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Abstract

Plants encounter and respond to numerous abiotic stresses during their lifetimes. These

stresses are often related and could therefore elicit related responses. There are, however,

relatively few detailed comparisons between multiple different stresses at the molecular

level. Here, we investigated the phenotypic and transcriptomic response of cultivated sun-

flower (Helianthus annuus L.) seedlings to three water-related stresses (i.e., dry-down, an

osmotic challenge, and salt stress), as well as a generalized low-nutrient stress. All four

stresses negatively impacted seedling growth, with the nutrient stress having a more diver-

gent response from control as compared to the water-related stresses. Phenotypic

responses were consistent with expectations for growth in low-resource environments,

including increased (i.e., less negative) carbon fractionation values and leaf C:N ratios, as

well as increased belowground biomass allocation. The number of differentially expressed

genes (DEGs) under stress was greater in leaf tissue, but roots exhibited a higher proportion

of DEGs unique to individual stresses. Overall, the three water-related stresses had a more

similar transcriptomic response to each other vs. nutrient stress, though this pattern was

more pronounced in root vs. leaf tissue. In contrast to our DEG analyses, co-expression net-

work analysis revealed that there was little indication of a shared response between the four

stresses in despite the majority of DEGs being shared between multiple stresses. Impor-

tantly, osmotic stress, which is often used to simulate drought stress in experimental set-

tings, had little transcriptomic resemblance to true water limitation (i.e., dry-down) in our

study, calling into question its utility as a means for simulating drought.

Background

Crop plants encounter a variety of abiotic stresses throughout their lives [e.g., 1–4]. Of these,

water and nutrient limitation are amongst the most important, with both having large impacts

on stand establishment and productivity [e.g., 2,5,6]. In the coming decades, climate change is

expected to produce increasingly unpredictable precipitation patterns, resulting in longer and

more frequent droughts [e.g., 4,7–10]. Agricultural zones are also expected to shift due to
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urbanization and soil degradation [e.g., 11–14], placing additional strain on agricultural sys-

tems. While irrigation practices can be used to offset low precipitation, there are limits to

water availability, and large-scale irrigation can result in soil salinization [3,15]. Similarly,

though fertilizers can offset nutrient deprivation, they are economically, environmentally, and

energetically costly [12,16–18] and in limited supply [16,19]). When coupled with increased

agricultural demands due to a growing human population, water and nutrient limitations rep-

resent major challenges for long-term food security [3,20,21]. Understanding how plants

respond to such stresses is thus a topic of great interest.

It is well established that, when exposed to low-resource environments, plants exhibit a

suite of resource-conservative physiological and morphological responses, many of which

result in slow growth [e.g., 22–25]. For example, plants in water-limited environments often

decrease their stomatal conductance to conserve water, which could negatively impact growth

through a reduction in available carbon [e.g., 26–28], while growth in nitrogen-depleted soils

can limit the production of photosynthetic enzymes [22,23]. Plants grown in low-resource

environments can respond by allocating more to organs involved in acquiring a limiting

resource [23]. These phenotypic responses can be passive (i.e. traits that scale with mass) or

active (i.e., traits that scale independently from mass; [29]). Importantly, this means that the

effects of stress are often best observed using size-independent phenotypes which do not vary

as a result of allometric scaling and differences in overall vigor [30–33]. In the case of water or

nutrient limitation, increased root growth and altered root morphology (e.g., more root tips)

can improve resource acquisition [e.g., 23,24]. Moreover, water and nutrient limitation can

interact, as low water availability can limit nutrient uptake [e.g., 34–36]; conversely, root

hydraulic conductance can be influenced by nutrient limitation [37]. Despite the occurrence

of common phenotypic responses to stress, there are many examples of stress-specific

responses. For instance, drought and salt stress both reduce osmotic potential, while salt can

have harmful effects due to the uptake of toxic inorganic ions [4,38–40].

At the molecular level, one of the most fundamental ways in which plants respond to envi-

ronmental challenges is to modulate gene expression [e.g., 41–46]. As such, researchers have

often focused on the identification of genes that are differentially expressed in response to

stress [e.g., 47–53]. In this context, differentially expressed genes (DEGs) can be characterized

as being stress-specific, shared across multiple stresses, or induced by a particular combination

of stresses [e.g., 54–56]. It has been argued that genes shared across multiple stress scenarios

are of particular interest because of their potential role in the response to multiple disparate

stresses, perhaps due to their involvement in common stress-signaling pathways [57–60].

While these sorts of analyses were originally conducted using microarrays [e.g., 43,52,59,61–

68], such work now relies on RNA-sequencing as an unbiased means for investigating the

transcriptional response to stress [e.g., 47,49,53,69–71]. In general terms, such studies have

revealed that there are significant changes to gene expression levels under stress and that these

changes can be quite different between tissue types [72–78]. Although many studies have

investigated the transcriptomic response to a single stress in multiple tissues, fewer have com-

pared the transcriptomic response across multiple different abiotic stresses in isolation (but

see, [e.g., 79–83] for experimental examples and [84–87]).

Here, we describe a series of analyses aimed at characterizing the phenotypic and transcrip-

tomic responses of cultivated sunflower seedlings (Helianthus annuus L.) to multiple different

stress scenarios. Cultivated sunflower is an important oilseed crop that is often grown in

rainfed regions [88]. Water and nutrient limitation at the seedling stage can severely limit

stand establishment in sunflower, thereby greatly reducing yields [88,89]. The focal stresses in

this study included three water-related stresses: a repeated dry-down, an osmotic stress imple-

mented using polyethylene glycol 6000 (hereby referred to as PEG–this is a commonly used
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agent for simulating drought stress; [e.g., 90–94], and salt [NaCl] stress. We also included a

generalized low-nutrient stress to compare against the three water-related stresses. We mea-

sured numerous leaf and root traits and sequenced RNA of both leaf and root tissue from a

single genotype to: (1) investigate the phenotypic response of sunflower seedlings to each of

the fours stresses; (2) characterize the transcriptional response of these seedlings to the various

stresses across tissue types; and (3) determine the extent to which these transcriptional

responses are shared across stress scenarios.

Results

Phenotypic response to stress

In general terms, all stress treatments resulted in relatively poor seedling performance when

compared to growth under control conditions (Fig 1A). Each stress scenario resulted in an

overall decrease in biomass relative to control; this effect was largely driven by a significant

decrease in biomass in response to the dry-down; the other three stresses resulted in biomass

values that were intermediate to, but not significantly different from, the control and dry-

down scenarios (Table 1). Partitioning total biomass into organ mass fractions, both leaf mass

fraction (LMF) and root mass fraction (RMF) differed significantly across treatments (both

P< 0.001), while there were no significant differences in shoot mass fraction (SMF). Relative

to control, LMF was significantly reduced for all stress scenarios, while RMF was increased for

all stresses except PEG, which was not significantly different from control. Low-nutrient stress

resulted in the largest apparent shift between LMF and RMF (Table 1).

