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Abstract

Single amino acid variations (SAVs) potentially alter biological functions, including causing

diseases or natural differences between individuals. Identifying the relationship between a

SAV and certain disease provides the starting point for understanding the underlying mech-

anisms of specific associations, and can help further prevention and diagnosis of inherited

disease.We propose PredSAV, a computational method that can effectively predict how

likely SAVs are to be associated with disease by incorporating gradient tree boosting (GTB)

algorithm and optimally selected neighborhood features. A two-step feature selection

approach is used to explore the most relevant and informative neighborhood properties that

contribute to the prediction of disease association of SAVs across a wide range of sequence

and structural features, especially some novel structural neighborhood features. In cross-

validation experiments on the benchmark dataset, PredSAV achieves promising perfor-

mances with an AUC score of 0.908 and a specificity of 0.838, which are significantly better

than that of the other existing methods. Furthermore, we validate the capability of our pro-

posed method by an independent test and gain a competitive advantage as a result. Pre-

dSAV, which combines gradient tree boosting with optimally selected neighborhood

features, can return reliable predictions in distinguishing between disease-associated and

neutral variants. Compared with existing methods, PredSAV shows improved specificity as

well as increased overall performance.

Introduction

Single amino acid variants (SAVs) are single-base changes that result in amino acid changes of

the encoded protein [1]. With the rapid development of sequencing and genomic analysis

technologies, substantial SAVs between individuals have been uncovered. The 1000 Genomes

project [2] and recent sequencing of whole human genomes [3–6] have provided a large num-

ber of single-nucleotide polymorphisms (SNPs), insertions, deletions and structural variants

in humans. Among these variations, SAVs are recognized as the most common type in the

human genome [7, 8], and some are often closely related to particular diseases [9–11].
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According to the previous studies, SAVs may be responsible for the initiation or progression

of cancer through aberrant proteins [12]. And the amino acid change can affect, for example,

protein stability, interactions and enzyme activity, thereby leading to disease. Therefore, the

identification of whether a SAV is neutral or disease-associated is playing an increasingly

important role in understanding the underlying mechanisms of specific SAV-disease associa-

tions and developing treatment strategies for diseases.

However, experimentally determining the SAV-disease relationship of such a large number

of variants is time-consuming and costly. Accurate computational approaches are vital for

analysis the relationship between SAV and disease. Current prediction methods typically

employ machine learning algorithms [13–16] such as neural networks [17], random forests

(RF) [18] and support vector machines (SVMs) [19], and a large variety of properties, includ-

ing amino acid sequence features [20], position-specific scoring matrices, residue-contact net-

work features and 3-D structure information. This includes methods such as SIFT [21, 22],

SNAP [23], Polyphen2 [24], FunSAV [25] and SusPect [26]. SIFT uses sequence homology to

predict phenotypic effect based on the assumption that amino acid variants in the evolution-

arily conserved regions are more likely to have functional effects [21, 22]. SNAP [23] combines

multiple sequence analysis methods with neural networks to predict the functional effects of

variants. Polyphen2 [24] predicts the functional impact of a variant by a Naive Bayes classifier

trained using sequence, phylogenetic and structural information. FunSAV utilizes a two-stage

random forest with a large number of sequence and structural properties to discriminate the

SAV-disease links [25]. Yates et al. combine sequence and structural features to build an SVM

classifier named SusPect to predict disease-SAV associations [26].

In this work, we develop a novel approach, termed as PredSAV, to predict the phenotypic

effects of SAVs by using the Friedman’s gradient tree boosting [27, 28] algorithm. PredSAV

combines both sequence neighborhood features and structural neighborhood features describ-

ing not only the properties of the target residue but also the target residue’s neighborhood

environment. PredSAV uses a efficient two-step feature selection method to eliminate uninfor-

mative properties, which in turn improves the performance and helps to build faster and more

cost-effective models. Extensive comparisons of PredSAV with other existing tools on the

benchmark dataset and another independent dataset show that PredSAV significantly outper-

forms the existing state-of-the-art methods, and illustrate the effectiveness and advantage of

the proposed approach. The framework of PredSAV is shown in Fig 1.

