
packing. Rmin is related to Labut for square and hexago-
nally cylinders as

Labut;sq ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4� pÞ

p
� Rmin [13]

Labut;hex ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð

ffiffiffi
3
p
� p=2Þ

q
� Rmin; [14]

respectively. All combinations of Rmin 2 {0.05, 0.1, 0.5, 1,
5} mm and p 2 {1.00, 1.03, 1.06, 1.09, 1.12, 1.25, 1.50,
2.00} were simulated.

For randomly packed cylinders, the cylinder radii
were chosen to have a gamma distribution corresponding
to the genu of the human corpus callosum (41) as well

FIG. 4. Axial view of (a) abutting and (b) nonabutting square packed cylinders with center-to-center separation L and abutting center-to-
center separation Labut labeled. c, d: As a and b, but for hexagonally packed cylinders. e: Axial view of randomly packed cylinders with

gamma-distributed radii and various cylinder volume fractions fint (only 4% of each tile of cylinders is shown). Pore boundaries are indi-
cated by straight lines.
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as gamma distributions with twice and thrice the cylin-
der radii. Simulations were performed with cylinder vol-
ume fractions of fint 2 {0.73, 0.6, 0.5, 0.4, 0.3} by varying
the cylinder spacing while keeping the cylinder distribu-
tions constant (Fig. 4e—more detailed versions can be
found in Fig. S1 of the Supporting Information). In total,
the diffusion spectra for 15 randomly packed geometries
(three distributions at each of the five volume fractions)
were simulated. Each simulation consisted of 500 cylin-
ders in a base voxel, which was then tiled. Particles dif-
fusing across any given edge of a tile reappear at the
opposite edge, which enables an efficient and accurate
simulation of a large-scale geometry based on a smaller-
scale representation.

Diffusion gradient frequencies were chosen to simulate
as much of the dynamic range of the diffusion spectra as
possible with the available computational power. Apo-
dized cosine oscillating gradients (17) were used to mini-
mize the encoding spectrum side lobes and were simulated
at frequencies of {2, 4,. . ., 10, 20,. . ., 100, 200,. . ., 1,000,
2,000,. . ., 10,000, 20,000,. . ., 100,000, 200,000,. . .,
1,000,000} Hz. The duration of the oscillating gradient
waveforms was chosen to sample narrowly about the target
frequency, with a sampling width of 500 ms (2 Hz FWHM)
for frequencies below 10,000 Hz and 4 ms (250 Hz) for
higher frequencies. The gradients were applied perpendic-
ular to the cylinder axes. The peak amplitude of each
waveform was chosen to produce a b value of 1 ms/mm2.

The other simulation parameters are summarized in
Table 2. A Df of 2 mm2/ms was used and no noise was
added. Simulations were run in parallel on a computing
cluster of Intel Xeon X5647 processors. The run times for
simulations of 10,000 walkers each were approximately
12, 60, and 120 h of processor time for 250,000,
2,000,000, and 8,000,000 time steps, respectively.

The signal attenuation S=S0 at each frequency was
converted to a corresponding point in the diffusion spec-
trum DðvÞ via S ¼ S0exp ð�bðvÞDðvÞÞ (where bðvÞ ¼ 1
ms/mm2 in our simulations). Particles within imperme-
able, uniform cylinders (intra-axonal) were also simu-
lated to verify that the simulated diffusion spectrum
matched the known expression (12).

Forward Model Comparison to Simulated Data

The primary goal of this article is to compare the simu-
lated diffusion spectra to the forward model using the
known properties of the simulated microstructure. EAS
diffusion spectra are calculated using the model for each
of the square and hexagonal packing simulated cases. In
these cases of regular packing, the ground truth can be
calculated straightforwardly and compared to the simu-
lated diffusion spectra. Forward modeling was not per-
formed for randomly packed cylinders as physical
interpretations for R0 and R1 could not be found.

Model Fitting

Fitting for the model parameters from the simulated
DextðvÞ data was used to determine whether parameter
values can uniquely describe the geometries considered.
Bayesian fitting with the Metropolis–Hastings algorithm
was performed, with the fit initialized by the result of

nonlinear least squares. For the nonlinear least squares
analysis, the initial value of lambda was given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Df=Dðv ¼ 0Þ
p

for all cases; the initial values of R0 and
R1 were arbitrarily set to 10 and 1 nm, respectively, for
regular packing; and the initial values of the R0 mean, R0

standard deviation, and R1 were 1 mm, 10 nm, and
500 nm, respectively, for random packing.