All leaf traits varied significantly across treatments (all P< 0.05; Table 1). PEG and salt

stress resulted in a significant increase in chlorophyll concentration, whereas PEG, salt, and

nutrient stress all increased leaf mass-per-area (LMA). Relative water content (RWC) values

were significantly reduced in response to dry-down and salt; the RWC values for PEG and

nutrient stress were intermediate to, and not significantly different from, the control and other

stress treatments. Leaf element analyses revealed a significant reduction in carbon content

under PEG stress, along with a significant increase in δ13C values in response to all four

Fig 1. Phenotypic trait comparison for control vs. stress scenarios. In all panels, control is shown in gray, dry-down in blue, PEG in red, salt in yellow, and low-nutrient

in green. (A) Boxplot of overall plant performance measured as total biomass. Black horizontal bars indicate median, while white diamonds indicate mean values per

treatment. Letters above each box correspond to their post hoc Wilcoxon groupings. (B) Principal component analysis (PCA) for all measured traits (n = 21) illustrated

using the first two PCs. (C) PCA of all size-independent traits (n = 10) illustrated using the first two PCs.

https://doi.org/10.1371/journal.pone.0275462.g001
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stresses. The PEG-stressed individuals had the most extreme change relative to the control.

Leaf nitrogen content was significantly reduced under PEG, salt, and nutrient stress, whereas

δ15N was significantly increased under salt and (especially) nutrient stress. Stem diameter var-

ied significantly across treatments (P< 0.01) but stem height did not (Table 1). PEG, salt, and

nutrient stress all reduced stem diameter while dry-down produced an intermediate value that

was not significantly different from control or the other stresses. Interestingly, despite being

the tissue that interacted most directly with each of the stresses, none of the root traits exhibit

significant treatment effects (all P> 0.06) except RMF (as described above) and hypocotyl

diameter, which also had a significant block effect.

To visualize the overall phenotypic response of seedlings to the various treatments, a princi-

pal component analysis (PCA) of all 21 traits was conducted. The first two principal compo-

nents accounted for 51.4% of the phenotypic variance explained (Fig 1B). Here, LMF, RMF,

no. tips from the hypocotyl, total percent leaf nitrogen, and δ15N loaded the most strongly on

PC1 (S1 Table), which explained 30.2% of the observed variation and largely accounted for the

separation of nutrient stress from the remaining treatments. δ13C, no. tips from the taproot,

shoot mass fraction (SMF), chlorophyll concentration, and taproot diameter loaded most

strongly on PC2. This axis accounted for 21.2% of the observed variation, and primarily

reflected the separation of the stress treatments from control. The phenotypic responses to the

Table 1. Phenotypic means and standard deviations of all measured traits (n = 21).

Traits Treatment Mean ± Std. Error

Control Dry-down PEG Salt Low-nutrient

Total biomass�� 0.21 ± 0.01a 0.13 ± 0.01b 0.16 ± 0.01ab 0.16 ± 0.01ab 0.13 ± 0.02ab

Leaf mass fraction (LMF) ��� 0.57 ± 0.01a 0.47 ± 0.02bc 0.49 ± 0.01b 0.44 ± 0.01c 0.21 ± 0.01d

Root mass fraction (RMF) ��� 0.27 ± 0.02a 0.36 ± 0.02b 0.31 ± 0.02ab 0.37 ± 0.01b 0.6 ± 0.01c

Stem mass fraction (SMF) 0.16 ± 0.01a 0.17 ± 0.01a 0.21 ± 0.01a 0.19 ± 0.01a 0.18 ± 0.01a

Leaf mass per area (LMA) ��� 0.018 ± 0.001a 0.018 ± 0.001a 0.023 ± 0.001b 0.026 ± 0.001c 0.021 ± 0.002b

Leaf [chlorophyll]��� 13.35 ± 0.87a 14.02 ± 0.38a 21.54 ± 0.61b 25.13 ± 0.51c 13.12 ± 0.53a

Relative water content (RWC)�� 0.71 ± 0.1a 0.37 ± 0.04bc 0.49 ± 0.03ab 0.3 ± 0.02c 0.43 ± 0.05abc

Leaf δ13C��� -34.74 ± 0.18a -33.15 ± 0.32b -31.78 ± 0.14c -33.03 ± 0.32b -33.46 ± 0.13b

Leaf δ15N��� 2.36 ± 0.26ab 2.78 ± 0.13ac 1.49 ± 0.4b 3.24 ± 0.21c 9.51 ± 0.55d

Total percent leaf carbon� 38.04 ± 0.44a 37.34 ± 1.31ab 35.34 ± 0.44b 37.43 ± 0.17a 37.18 ± 0.93ab

Total percent leaf nitrogen��� 7.77 ± 0.08a 7.39 ± 0.18ab 5.67 ± 0.1d 7.17 ± 0.12b 4.12 ± 0.32c

Stem height 90.88 ± 4.96a 71.51 ± 3.59a 85.44 ± 4.85a 78.13 ± 4.3a 73.71 ± 3.38a

Stem diameter�� 3.38 ± 0.15a 2.73 ± 0.14ab 2.47 ± 0.08b 2.69 ± 0.08b 2.33 ± 0.11b

Rooting depth 115.82 ± 7.08a 104.65 ± 7.59a 99.29 ± 10.57a 108.97 ± 7.57a 126.67 ± 3.13a

No. root tips 429.33 ± 75.82a 404.17 ± 52.05a 349.67 ± 58.08a 412 ± 42.83a 635.67 ± 61.19a

No. tips from hypocotyl 154.33 ± 36.88a 171.33 ± 42.84a 163.5 ± 45.14a 200.67 ± 34.79a 338.67 ± 39.47a

No. tips from taproot 182.83 ± 30.49a 161.5 ± 17.04a 125.67 ± 24.65a 138.83 ± 18.55a 208.67 ± 29.04a

No. adventitious roots^ 23.5 ± 3.43a 21 ± 5.16a 23.17 ± 5.49a 27.67 ± 6.85a 40.17 ± 3.72a

No. basal roots 49.83 ± 4.11a 57.33 ± 6.25a 40.17 ± 2.96a 42 ± 7.39a 40.67 ± 2.5a

Hypocotyl diameter^ 0.42 ± 0.02a 0.36 ± 0.02ab 0.35 ± 0.01ab 0.36 ± 0.02ab 0.34 ± 0.01b

Taproot diameter 0.29 ± 0.01a 0.26 ± 0.01a 0.25 ± 0.01a 0.26 ± 0.01a 0.27 ± 0.01a

Superscript of asterisk and/or caret indicate significance of ANOVA effects, while letters indicate the post-hoc Wilcoxon groups. Significance for treatment effects

indicated as:

��� P< 0.0001,

�� P < 0.001,

� P < 0.05. Significant block effects are denoted with a “^”.

https://doi.org/10.1371/journal.pone.0275462.t001
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various treatments were also visualized using the size-independent traits to determine if

observed similarities held up in the absence of metrics reflecting growth or overall perfor-

mance (Fig 1C). In this case, RWC, total percent leaf nitrogen, LMF, δ15N, and RMF loaded

most strongly on PC1 (41.1% of variance explained), which primarily separated nutrient stress

and control from the remaining treatments (Fig 1C). In contrast, total percent leaf carbon,

SMF, δ13C, and LMA loaded most strongly on PC2 (25.0% of variance explained), which sepa-

rated dry-down and PEG stress, with salt stress falling intermediate to and overlapping with

those two stresses.