Materials and methods

Datasets

The dataset, taken from Wang and Song [25], are mainly gathered from the UniProt [29]

human sequence variations and the Ensemble human variation database [30]. Disease-associ-

ated variants are obtained from the UniProt human sequence variations and non-Mendelian

disease variants without any OMIM entry [31] are removed. Neutral variants are extracted

from the Ensemble human variation database. All the SAVs emanate from the HapMap project

[32]. We remove the redundant homology sequences at the sequence similarity of 40% by

using CD-HIT [33]. Then a BLAST search [34] is used to map the remaining sequences to

PDB structures [35]. Structures with resolutions lower than 2.5Å are removed. Ambiguity or

invalid SAV-disease associations and neutral variants are deleted. Obsoleted PDB structures,

such as 1VJJ and 2HR0, are removed. Eventually, the dataset consists of 670 proteins contain-

ing 1006 disease-associated and 963 neutral variants. A total of 816 disease-associated and 776

neutral variants are randomly selected as the benchmark dataset and the rest are used as the

independent dataset including of 190 disease-associated and 187 neutral variants.

PredSAV
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Fig 1. The framework of PredSAV. (A) Feature representation. A total of 1521 sequence, Euclidean and Voronoi neighborhood features are initially

generated. (B)Two-step feature selection. Stability selection is used as the first step. We select the top 152 features with score larger than 0.2. The

second step is performed using a wrapper-based feature selection. Features are evaluated by 5-fold cross-validation with the GTB algorithm. (C)

Prediction model. Gradient boosted trees are finally built for prediction.

https://doi.org/10.1371/journal.pone.0179314.g001
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Performance evaluation

We evaluate the performance of the proposed method using 5-fold cross-validation and several

widely used measures. These measures include sensitivity (SEN/Recall), specificity (SPE), pre-

cision (PRE), F1-score (F1), accuracy (ACC), the Matthew’s correlation coefficient (MCC) and

the area under the ROC curve (AUC).

SEN ¼ TP=ðTP þ FNÞ ð1Þ

SPE ¼ TN=ðTN þ FPÞ ð2Þ

PRE ¼ TP=ðTP þ FPÞ ð3Þ

F1 ¼
2� Recall � Precision
Recallþ Precision

ð4Þ

ACC ¼
TPþ TN

TPþ TN þ FPþ FN
ð5Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð6Þ

Features extraction

In our experiment, a wide variety of sequence and structure features are generated for predict-

ing the phenotypic effects of SAVs. Several novel structural features, including residue-contact

network features, solvent exposure features and structural neighborhood features, are calcu-

lated. The details of these features are listed as follows.

Sequence features. A large number of sequence features are calculated: 1) position-spe-

cific scoring matrices (PSSMs) [34]; 2) predicted solvent accessibility using the SSpro and

SSpro8 programs [36]; 3) predicted native disorder by DISOPRED [37]; 4) the dScore that rep-

resents the difference between the PSIC [38] scores for the wild type amino acid residue and

mutant amino acid residue, calculated by PolyPhen2 [24]; 5) predicted disorder in proteins by

DisEMBL [39]; 6) the local structural entropy of a particular residue is computed by LSE [40];

7) the eight physicochemical properties for each amino acid are obtained from the AAindex

database [41]; 8)BLOSUM62 [42] was used to count the relative frequencies of amino acid and

their substitution probabilities; 9) solvent accessible surface area, secondary structure and local

backbone angles generated by SPIDER2 [43]; 10) predicted the relative solvent accessibility of

protein residues by the ACCpro and ACCpro20 from the SCRATCH package [36]; 11)evolu-

tionary conservation scores calculated based on PSSM [34] and Jensen-Shannon divergence

[44, 45].

Structure features. Structural features, including secondary structure, four-body statisti-

cal pseudo-potential, solvent accessibility and exposure features, are calculated as candidate

features for SAV phenotype prediction. We used DSSP [46] to calculate the secondary struc-

ture features, including hydrogen bonds, solvent-accessible surface area, Cα atom coordinates

and backbone torsion angles. The four-body statistical pseudo-potential is based on the Delau-

nay tessellation of proteins [47]. Delaunay tessellation is a effective way to define the structural
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neighbors of a target protein. The potential is defined as follows:

Qa
ijkl ¼ log

f a
ijkl

pa
ijkl

" #

ð7Þ

where i, j, k, and l are the residue identities of the four amino acids in a Delaunay tessellation

of the target protein. Each residue is represented by a central point among the atoms in the res-

idue. f a
ijkl is the observed frequency of the residue composition (ijkl) in a tetrahedron of type α

over a set of protein structures. pa
ijkl is the expected random frequency.