For regular packing, the simulated DextðvÞ curves were
fitted for k, R0, and R1. These three parameters were
also calculated from analytical expressions for k, Rpore,
S/V, and p and compared with the fitted values to ascer-
tain whether there is a one-to-one correspondence,
which is required for the model to unambiguously
describe the microstructure. For random packing, the
DextðvÞ curves were fitted for k, the mean and variance of
a gamma distribution used to describe R0, and R1. Df

was assumed to be that used in the simulations.

Describing the Microstructure

The fitted model parameters were used to calculate val-
ues that describe the microstructural environment of the
EAS. For square and hexagonal packing, k was calcu-
lated numerically from p using existing expressions
(34,35). Then, Labut and L were calculated using Eqs. [10]
and [11] in combination with the expressions for Rpore

and S/V in Appendix B.
While analytical calculation of pore sizes can be per-

formed for regular packings, this is not generally possible
for random packings. Instead, the EAS of the simulated
randomly packed cylinders was segmented into extracy-
linder pores using a custom algorithm. The resulting dis-
tribution for Rpore was compared to the mean value of
the fitted R0 distribution.

All segmentation and fitting were performed in MAT-
LAB (R2011b, The MathWorks, Natick, MA).

RESULTS

We begin by assessing the overall ability of the model to
predict simulated diffusion spectra across a wide range
of square and hexagonal cylinder packing geometries,
including packing densities and spatial scales. We then
assess the uniqueness of the model parameters k, R0, and
R1 when fitted to diffusion spectra under ideal (noise-
less) conditions. Finally, we compare the fitted parame-
ters to physically meaningful geometrical values (Labut

and L for square and hexagonal packing and the mean
Rpore for random packing).

Forward Model Comparison to Simulated Data for
Regular Packing

Simulated and predicted EAS spectra are shown in Fig-
ure 5 for square and hexagonal packing. The simulated
and modeled DextðvÞ match well over a broad range of
geometries. The quality of model agreement can be best
appreciated by examining the residuals (data subtracted
from model) found in Figure S2 of the Supporting Infor-
mation. Overall, the residuals are very small, although
there is a negative deviation from zero for square packed
cylinders with relatively tight packing (1 < p < 1:12).
This deviation occurs near the frequency of the initial
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rise in DextðvÞ, determined by the parameter R0. It is
worth noting that the residuals in these regions of the
spectrum are particularly sensitive to differences between
the simulations and predictions since this is where the
spectrum is changing most rapidly. Put another way, the
residuals measure the vertical difference between model
and simulation, which can be large in regions of rapid
change, even for curves that by eye are only subtly differ-
ent. Hexagonal packings do not show this feature in the
residuals, indicating a better overall model prediction
(i.e., residuals that are generally very close to zero).

Simulated and predicted EAS spectra are shown in
Figure 7 for random packing. The simulated and mod-
eled DextðvÞ also match well over a broad range of geo-
metries. The residuals are shown in Figure S3 of the
Supporting Information and have smaller absolute values
than those for regular packing.

Model Fitting

The tortuosity parameter is straightforward to interpret
and is compared to analytically calculated values for
square and hexagonally packed cylinders in Figure 6a,d,
respectively. The agreement between the fitted and theo-
retical values is very good in all cases.

The abstract model parameters R0 and R1 are crucial to
evaluate because they only have an empirical relationship
to parameters of the simulated geometries. Thus, it is
important to establish that these parameters (a) capture the

expected relationships with k, Rpore, S/V, and p as indi-

cated in Eqs. [10]–[12] and (b) exhibit an (approximately)

one-to-one mapping with microstructural geometry. If

there were no unique mapping, the estimation of the

microstructural geometry would be confounded. Model fits

to simulated data show that the radius parameters are in

reasonable agreement with calculated values for square

and hexagonal packing as shown in Figure 6b,c,e, and f.