Transcriptomic analysis and patterns of differential expression in response

to stress

We sequenced RNA from 38 samples across the five treatments (control + four stresses) and

two tissue types (leaf and root). We removed 5 outlier libraries with abnormal gene expression

patterns based upon multidimensional scaling (MDS) plots generated from the expression

data (S1A and S1B Fig); the remaining 33 libraries averaged 15 million paired-end reads per

library. Reads generated from RNA sequencing mapped to 39,042 unique genes across all five

treatments and both tissue types. We then calculated sets of DEGs between tissues, between

control samples and all stresses combined, and between control samples and each stress for

leaf and root tissue individually (S1 Table). When identifying DEGs between all stresses in

combination with the control, there were significantly more DEGs found in leaf tissue than in

root tissue (leaf = 9,317; root = 7,412; P< 0.001; χ2 test; Table 2), and in both tissues there

were more downregulated genes than upregulated genes. When identifying DEGs for each

stress individually, a total of 22,915 unique genes were differentially expressed; 8,754 DEGs

were unique to leaf tissue and 6,279 DEGs were unique to root tissue. Nutrient stress resulted

in the largest number of DEGs in leaf tissue while PEG stress resulted in the most DEGs in

root tissue. Of the three water-related stresses, PEG had the largest number of DEGs followed

by salt stress and dry-down; a pattern consistent across tissue types. Each stress had signifi-

cantly more DEGs in leaf tissue than in root tissue (Table 2; all P< 0.001; χ2 test). Nutrient

stress had the greatest number and largest proportion of unique DEGs in both leaf and root tis-

sue while dry-down stress had the fewest unique DEGs and the lowest proportion of unique

DEGs (Table 2 and Fig 2). In leaf tissue, all stresses except dry-down resulted in more upregu-

lated DEGs than downregulated DEGs. This pattern does not remain consistent in root tissue,

as dry-down and PEG stress resulted in more upregulated vs. downregulated DEGs, while salt

and nutrient stress had more downregulated vs. upregulated DEGs.

Table 2. The number of DEGs and direction of change as compared to control in each tissue for each stress individually and all stresses combined.

Stress # of DEGs # upregulated # downregulated DEGs unique to stress

Leaf Dry-down 1384 578 806 152 (10.98%)

PEG 9686 4846 4840 2040 (21.06%)

Salt 8351 4351 4000 1827 (21.88%)

Low-nutrient 11059 5608 5451 3644 (32.95%)

All stresses combined 9317 4049 5268 NA

Root Dry-down 717 504 213 96 (13.39%)

PEG 8624 4607 4107 3201 (37.12%)

Salt 5727 2838 2889 1487 (25.96%)

Low-nutrient 7527 3514 4013 3280 (43.58%)

All stresses combined 7412 3076 4336 NA

https://doi.org/10.1371/journal.pone.0275462.t002
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The number of DEGs unique to each individual stress was significantly lower than expected

by chance in both leaf and root tissue (Fig 2 and S2 Table). Consequently, most combinations

of stress had significantly more shared DEGs than expected by chance, with the exception of

Fig 2. UpSet plot depicting the number of unique DEGs shared among combinations of stresses. DEGs shared between stresses are depicted by

filled black dots in each stress category with connecting lines between them. For categories with only a single stress, the number of DEGs depicted

are only those unique to that individual stress and do not contain DEGs that are shared between multiple stresses. Up and down arrows above sets

represent significantly more or less DEGs than expected by chance, respectively. The total number of DEGs for a given stress is represented by the

histogram in the lower left portion of each panel. (A) Shared DEGs in leaf tissue (green). (B) Shared DEGs in root tissue (orange).

https://doi.org/10.1371/journal.pone.0275462.g002
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the PEG + salt stress and salt + dry-down stress combinations in leaf tissue, which contained

the expected number of shared DEGs, and the nutrient + PEG stress combination in roots,

which contained significantly fewer shared DEGs than expected by chance. In both leaf and

root tissue there were more DEGs shared among all four stresses than there were shared

among just the three water-related stresses. Stress combinations that included dry-down

tended to have fewer shared DEGs than stress combinations that excluded the dry-down stress;

however, this was simply a consequence of the dry-down stress having the smallest overall

number of DEGs in both tissues. Most genes differentially expressed in multiple stresses were

expressed in the same direction in response to each stress. In both leaf and root tissue, the dry-

down/salt/nutrient stress (DSN) and dry-down/salt stress (DS) combinations had noticeably

higher proportions of differentially regulated DEGs (i.e., DEGs that exhibited a mix of up- and

down-regulation across stresses) than the other stress combinations. This was also true for the

salt/nutrient (SN) stress combination in root tissue (Table 3).

To visualize the overall differences in the transcriptomic response to the various treatments,

multidimensional scaling (MDS) analysis was conducted on the whole leaf and root transcrip-

tome (Fig 3A and 3B) and using just the DEGs that were shared across all stresses in each tissue

(Fig 3C and 3D). MDS analyses of the whole transcriptome in leaf and root tissue revealed that

nutrient stress had a very distinctive transcriptome profile as compared to the three water-

related stresses and controls (Fig 3A and 3B). PEG and salt stress elicited similar responses,

Table 3. Directionality of DEG expression among stress intersections.

Stress combination # upregulated # downregulated # differentially regulated % differentially regulated

Leaf DSPN 390 272 4 0.60%

DSP 29 59 8 8.33%

DSN 26 27 11 17.19%

DPN 126 34 2 1.23%

SPN 1646 1521 50 1.55%

DS 24 21 17 27.42%

DP 48 19 0 0.00%

DN 41 62 12 10.43%

SP 573 758 2 0.15%

SN 449 577 60 5.52%

PN 991 1068 46 2.19%

Root DSPN 68 162 7 2.95%

DSP 15 82 3 3.00%

DSN 14 4 4 18.18%

DPN 33 64 5 4.90%

SPN 844 698 97 5.92%

DS 4 5 9 50.00%

DP 8 64 0 0.00%

DN 37 28 5 7.14%

SP 738 918 4 0.24%

SN 253 167 144 25.53%

PN 906 651 56 3.47%

Upregulated DEGs show increased expression under each stress scenario. Downregulated DEGs show lower expression under each stress scenario. Differentially

regulated DEGs are upregulated in at least one stress and downregulated in at least one stress within a combination of stresses. The % of differentially regulated DEGs

column displays the percentage of DEGs differentially regulated among all DEGs for a given stress combination. D = dry-down stress, S = salt stress, P = PEG stress,

N = low-nutrient stress.

https://doi.org/10.1371/journal.pone.0275462.t003

PLOS ONE Sunflower transcriptomic response to multiple abiotic stresses

PLOS ONE | https://doi.org/10.1371/journal.pone.0275462 September 30, 2022 7 / 26

https://doi.org/10.1371/journal.pone.0275462.t003
https://doi.org/10.1371/journal.pone.0275462


with those samples tending to cluster together in both leaf and root tissue. The dry-down stress

samples behave similarly to the control samples, consistent with the observation that dry-

down resulted in the fewest DEGs of all the stresses in both tissues. A similar pattern is

observed when conducting MDS on only the DEGs shared between all stresses (Fig 3C and

3D). We elected to remove the control samples from these latter plots as the DEGs by defini-

tion are significantly different between the stress and control samples. Nutrient stress forms its

own distinctive group separated from the three water-related stresses in both tissues. Unlike

the whole transcriptome MDS, salt and dry-down cluster close together while PEG stress elicits

a more divergent transcriptomic response.