Energy scores including side-chain energy score, residue energy, conservation, interface

propensity, combined1 score, combined2 score and relative solvent accessibility are calculated

by using ENDES [48]. Two combined energy scores are also used. The combined1 score is a

combination of residue energy, conservation and interface propensity scores. The combined2

score is an optimized combination weights of the three features to get the best prediction of

single residue.

Solvent-accessible related features have been shown to be very useful in identifying SAV-

disease association [49–51]. We use NACCESS [52] and NetSurfP [53] to calculate solvent

accessibility for the protein structures, respectively. The NACCESS program is used to calcu-

late the absolute and relative solvent accessibilities of all atoms. For NetSurfP, the absolute and

relative surface accessibility, Z-fit score and secondary structure are computed based on the

homology proteins obtained from PSI-BLAST search.

Solvent exposure features, include the coordination number (CN), number of Cβ atoms in

the upper Half-Sphere (HSEBU), number of Cβ atoms in the lower Half-Sphere(HSEBD) and

residue depth (RD), are calculated by HSEpred [54] and the hsexpo program [55]. The hsexpo

program uses protein structure information, while the HSEpred uses sequence information to

predict these features.

Residue-contact network features. Residue-residue contact networks have bee proved to

be very beneficial for analyzing and predicting SAV-disease associations [56]. If the distance

between the centers of two residues in a structure are within 6.5Å, an edge exists between the

two residues in the network. We use NAPS [57] to compute the residue-residue contact net-

work properties, which describe the local environment of the target variant in the network,

including betweenness, closeness, coreness, degree, clustering coefficient, eigenvector central-

ity, eccentricity and average nearest neighbor degree.

Structural neighborhood features (SNF). Conventional features usually describe only

the properties of the current residue itself, cannot represent the real environment well, and

thus are insufficient to predict functional effects of SAVs with high precision. Here, we calcu-

late two types of structural neighborhood features (SNF) based on Euclidean distance and Vor-

onoi diagram [58–60], respectively. Surrounding residues located within a sphere of the radius

of 5Å are defined as the Euclidean neighborhood of the central amino acid. The Euclidean dis-

tance is computed between any heavy atoms of the surrounding residues and that of the cen-

tral amino acid. The score of a specific feature i for the central residue r regarding the neighbor

n is defined as follows:

Fiðr; nÞ ¼
the score of feature i for residue r if jr � nj � 1 and dr;n � 5

�A;

0 otherwise
ð8Þ

8
<

:

where dr,n is the minimum Euclidean distance between residue r and residue n. The Euclidean
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neighborhood feature of the central residue r is defined as:

ENiðrÞ ¼
Xm

n¼1

Fiðr; nÞ; ð9Þ

where m is the total number of Euclidean neighbors.

Voronoi neighborhood features are calculated based on Voronoi diagram/Delaunay trian-

gulation. For a 3-D protein structure, individual atoms are devided into Voronoi polyhedra by

Voronoi tessellation partition. In the Voronoi diagram (Delaunay triangulation), a pair of resi-

dues are defined as Voronoi neighbors if there exists at least one common Voronoi facet

between heavy atoms of each residue. The Qhull package [61] is used to calculate Voronoi/

Delaunay polyhedra. For the target residue r and its Voronoi neighbors n {n = 1, . . ., m}, the

Voronoi neighborhood property of the feature i is defined as:

VDi ¼
Xm

n¼1

PiðnÞ; ð10Þ

where Pi(n) is the score of the residue feature i for neighbor n.

Feature encoding with neighborhood properties. For each sample, a combination of

1,287 (117�11) sequence neighborhood features, 117 Euclidean neighborhood features and

117 Voronoi neighborhood features are calculated. The sequence neighborhood features is

generated by applying a sliding window of size 11 to incorporate the evolutionary information

from upstream and downstream neighbors in the protein sequence.

Feature selection

The feature selection method improves the performance by removing some redundant fea-

tures in high-dimensional data [62–65]. In this study, we propose a two-step feature selection

approach to select the most important features for predicting the phenotypic effects of SAVs.