For square packing, the fitted values of R0 overestimate the

expected R0 for small values of p, although the general

trends are in good agreement. One possible cause of dis-

agreement for square packing are larger displacements for

a given diffusion time due to the presence of straight paths

between cylinders, which are not accounted for in the cal-

culation of Rpore. The fitted values of R1 generally match

the model well. The parameters R0 and R1 appear to give

a unique mapping to all the combinations of EAS length

scales and packing densities simulated.
For square and hexagonal packing, the calculated val-

ues for Labut and L from R0 and R1 versus true values are
presented in Figure S4 of the Supporting Information.
The estimates match the simulated values over a wide
range of spatial scales. The accuracy is high despite the
complicated geometry of the EAS, which effectively com-
bines a variety of spatial scales.

For randomly packed cylinders, the model using a dis-
tribution of R0 fits well to the diffusion spectra (Fig. 7;
residuals, which are smaller than those for the regular
packing DðvÞ are shown in Figure S3 of the Supporting
Information). The single R0 model used for regular pack-
ing did not fit the random packing data well (not shown),
which indicates the need for an R0 distribution. The R0

distributions from fitting and from the EAS segmentation
algorithm, when weighted by the volume of each pore,
are shown in Figure 8a. At high packing densities
(fint � 0:6), they broadly match, but at low densities, a
bimodal distribution is evident. The random placement
of cylinders by Camino is likely the cause of the bimodal-
ity. At low fint, the cylinders exhibit clumping from ran-
dom placement (see Figure S1 in the Supporting
Information) and would yield a bimodal distribution. An
alternative arrangement of cylinders with the same fint,
but more even spacing, should yield a more unimodal
distribution. At high fint, Camino spaces the cylinders
more evenly to minimize the amount of EAS, which
would automatically yield a unimodal distribution. With-
out volume weighting, there is an even stronger bimodal
distribution at all fint, which suggests the need for vol-
ume weighting. The means of the distributions from fit-
ting and segmentation closely match (Fig. 8b). The fitted
values of R1 match the model quite well (Fig. 8c).

DISCUSSIONS

In this article, we present an analytical model for the dif-
fusion spectrum of the EAS that is applicable to square,
hexagonally, and randomly packed cylinders. This is an
idealized view as axons are neither perfectly cylindrical
nor impermeable and glia are ignored. However, this kind

Table 2
Monte Carlo Simulation Parameters

Gradient

Frequency (Hz) Duration (ms) Number of time steps Walkers

2–10,000 500 8,000,000 (Rmin ¼ 0:05 mm), 10,000 (p 	 1:12),
30,000 (p � 1:25),

2,000,000 (Rmin ¼ 0:1 mm), 100,000 (random packing)
250,000 (Rmin � 0:5 mm and random packing)

5,000–1,000,000 4 400,000 10,000 (p 	 1:12),

30,000 (p � 1:25),
100,000 (random packing)

In the first frequency range, more time steps were required for small Rmin (periodic packing only) to keep the walker displacement per
step much less than the distance between cylinders. Otherwise, Dextðv � 0Þ would be underestimated. In the second frequency range,
the gradient duration was reduced due to computer memory constraints. DextðvÞ was comparable where the frequency ranges over-

lapped. The number of walkers was increased for large p (periodic packing only) to compensate for the decreased signal of the
restricted component.
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of simulation, as provided by Camino, has nevertheless
been very powerful for gaining insights into diffusion in
white matter. Proper modeling of the EAS diffusion spec-
trum will aid in the correct interpretation of oscillating
gradient diffusion measurements. Although the diffusion
spectrum of the EAS is known not to be spectrally flat

(27,28), we believe that our empirical model is the first to
predict the EAS diffusion spectrum across the entire fre-
quency range with parameters that have a one-to-one cor-
respondence to the microstructure of idealized cylinders.
Below we discuss alternative models and considerations
when acquiring and analyzing real data.

FIG. 5. Simulated (markers) and predicted (–) EAS diffusion spectra DextðvÞ for square and hexagonally packed cylinders.
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FIG. 6. Fitted (mean 6 SD; markers) and predicted (–) model parameters (a) 1=l (Rmin ¼ 1 and 0.1 mm are similar and not shown), (b) R0,
and (c) R1 for square packed cylinders. The curves in b and c denote Rmin ¼ 5, 1, 0.5, 0.1, 0.05 mm (top to bottom). d, e, f: As a, b,

and c, but for hexagonally packed cylinders. 1=l is plotted instead of k to show the abutting case (p¼1). The markers are as in Figure
5.
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Alternative Models