To further investigate the putative function of DEGs found under each stress treatment, we

conducted GO term enrichment analyses for all sets of DEGs, including the full set of DEGs

for all stresses combined in leaf and root tissue, the shared DEGs between leaf and root tissue

for all stresses combined, the unique DEGs in leaf vs. root tissue for all stresses combined, each

stress individually in leaf and root tissue, and all sets of unique shared DEGs for each stress

combination in leaf and root tissue (S3 Table). Several GO terms were found to be significantly

enriched within the set of DEGs for most stress and tissue combinations. However, there were

no significantly enriched GO terms among DEGs shared by all four stresses in leaf tissue and

only a single significantly enriched GO term among DEGs shared by all four stresses in root

tissue (GO:0006633 fatty acid biosynthetic process). The significant GO terms enriched

among the set of DEGs shared between the three water related stresses in root tissue were

GO:0004724 magnesium-dependent protein serine/threonine phosphatase activity and

GO:0006470 protein dephosphorylation; there were no significantly enriched GO terms shared

by the three water-related stresses in leaf tissue.

We also conducted a KEGG enrichment analysis to determine if any sets of shared DEGs

belonged to any specific metabolic pathways (S4 Table). The set of DEGs from all stresses com-

bined in root tissue had 96 significantly enriched KEGG terms, which was the most of any

DEG set. Of those 96 enriched KEGG terms, 36 of them belonged to KEGG map01100 ‘Meta-

bolic pathways’ while 22 of them belonged to map01110 ‘Biosynthesis of secondary

Fig 3. MDS plots illustrating the transcriptomic response to each stress across samples. (A) MDS plot based on the

expression values of all genes included in this analysis for leaf tissue and (B) root tissue. (C) MDS plots generated from

the expression values of DEGs shared among all four stresses for leaf tissue and (D) root tissue. Control samples were

not included in panels C and D as the genes under consideration in these analyses were by definition differentially

expressed relative to control.

https://doi.org/10.1371/journal.pone.0275462.g003
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metabolites’ pathway. No other pathway had double-digit enriched KEGG terms from our set

of root DEGs. Of the enriched KEGG terms, 59 were terms from the ‘Enzyme’ class and 16

were from the ‘Transporter’ class. Few other DEG sets had a notable number of enriched

KEGG terms. However, the KEGG term KO9872 ‘aquaporin PIP’ was enriched in the three

sets of DEGs for PEG, salt, and nutrient stress in root tissue, but not in the set of DEGs for

dry-down stress in root tissue.

Gene co-expression network analysis

We constructed a signed gene co-expression network to identify modules of genes specifically

associated with each tissue and stress combination (Fig 4). We identified 30 co-expression

modules ranging from 31 to 18,522 genes in each module (the minimum module size for this

analysis was set to the default value of 30). We found that 9 modules were significantly corre-

lated with all stresses in leaf tissue and 10 modules were correlated with all stresses in root tis-

sue (Fig 4).

The only module that was significantly correlated with more than one stress/tissue com-

bination was the ‘greenyellow’ module, which was significantly positively correlated with

both the PEG and salt treatment in leaves. A positive correlation between a module and a

stress in this case means that the genes within the module are all upregulated under the

stress condition. The ‘cyan’ and ‘pink’ modules were significantly correlated with nutrient

stress in leaf and root tissue, respectively. However, the ‘cyan’ and ‘pink’ modules were not

significantly associated with tissue-specific expression and were weakly correlated with

nutrient stress in the tissue type for which they were not significant. The ‘yellow’ module

was also significantly associated with the dry-down stress in root tissue and this is the sec-

ond largest module associated with any given stress containing 2,318 genes. Most other

modules significantly correlated with a given stress/tissue combination contained fewer

than 600 genes, with the exception of the ‘green’ and ‘turquoise’ modules, which contained

2,231 and 18,522 genes and were significantly correlated with nutrient stress in leaf tissue

and root tissue, respectively. The large size of these two nutrient-related co-expression mod-

ules is consistent with the observation that nutrient stress elicited the broadest transcrip-

tional analysis of all stresses considered, consistent with the results of our differential

expression analysis.

We also tested for module association with control samples and found a significant positive

correlation between control leaf tissue samples and the ‘salmon’ and ‘royalblue’ modules; as

expected, these two modules were not correlated with any stress/tissue combination (S2 Fig).

Lastly, the ‘grey’ module is significantly associated with dry-down stress in root tissue; how-

ever, WGCNA puts all genes that are not significantly co-expressed with any other genes into

‘grey’. Therefore ‘grey’ is not considered to be a true co-expression module and no biological

interpretation should be made relating to this ‘module’ (Fig 4).

To explore the putative functions of genes contained with co-expression modules, we tested

for GO and KEGG term enrichment in each module; however, many modules were not signifi-

cantly enriched for any GO terms after multiple hypothesis correction, especially those mod-

ules that had relatively few genes (S5 and S6 Tables). The ‘greenyellow’ module, which was

significantly correlated with both PEG and salt stress in leaf tissue, was significantly enriched

for GO:0006869 lipid transport and GO:0008289 lipid binding. The ‘yellow’ module, signifi-

cantly correlated with dry-down stress in root tissue, was enriched for 49 GO terms which

included GO:0006833 water transport, several cell wall reorganization related terms, and more

GO terms related to fatty acid metabolism. The ‘green’ and ‘turquoise’ modules, which were

associated with nutrient stress in leaf and root tissue, respectively, did not share any enriched

PLOS ONE Sunflower transcriptomic response to multiple abiotic stresses

PLOS ONE | https://doi.org/10.1371/journal.pone.0275462 September 30, 2022 9 / 26

https://doi.org/10.1371/journal.pone.0275462


GO terms despite their large size, indicating a truly disparate transcriptomic response between

the two tissues. The ‘blue’ module was significantly enriched for seven KEGG terms belonging

to the ‘Chromosome and associated proteins’ KEGG category. Those terms included several

different kinds of histones, suggesting that this module may have something to do with chro-

mosome organization. However, the blue module was not significantly associated with any

stress or tissue combination. No other module was significantly enriched for sets of KEGG

terms that would imply that module was associated with a specific metabolic pathway. In gen-

eral terms, modules significantly correlated with each stress/tissue combination had non-over-

lapping sets of enriched GO terms, highlighting the uniqueness of the transcriptomic response

for each of the four stresses and across tissue types.

Fig 4. Visual depiction of correlations between gene co-expression modules and tissue/treatment. Correlation values (upper

text) and P-values (lower, parenthetical text) are presented in each cell. Color is determined by the sign and magnitude of the

correlation. Positive correlations (red) indicate genes within a module are upregulated within a stress/tissue combination while

negative correlations (blue) indicate that genes within the module are downregulated.

https://doi.org/10.1371/journal.pone.0275462.g004
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Comparison of differential expression analysis to the co-expression

network

To compare the results of the differential expression analysis with the co-expression network,

we asked if more DEGs from the sets of DEGs shared between stresses belonged to specific

modules than expected by chance by testing for deviations from expected module membership

using 1,000 simulated networks (S7 Table). In leaf tissue, no set of DEGs had significantly

more DEGs in a module than expected by chance, though there were 17 module/intersection

combinations with P-values equal to ~0.053 after multiple hypothesis correction. In root tissue,

there were 25 module/intersection combinations that had significantly more DEGs in a mod-

ule than expected by chance after multiple hypothesis correction (S7 Table).

The ‘brown’ and ‘purple’ modules were both significantly correlated with all stresses in leaf

tissue and there were significantly more genes than expected by chance that were differentially

expressed in leaf tissue for the intersection of all four stresses. In the root tissue intersection of

all four stresses, significantly more DEGs were found belonging to the ‘darkgreen’ module

than were expected by chance. Among DEGs that were unique to a single stress in root tissue

and modules that were significantly correlated with that specific stress in the network, more

DEGs than expected by chance were found in the ‘darkgreen’ and ‘black’ modules for salt

stress and in the ‘turquoise’ module for nutrient stress. For DEGs unique to the intersection of

the three water-related stress, more DEGs were found in the ‘green’, ‘grey60’, and ‘purple’

modules than expected by chance, however, only the ‘purple’ and ‘grey60’ modules were signif-

icantly correlated with a specific stress in the network and both modules were only correlated

with PEG stress.

Discussion

We observed substantial variation in the phenotypic response to the four stresses investigated

herein. For all stress treatments, there was a generalized reduction in biomass, although this

was only significant under dry-down stress. Furthermore, we also observed an increase in

RMF along with a decrease in LMF for all four stresses, though for PEG the increased alloca-

tion to roots was not significantly different from the control (Table 1). Our data are thus con-

sistent with previous studies highlighting a trade-off between leaf and root mass fractions

under stress [e.g., 95–99]. For the low-nutrient treatment, this shift between above and below-

ground biomass was more pronounced, with a majority of total biomass accumulation under

low-nutrient conditions occurring belowground (Table 1). While such an increase in RMF can

be caused by allometric scaling (i.e., smaller plants have a larger proportion of root biomass;

[29,30,32,100,101], this scaling relationship may be functional, with smaller (stressed) individ-

uals preferentially allocating more biomass to roots [102]. Consistent with this idea, our data

revealed an absolute increase in the number of root tips and adventitious roots under nutrient

stress, though these differences were not significant (Table 1).

Overall, our results highlight a clear separation in phenotypic response between the three

water-related stresses and the nutrient stress relative to the control (Fig 1B and 1C). The sepa-

ration of the nutrient stress samples from the water-related stresses and control samples in

trait space is predominantly driven by traits such as RMF, leaf δ15N, number of root tips from

the hypocotyl, and number of adventitious roots (Fig 1B). Interestingly, this separation

remains apparent in the absence of size-dependent traits indicating that it is not simply a

byproduct of differences in vigor. Rather, traits such as RMF and δ15N continue to drive the

difference between the nutrient samples and all others (Fig 1C). In this context, it should be

noted that the nutrient stress was the longest lasting of all the stress treatments during our

experiment, as these seedlings were never provided with supplemental nutrients. While the
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PEG and salt stresses were likewise continuous, they were not implemented until after seedling

establishment. Nonetheless, the nutrient stress exhibited a remarkably different phenotypic

(and ultimately transcriptomic) difference from the other three stresses.

It is also worth noting that phenotypic response to the three water-related stresses could be

driven by multiple factors, including potential differences in stress severity, differences in the

mode of implementation (i.e., cyclical vs. continuous), and/or the nature of the stress itself

(i.e., true water limitation vs. an osmotic challenge vs. ion toxicity). Indeed, though PEG is

touted as a drought mimic [4], it results in a phenotypic shift that more closely resembles salt

vs. dry-down stress (Fig 1B and 1C). While the short-term osmotic effects of both PEG and

salt stress can resemble those of water deficits due to soil drying, longer-term responses are

likely to be more related to the osmotic effects of PEG vs. the toxic effects of NaCl

[4,38,91,103,104]. Moreover, both of these treatments were maintained at a fixed level

throughout the experiments, as opposed to the episodic nature of periodic dry-downs. Despite

these differences, we found that the observed phenotypic differentiation between all water-

related stress treatments and the control was largely driven by variation in aboveground traits,

particularly those related to leaf physiology (Fig 1B and 1C). Here, seedlings under stress expe-

rienced trait shifts commonly found under low-resource conditions [23,102,105], including

higher (i.e., less negative) carbon fractionation values and leaf C:N ratios for all water-related

stresses [106,107], two traits that may indicate a reduction in photosynthetic rate [23]. The

observed increase in chlorophyll was likely due to an increase in LMA, which is known to pro-

duce elevated values due to increased leaf thickness [108]; Table 1).

In terms of the transcriptomic response to stress, we observed substantial changes in gene

expression in both leaf and root tissues with nearly half of all expressed genes being differen-

tially expressed in response to at least one stress in roots and/or leaves. Nutrient stress resulted

in the largest number of DEGs in leaf tissue and the second largest number in roots, consistent

with its major effect on both LMF and RMF. In roots, PEG stress resulted in the greatest num-

ber of DEGs despite little phenotypic differentiation of root traits between PEG stressed and

control samples. Comparison of the PCAs based on phenotypic and transcriptomic data

showed similar overall patterns; specifically, the response to nutrient stress was different (and

more pronounced) when compared to the three other stresses in terms of both phenotypic and

transcriptomic variation.

The relatively small differences in root-related responses between treatments (Table 1) is

consistent with the fact that there tended to be fewer DEGs in roots unique to each individual

stress than expected by chance. Indeed, DEGs in roots tended to be shared by multiple stresses

indicating at least a somewhat shared transcriptomic response to stress. As the roots were in

direct contact with each stress treatment (the presence of salt or PEG or the absence of suffi-

cient nutrients or water), it is within reason to expect that roots would have a greater propor-

tion of shared DEGs than leaf tissue. In addition, the majority of shared DEGs had the same

directionality of expression across stresses (Table 3). However, in both leaf and root tissue the

dry-down/salt/nutrient and dry-down/salt stress combinations had larger proportions of

DEGs with different directionalities of expression. Furthermore, our KEGG analysis of DEGs

indicated that this partially shared transcriptomic response in roots may involve the biosynthe-

sis of secondary metabolites and the production of PIP aquaporins, though it is important to

note that there was not an enrichment for DEGs related to PIP aquaporins in the dry-down

treatment.

Network modules were only ever significantly correlated with a single stress in root tissue,

suggesting each stress resulted in a fairly unique transcriptomic response in roots. This is not

necessarily inconsistent with the finding that large numbers of DEGs were shared between

multiple stresses; rather, it is an indication that the transcriptomic response to stresses is
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complex and likely includes both genes that are part of a universal stress response pathway and

genes that respond only under specific stress conditions. Furthermore, the lack of significant

differences between root traits under each stress treatment is not indicative of the lack of a

unique response to each stress in root tissue, as clearly shown through our transcriptomics

data. Rather, similar phenotypic responses may be achieved through different means. There is

also a possibility that the more unique aspects of the root transcriptomic response to each

stress may only manifest phenotypically after continued imposition of stress beyond the seed-

ling stage or in a natural environment.