Our model is the simplest we could devise that would
match all of the simulated data. While a model that

describes EAS diffusion with, say, one free and two

restricted components with fixed radius across frequen-

cies would also predict the data, that would entail four

parameters (e.g., tortuosity, volume fraction of one

restricted component, and the radius of each) instead of

three with the model presented in this article, while not

giving improved accuracy (data not shown).
Alternative formulations for DextðvÞ have been pro-

posed. The closest to the one presented in this article is
that of Lasič et al. (42). Their model also uses Eq. [4],
but for the purpose of characterizing the exchange of
water molecules between microscopic water droplets.
The restricted diffusion attenuation is modeled as a sum
of diffusion spectra weighted by droplet volume and size
distribution as well (cf. Eq. [8]). However, in their model,
the pore size does not vary with frequency. Furthermore,
the motivation for our model differs in that we seek to
describe the microstructure of the EAS.

Parsons et al. (28) found a relationship between the
estimated pore size around tightly packed beads and the
bead size from a model similar to that described by Eq.
[4]. However, the restricted component of their model,
like that of Lasič et al., also uses a constant pore size
over all frequencies, which describes the intermediate
frequency regions of DextðvÞ well, but results in
less accuracy at high frequencies. Our model describes
DextðvÞ with good accuracy at all frequencies and applies
to tight as well as sparse packing.

Complementary to the frequency domain diffusion
spectrum models above, there exists a large body of liter-
ature that considers the diffusion coefficient in the time
domain as a function of diffusion time s measured with
pulsed gradients. Latour et al. (43,44) used a Pad�e
approximant to interpolate DðtÞ and extract tortuosity
and pore size. Our model empirically models DðvÞ to
estimate similar parameters. There is also much work on
the calculation of tortuosity for many geometries [in two
dimensions with cylinders (45,46) and random shapes
(47) and in three dimensions (48–52)] and relating it to
microstructure. Our work, which aims instead to relate
the whole of DðvÞ to microstructure, can provide more
information than tortuosity would alone.

Alternate pulse sequences have also been proposed for
increased sensitivity to axon diameter. Oscillating gradi-
ent sequences with variable waveform periods (53,54)
and time-varying direction (55) have been proposed. As
well, numerically optimized pulsed gradient sequences
have also been proposed (56,57). However, measurement
of the extremely small length scales of the EAS will pose
significant challenges.

Practical Considerations

There are practical considerations to be noted when
attempting to measure the diffusion spectrum [typically
with an oscillating gradient spin echo sequence (58)]
including the T2 signal decay, hardware constraints, and
peripheral nerve stimulation of the subject. Measure-
ments at low frequencies are governed by T2 decay,
which limits the gradient waveform duration and thus
the minimum frequency. Measurements at high frequen-
cies are limited by the diffusion contrast achievable and
by peripheral nerve stimulation. Sufficient diffusion con-
trast requires a large number of gradient oscillations
(also limited by T2 decay) and/or high gradient ampli-
tude (limited by hardware). Peripheral nerve stimulation
could also be problematic at higher frequencies, which
require high gradient slew rates. This could potentially
be alleviated by the use of head-only gradient coils,
which can achieve higher slew rates before the onset of
peripheral nerve stimulation (59,60).

The table in the Supporting Information lists typical
maximum frequencies for various types of MR systems
and shows that current clinical systems are insufficient
for probing DextðvÞ of white matter (cf. Fig. 7). Animal
systems can probe the frequencies at which DextðvÞ
begins to change and microscopy systems can access a
significant portion.

Model Considerations

The model presented in this article is a highly idealized
picture of the EAS, and several factors that may contribute
to measurements of the diffusion spectrum of white matter
have been neglected. For instance, measurements will also
have contribution from the intra-axonal space, and separat-
ing the two compartments using diffusion spectrum meas-
urements is challenging. Other complications include

FIG. 7. Simulated (markers) and

predicted (–) EAS diffusion spectra
DextðvÞ for randomly packed cylin-

ders over a range of five cylinder
volume fractions fint and cylinders
with radius distributions that are

one, two, and three times those of
axons in the genu (left to right).
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nonparallel and/or noncylindrical axons, exchange
between different compartments, and the presence of other
cellular processes, such as glial cells, which may also con-
tribute to the measured shape of the diffusion spectrum.