The relationship between the phenotypic and transcriptomic responses to stress in leaves is

more apparent. Even though there are fewer DEGs in leaf tissue unique to each individual

stress than expected by chance, there are still large numbers of unique DEGs which could

result in unique phenotypic changes. Furthermore, some leaf phenotypic changes were shared

between multiple stresses. For example, an increase in chlorophyll content was detected under

both PEG and salt stress. While there were no more or fewer shared DEGs than expected by

chance between PEG and salt stress in leaf tissue, the only network module to be significantly

correlated with more than one stress/tissue combination (i.e., greenyellow) was significantly

correlated with PEG and salt stress in leaf tissue, suggesting a strong shared transcriptomic

response between these two stresses. Other phenotypic changes shared between multiple

stresses included increased LMA among PEG, salt, and nutrient stress (there was likewise a

large set of shared DEGs between those stresses in leaf tissue) and RWC for salt and dry-down

stress, which did not deviate from the expected number of shared DEGs.

Although dry-down stress resulted in the largest overall decrease in biomass of all four

stresses, it had the smallest number of DEGs in both tissues. The results of the DEG analysis

are supported by the MDS plots as dry-down stress and control occupy the same space when

the expression of all genes are considered (Fig 3A and 3B). Dry-down stress is seemingly the

most severe phenotypically yet elicits the smallest changes to the transcriptome.

Importantly, our results also indicate that PEG stress is not a suitable substitute for drought

stress–at least not as implemented here as a periodic dry-down. Rather, the transcriptomic

response to PEG stress was very similar to that of salt stress while the phenotypic response was

also quite different from dry-down (Table 1). PEG stress is known to both reduce the ability

for roots to uptake oxygen [109] and also interfere with the uptake of sodium and potassium

[110]. The ability of PEG to limit sodium salt uptake may explain why PEG and salt stress have

a similar transcriptomic response. PEG does enter into plant tissues and travel through the

apoplast to affect membrane transport sites similarly to salt [110]. As such, caution should be

exercised when attempting to mimic drought conditions using an osmoticum.

Conclusions

A comparison of the phenotypic data, differential expression analysis, and gene co-expression

network analysis revealed that these approaches to assessing an abiotic stress response can pro-

duce results that are seemingly at odds with each other. Significant changes to phenotypes

under stress are not necessarily reflected by large changes in the transcriptome as evidenced by

the dry-down stress treatment. Furthermore, while the differential expression analysis indi-

cated that large numbers of DEGs were shared between multiple stresses, the co-expression

network analysis provided a more nuanced view and suggested that the response to these

stresses is mostly due to non-overlapping sets of co-expressed genes. Indeed, despite the sizable

collection of shared DEGs, only a single co-expression module was significantly correlated

with more than one stress, and no modules were significantly correlated with the same stress

in both tissues. While there is some overlap in the transcriptomic response to these four
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stresses at the level of individual genes, the situation is considerably more complex once the

correlation structure is taken into account. Ultimately, the observed differences between the

results of the phenotyping, differential expression analysis, and gene co-expression analysis

highlights the utility of taking a more pluralistic approach to the analysis and interpretation of

RNAseq data.

Methods

Plant materials, seedling establishment, and experimental design

Seeds from a single, inbred oilseed sunflower line (HA412-HO; PI 642777) were obtained

from the North Central Regional Plant Introduction Station (NCRPIS) in Ames, IA. Seeds

were planted 1.5 cm deep in individual 50 mL Falcon tubes that had been pre-drilled with two

⅛-inch holes 2 cm from the base to allow drainage. The growth substrate was a mixture of

sand and Turface (3:1, v/v; Oldcastle APG Northeast, Inc., Manassas, VA). The tubes were

then placed in a plant growth room where the seedlings were maintained for 20 days following

germination under one of 5 differential treatments (i.e., control plus 4 stress treatments; see

below). Throughout the experiment, the temperature was kept at 20˚C with a 16h:8h day:night

cycle. All individuals were arranged in a randomized block design with two blocks and 11 bio-

logical replicates per treatment (5–6 per block; n = 55 seedlings total). Six replicates per treat-

ment (three per block) were randomly designated for destructive phenotypic analyses. The

remaining five replicates per treatment (2–3 per block) were designated for transcriptomic

profiling, with all leaf and root tissues being harvested separately, frozen in liquid nitrogen,

and stored at -80˚C prior to RNA extraction.

Treatment implementation

Upon planting, the control plants plus all individuals from the three water-related stresses

were top-watered daily with a solution of deionized (DI) water and supplemental nutrients in

the form of one g/L of Jack’s All Purpose 20-20-20 aqueous mix (J.R. Peters, Inc., Allentown,

PA) for 10 days to facilitate seedling establishment. Following establishment, the control seed-

lings were maintained as above. The water-related stresses were implemented at the V2 stage

of sunflower development [111] as a repeated dry-down to mimic drought stress through top-

down soil drying, an osmotic challenge to limit water uptake using polyethylene glycol (PEG-

6000, 8.25% by volume, which is sufficient to induce an osmotic challenge of -0.25 MPa;

[112]), and salt (NaCl, 100 mM) stress. In the repeated dry-down, the seedlings were transi-

tioned from daily watering to watering with the control solution on alternate days. This

decrease in frequency was sufficient to induce visible symptoms of water limitation (i.e., the

seedlings began to wilt prior to re-watering) without causing mortality.

In the PEG and salt scenarios, the seedlings were transitioned to watering with treatment

solutions containing the appropriate amount of PEG or salt with one g/L of Jack’s All Purpose

20-20-20 aqueous solution dissolved in DI water. All individuals were top-watered with their

respective treatment solutions to bring their growth substrate to full capacity in 50mL cone-

shaped containers. Osmotic stress, particularly when mediated via high molecular weight poly-

mers such as PEG, has been a generally accepted approach for inducing water limitation in a

uniform and repeatable way [e.g., 92,93,113–118] while minimizing toxicity effects [4,40], but

see [91]). In contrast, NaCl not only influences water uptake, but also has the potential to enter

cellular pores and elicit toxic effects [91,103,104]. These differential treatments were main-

tained for 10 days following establishment, for a total of 20 days of seedling growth.

The individuals subjected to low-nutrient stress were top-watered daily with DI water to

bring their growth substrate to full capacity, but were not provided with supplemental
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nutrients at any time during the experiment. This resulted in a generalized nutrient deficit rel-

ative to control conditions, similar to what might be encountered in highly degraded soils lim-

ited in nitrogen, phosphorus, calcium, or other micronutrients. Previous work has shown that

this low-nutrient treatment limits growth in sunflower, but does not prevent them from com-

pleting their lifecycle [119].

Phenotypic measurements

A total of 21 morphological and physiological traits were measured for each phenotyped indi-

vidual at the V2 stage of sunflower development after each treatment. As detailed below, these

included leaf, stem, and root traits, as well as overall biomass production.

Overall plant performance. Total biomass, which served as an integrated metric of over-

all plant performance, was calculated as the sum of the dried leaf, stem, and root tissue (see

below). Organ biomass fractions were also determined from these data as proportions of total

biomass.

Leaf traits. Ten days after the start of the experiment, corresponding to initiation of the

water-related stress treatments, the most recently developed leaf pair was tagged with string.

Upon harvest, the next higher leaf pair was designated for measurements. This approach

ensured that the leaves of interest were produced following the implementation of the stresses.

One leaf from this pair was used to estimate chlorophyll concentration and relative water con-

tent; the other leaf was removed and scanned with a CanoScan 8800F scanner (Canon USA,

Inc., Melville, NY) at 600 dpi, and dried for biomass estimation and isotope analyses.

An in situ optical measure of chlorophyll concentration per unit leaf area was assessed

using an Apogee MC-100 chlorophyll content meter (Apogee Instruments, Logan, UT). Two

readings were taken for each leaf from different parts of the leaf lamina and averaged. A leaf

disc was taken using a ¼-inch diameter hole punch and used to assess leaf relative water con-

tent (RWC), which serves as an indicator of plant water status [26]. This was calculated as

(FM-DM)/(HM-DM), where FM was fresh mass at the time of collection, HM was hydrated

mass (estimated after hydrating the leaf punches for 24 hours), and DM was dry mass, esti-

mated after drying the leaf punches at 60˚C for 72 hours in a forced-air drying oven [120].

Leaf area estimates were obtained from the scanned images using ImageJ [121]. After scan-

ning, the leaves were dried as above and weighed to estimate dry biomass, which was used to

calculate leaf mass per area (LMA). The dried leaves were then ground into a fine, homoge-

nous powder using a Thomas Model 4 Wiley ball mill (Thomas Scientific, Swedesboro, NJ) for

stable isotope analyses, which were performed at the University of Georgia’s Stable Isotope

Ecology Laboratory (http://siel.uga.edu/). This yielded estimates of total percent leaf carbon

and leaf nitrogen, as well as carbon and nitrogen isotope composition (δ13C, δ15N).

All remaining leaves were dried as above and weighed, and all leaf weights for a given seed-

ling were summed to provide an overall estimate of leaf biomass. Leaf mass fraction (LMF)

was then calculated as leaf biomass divided by total biomass.

Stem traits. After harvest, stem height and diameter were measured using Fowler 6"/

150mm Ultra-Cal IV Electronic Calipers (Fowler Tools and Instruments, Newton, MA). Stem

diameter was measured just above soil level. Stem tissue was then dried as above and weighed

to estimate stem biomass. Stem mass fraction (SMF) was then calculated as stem biomass

divided by total biomass.

Root traits. Seedlings were gently uprooted, and root tissue was rinsed to remove soil sub-

strate. Intact roots were patted dry, fanned out, and placed in a vertical orientation on a matte

black cloth for imaging. A coin (US penny; 19.05 mm diameter) was placed next to each root

system for scale. Photos were then taken with a 12 megapixel camera from a fixed distance of
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175 mm and uploaded to the Digital Imaging of Root Traits (DIRT) pipeline [122] with a

masking threshold calibration of 5.00. The following traits were assessed: number of tip paths

and rooting depth skeleton (both are “common traits” in DIRT); roots seg 1 and 2, number of

adventitious and basal roots, hypocotyl diameter, and taproot diameter (all of these are “dicot

traits” in DIRT). Following imaging, the roots were dried as above and weighed to estimate

root biomass. Root mass fraction (RMF) was then calculated as root biomass divided by total

biomass.

Statistical analysis of phenotypic traits

All analyses of phenotypic data were performed in R v4.04 [123]. To protect against violations

of the assumption of normality, a nonparametric Kruskal-Wallis test used to test for an overall

treatment effect while controlling for block effects. A pairwise Wilcoxon test with an FDR P-

adjustment method [124] was used to test for differences in phenotypic responses between

stress treatments for all traits with a significant (P< 0.05) treatment effect. Finally, two princi-

pal component analyses (PCAs) were performed; one of these analyses used the full set of traits

(n = 21) to assess the clustering of treatments across trait space, and the other used just the

size-independent traits (n = 10) to capture treatment clustering without the influence of met-

rics related to overall growth and performance. The bioconductor package pcaMethods [125]

was used to impute values for 11 missing data points out of 630 individual measurements.

RNA extraction and sequencing

Tissue samples from five biological replicates for each of the five treatments were used for total

RNA isolation, with replicates maintained as separate samples (i.e., they were not pooled). Leaf

and root tissue were ground separately in liquid nitrogen using a pre-chilled mortar and pestle

to produce a fine powder (ca. 100 μg per sample). Total RNA was then extracted from the

ground samples using the RNeasy Mini Kit (Qiagen, Inc., Germantown, MD). RNA extrac-

tions were treated to remove DNA contamination using a TURBO DNA-free kit (Thermo-

Fisher Scientific, Waltham, MA). The quality and quantity of each RNA sample was assessed

using a NanoDrop 2000 (ThermoFisher Scientific) and an Agilent 2100 Bioanalyzer (Agilent

Technologies, Alpharetta, GA). Only RNA samples with 260/280 ratios from 1.8 to 2.1, 260/

230 ratios� 2.0, and RNA integrity number (RIN) values greater than 7.5 were used for subse-

quent analyses. Approximately 1 μg of total RNA from each sample was used to construct

sequencing libraries using the KAPA Stranded mRNA-Seq Kit (KAPA Biosystems, Wilming-

ton, MA). Thirty-eight individual libraries passing our quality control standards were gener-

ated (control: four leaf, three root; dry-down: four leaf, three root; PEG: four leaf, three root;

salt: five leaf, five root; low-nutrient: four leaf, three root) and sequenced (paired-end, 75 bp

reads) at the Georgia Genomics and Bioinformatics Core (http://dna.uga.edu/) on an Illumina

NextSeq (Illumina, San Diego, CA).

Sequence assembly, read mapping, and gene expression analyses

RNAseq data was processed using a custom bioinformatics pipeline (https://github.com/

EDitt/Sunflower_RNAseq) as implemented in [41]. Raw sequence reads were processed by

removing reads containing adapter sequences, as well as unknown or low-quality bases, using

Trimmomatic v0.36 [126] with its default settings. Cleaned reads were aligned to the cultivated

sunflower reference genome (XRQv2.0; [127]) using STAR v2.7.9a [128] with default parame-

ters. Next, gene expression abundances were calculated per library using RSEM v1.3.3 [129]

with default parameters. Finally, the Bioconductor program edgeR v3.34.0 [130] was used to

produce normalized read counts via TMM normalization and to identify differentially
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expressed genes (DEGs) across treatments and tissue types. The model used to identify DEGs

separated samples by tissue and stress type then compared the expression against control sam-

ples of the same tissue type. For a gene to be considered for differential expression analysis, it

had to meet a minimum expression threshold of 1 count-per-million in 2 or more libraries

within a tissue/treatment group. A total of 39,042 genes were retained for this analysis. A false

discovery rate (FDR) of� 0.05 was used as the threshold for identifying DEGs. At this point,

five outlier libraries (P5L, P3R, S1L, C2L, DD3L) were identified based on multidimensional

scaling plots and removed from subsequent analyses (S1A and S1B Fig). These corresponded

to the five samples with the fewest number of reads in the data set. All DEGs were then classi-

fied based on tissue specificity (i.e., leaf-specific, root-specific, or shared) as well as stress speci-

ficity (i.e., stress-specific or shared by a particular combination of stresses).