In order for our model to be deployed in real tissue, it
will be necessary to account for both intra- and extracel-
lular spaces. The present work focused solely on the
extracellular space as an important tissue compartment

that has received limited attention in terms of its diffu-
sion spectral characteristics. A future challenge will be
to build a single model with both compartments. Assum-
ing no exchange, forward modeling should be straightfor-
ward (a volume-weighted summation of signals). Model
fitting, however, will require a careful parameterization
to link, for example, intracellular radii and volume frac-
tion to the geometric properties of the extracellular

FIG. 8. a: Distribution from segmentation (bars) and prediction (–) for model parameter R0 weighted by cylinder volume fraction. b: The

mean and standard deviations of the volume-weighted R0 distributions from fitting versus segmentation corresponding to those in a. c:
Fitted (mean 6 SD; markers) and predicted (–) model parameter R1 for randomly packed cylinders. The curves denote radius distribu-

tions that are three, two, and one times those of axons in the genu (top to bottom). The markers are as in Figure 7.
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space. This nontrivial problem is the topic of ongoing
research in our group.

Although our interest in white matter led us to simulate
cylinders on the scale of axons, technological limitations
prevent the measurement of DðvÞ at sufficiently high fre-
quencies. Information about the size of the extracellular
space is primarily reflected in the transition region of the
diffusion spectrum, meaning that accurate estimation of
compartment sizes requires sampling at frequencies up to
the maximum gradient in the transition. Assuming an
extracellular radius of 0.1 mm, frequencies of approxi-
mately 60 kHz (see Fig. 7) will be required to measure the
diffusion spectrum for Df ¼ 2 mm2/ms (in vivo) and 6 kHz
for Df ¼ 0.2 mm2/ms (fixed tissue, calculation not shown).
The larger length scale of the rat sciatic nerve (� 1 mm
axon and pore radii) potentially allows estimation of
parameters using animal scanners with a maximum gradi-
ent amplitude of 750 mT/m (allowing a b value of 0.6 ms/
mm2) at frequencies up to 300 Hz. This could be useful for
tracking the progression of experimental autoimmune neu-
ritis (61) and diabetic nerve regeneration (62). Moreover,
there may be other cellular microstructures of interest out-
side of the nervous system characterized by a sufficiently
large length scale for this model to be of interest.

CONCLUSIONS

We have presented an empirical model for the diffusion
spectra of particles in the EAS. This model was able to
predict the spectra from extensive Monte Carlo simula-
tions. We demonstrated the estimation of tortuosity, pore
size, and surface-to-volume ratio for parallel cylinders
with a variety of packing geometries and a wide range of
spatial separations. This model can potentially be used
to estimate the geometric properties of cylindrical struc-
tures such as those found in white matter.

APPENDIX A: DIFFUSION SPECTRUM FOR A
CYLINDER

The diffusion spectrum for particles within an imperme-
able cylinder is given by (12)

DðvÞ ¼
X

k

Bk
akDfv

2

ðakDfÞ2 þ v2
; [15]

where

Bk ¼
2 R=mkð Þ2

m2
k � 1

; [16]

ak ¼ mk=Rð Þ2; [17]

and mk are the roots of J 01ðmÞ ¼ 0.

APPENDIX B: GEOMETRIC QUANTITIES
FOR PERIODICALLY PACKED CYLINDERS

Effective Pore Radius

The effective pore radius Rpore is defined to be the mean
distance from the pore centroid to boundary in a plane

perpendicular to the cylinders. For square packed cylin-
ders, it is given by

Rpore ¼
Labut

2ðp� 2fÞ

Z74p�f

3
4pþf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos uþ pð Þ2 þ sin uþ pð Þ2

q
du

f ¼ sin �1 1ffiffiffi
2
p

p

� �
[18]

and, for hexagonally packed cylinders,

Rpore ¼
Labut

2ðp� 2fÞ

Z2p�f

pþf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos uð Þ2 þ sin uþ 2pffiffiffi

3
p

� �2
s

du

f ¼ sin �1

ffiffiffi
3
p

2p

� �
;

[19]

where 2f represents the angle blocked by a cylinder
with respect to the pore center.

Surface-to-Volume Ratio

For square packed cylinders, the ratio of surface area to
pore volume S/V is given by

S

V
¼ 4p

Labut 4p2 � pð Þ [20]

and, for hexagonally packed cylinders,

S

V
¼ 4p

Labut 2
ffiffiffi
3
p

p2 � p
� � : [21]
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