To test whether the number of unique genes found in each stress combination was more or

less than expected by chance, we took random samples of genes that passed the minimum

expression threshold for each stress 1000 times and then calculated the overlap. The number

of random genes sampled for each stress was equal to the number of true DEGs found for that

stress. The number of unique genes in each stress combination from each random sample was

then used to create a distribution from the 1000 samples for the true results to be tested against.

P-values were estimated by finding the percentile for which the true value fell in each distribu-

tion and multiplying it by 2 for an upper and lower two-tailed test. To further explore the simi-

larity of the transcriptional responses of each tissue type to the various stress scenarios, MDS

plots were created from TMM normalized counts for different gene and sample sets using

edgeR.

Gene co-expression network construction

We built a signed gene co-expression network using WGCNA v1.70–3 [131]. All genes used

for the differential expression were retained for the network construction, with the exception

of 11 genes that did not meet the default variance requirements of WGCNA. Three additional

outlier samples were removed based upon distance matrix clustering recommended by

WGCNA (S3 Fig). A soft-thresholding power of 14 was used to build a signed network given

our number of samples and the lack of scale-free topology association due to variance in the

data caused by the treatment design as recommended by the WGCNA manual. We then used

the automatic 1-step blockwise network construction approach with a maximum block size of

20,000, splitting the data into two blocks, to generate the topological overlap matrix. We did

not determine correlations between the co-expression network and the phenotypes measured

as RNA was not extracted from the same plants for which we (destructively) measured pheno-

types. Correlations were determined between network modules, treatments, and tissues. To

test for the enrichment of genes belonging to specific modules within DEG intersections, we

first simulated 1,000 co-expression networks by randomly assigning genes to modules of the

same sizes as those in the network built from our experimental data. We then asked which sim-

ulated module each DEG belonged to and created a distribution of module membership statis-

tics. Lastly, for each set of DEGs, we asked if there were more or less genes belonging to each

module than expected by chance and estimated P-values from the distribution of the simulated

data.

Classification, GO, and KEGG term enrichment of DEGs

A list of gene annotations and a gene ontology (GO) index were downloaded for the XRQv2.0

reference genome (http://www.heliagene.org/). A GO enrichment analysis was then performed

for all DEGs in each tissue, stress combination, and network module using GOseq v.1.44.0
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[132] to normalize for gene length bias. A significance threshold of P< 0.05 was used to deter-

mine the significance of GO term enrichment after a multiple hypothesis correction using the

Benjamini-Hochberg methodology [124]. KEGG terms were also mapped to genes in the

XRQv2 genome using BlastKOALA [133] and analyzed for enrichment using the same

approach as the GO term enrichment analysis. The results were then mapped to metabolic

pathways using the KEGG Mapper—Search tool with the Reference option selected [134].

Supporting information

S1 Fig. Multidimensional scaling (MDS) plots created from various sample and gene sets

to show how samples differentiate across gene expression space. Samples are labeled using a

common naming theme: The first letters correspond to the stress treatment (DD = dry-down,

P = PEG, S = salt, N = low-nutrient), followed by a number representing the identity of that

sample, followed by another letter corresponding to tissue type (L = leaf, R = root). The set of

samples and genes used for each MDS plot are described in the label for each subfigure.

(PDF)

S2 Fig. Visual depiction of correlations between gene co-expression modules and tissue/

treatment with the inclusion of control samples. Correlation values (upper text) and P-val-

ues (lower, parenthetical text) are presented in each cell. Color is determined by the sign and

magnitude of the correlation. Positive correlations (red) indicate genes within a module are

upregulated within a stress/tissue combination while negative correlations (blue) indicate that

genes within the module are downregulated.

(TIF)

S3 Fig. Dendrogram of sample clustering created prior to the construction of the gene co-

expression network for the purpose of identifying and removing outliers.

(TIF)

S1 Table. Table of differentially expressed genes and their expression data. Each tab is a dif-

ferent test of differential comparison. The leaf_DEGs and root_DEGs tabs test all four stresses

against the control treatments for leaf and root tissue respectively. The following tabs are iden-

tified using a common naming theme: The first letters in the tab correspond to the stress being

compared against the control treatments (DD = dry-down, P = PEG, S = salt, N = low-nutri-

ent) and the next letter corresponds to the tissue type (L = leaf, R = root) followed by

“_DEGs”.

(XLSX)

S2 Table. Table listing all the genes belonging to each intersection displayed in Fig 2. Each

tab contains a list of gene identifiers and the co-expression network module that gene belongs

to. Tabs are named using one letter abbreviations to denote each stress (D = dry-down,

P = PEG, S = salt, N = low-nutrient) with multiple stresses in combination denoted using

more than one abbreviation followed by an underscore and the tissue type (“_Leaf” or

“_Root”).

(XLSX)

S3 Table. Table listing the output of GO term enrichment analysis for each set of DEGs

and each intersection of DEGs displayed in Fig 2. Each tab contains a GO term along with

over represented and under represented P-values, the number of DEGs found belonging to

that category, the total number of genes belonging to that category, the description of the GO

term, and the GO ontology category that term belongs to. Each tab is labeled by stress

(D = dry-down, P = PEG, S = salt, N = low-nutrient), tissue type (L = leaf, R = root), and a
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descriptor of the set of genes tested for enrichment (allDEGs = the set of all DEGs from that

stress, Unique = the DEGs that were unique to a given stress, Intersect = the set of DEGs that

are shared among the stresses listed in the tab name).

(XLSX)

S4 Table. Table listing the output of KEGG term enrichment analysis for each set of DEGs

and each intersection of DEGs displayed in Fig 2. Each tab contains a KEGG term along

with the description of the KEGG term, over represented and under represented P-values, the

number of DEGs found belonging to that category, and the total number of genes belonging to

that category. Each tab is labeled by stress (D = dry-down, P = PEG, S = salt, N = low-nutrient),

tissue type (L = leaf, R = root), and a descriptor of the set of genes tested for enrichment

(allDEGs = the set of all DEGs from that stress, Unique = the DEGs that were unique to a

given stress, Intersect = the set of DEGs that are shared among the stresses listed in the tab

name).

(XLSX)

S5 Table. Table listing the output of GO term enrichment analysis for each co-expression

network module. Each tab contains a GO term along with over represented and under repre-

sented P-values, the number of DEGs found belonging to that category, the total number of

genes belonging to that category, the description of the GO term, and the GO ontology cate-

gory that term belongs to. Each tab corresponds to a different module in the network.

(XLSX)

S6 Table. Table listing the output of KEGG term enrichment analysis for each co-expres-

sion network module. Each tab contains a KEGG term along with the description of the

KEGG term, over represented and under represented P-values, the number of DEGs found

belonging to that category, and the total number of genes belonging to that category. Each tab

corresponds to a different module in the network.

(XLSX)

S7 Table. Table displaying the results of the module/intersection enrichment analysis.

Results are broken down into two tabs, one for leaf tissue and one for root tissue. The first col-

umn represents each stress and stress combination through single letter abbreviations

(D = dry-down, P = PEG, S = salt, N = low-nutrient), the second column lists the module

being tested for enrichment within the given intersection, the third column lists the under rep-

resented P-value, and the fourth column represents the over represented P-value.

(XLSX)
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