First, we assess the feature elements using the stability selection [66] calculated by the Rando-

mizedLasso package in the scikit-learn [67]. The idea of stability selection is that a feature

selection algorithm is employed on subsample datasets and subsample features. The selection

results are merged after repeating a certain number of times. Stronger features have higher

scores (close to 1), while weaker features have scores close to 0. The score represents the

importance of an individual feature for correctly predicting an SAV-disease association. Here,

we select the top 152 features with the score larger than 0.2.

The second step is performed using a wrapper-based feature selection method. The features

are evaluated by 5-fold cross-validation with the GTB (gradient tree boosting) algorithm, and

correlation features are added by sequential forward selection (SFS). In the SFS scheme, fea-

tures are sequentially added to a null feature set till an optimal feature subset is obtained. Each

added feature is the one whose add maximizes the performance of the classifier. This stepwise

feature selection process continues until the AUC score no longer increased. As a result, a set

of 44 optimal features are selected as the final optimal feature set.

Gradient tree boosting algorithm

The Gradient Tree Boosting (GTB) [27, 28] is an effective machine learning algorithm that can

be utilized for both classification and regression problems. In this study, GTB is implemented

under the PredSAV framework as shown in Fig 1 and the prediction of the phenotypic effect

of single amino acid variants could be considered as a binary classification problem. For a

large number of given input feature vectors χi (χi = {x1, x2, . . ., xn}, i = 1, 2, . . ., N) with labels

PredSAV
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yi (yi�{−1, +1}, i = 1, 2, . . ., N, where “-1” represents neutral variant and “+1” denotes disease-

associated variant), the purpose of the GTB algorithm is to build an effective classifier to pre-

dict whether a variant is disease-associated or neutral. The GTB algorithm is shown in Algo-

rithm 1.

Algorithm 1 Gradient Tree Boosting Algorithm
Input:
Data set: D = {(χ1, y1), (χ2, y2), . . ., (χN, yN)}, χi�χ, χ� R, yi�{−1, +1}; loss
function:L(y, Θ(χ));iterations= M;

Output:
1: Initialize Y0ðχÞ ¼ arg minc

PN
i Lðyi; cÞ;

2: for m = 1 to M do
3: Computethe negativegradientas the workingresponse

ri ¼ �
@Lðyi ;YðχiÞÞ
@YðχiÞ

h i

YðχÞ¼Ym� 1ðχÞ
; i ¼ f1; . . . ;Mg

4: The input χi is adaptedto the classification modelri by Logistic
functionand get the estimateαm of βh(χ; α)

5: Get the estimateβm by minimizingL(yi, Θm−1(χi) + βh(χi; αm))
6: UpdateΘm(χ) = Θm−1(χ) + βmh(χ; αm)
7: end for
8: return ~YðχÞ ¼ YMðχÞ

In the algorithm, the variable iterations = M should be initialized. The logistic function is

used as the loss function, which is defined as:

Lðy;YðxÞÞ ¼ logð1þ expð� yYðχÞÞÞ; ð11Þ

where y is a real class label of variants and Θ(χ) is a decision function. The decision function is

initialized by the following equation.

Y0ðχÞ ¼ arg minc

XN

i¼1

Lðyi; cÞ; ð12Þ

where N is the number of SAVs in the benchmark dataset. Then, GTB constructs m different

classification trees h(χ, α1), h(χ, α2), . . ., h(χ, αm) from a number of benchmark datasets. The

addictive function Θm(x) can be defined as:

YmðχÞ ¼ Ym� 1ðχÞ þ bmhðχ;αmÞ ð13Þ

Above, the βm and αm are a weight and vector of parameters for the m-th classification tree

h(χ, αm), respectively. In order to minimize the loss function L(y, Θm(χ)), the weight of βm and

the parameter of αm need to be iterated from m = 1 to m = M. In the third step, the negative

gradient ri as the working response by the following formula:

ri ¼ �
@Lðyi;YðχiÞÞ

@YðχiÞ

� �

YðχÞ¼Ym� 1ðχÞ

; i ¼ 1; . . . ;M ð14Þ

Then, the weight of βm and the parameter of αm for the mth iteration can be defined as:

ðbm;αmÞ ¼ arg minb;α

XN

i¼1

Lðyi;Ym� 1ðxiÞ þ bhðxi;αmÞÞ ð15Þ

However, we do not directly calculate the above equation. In the fourth step, the input χi is

adapted to the classification model ri by Logistic function and get the estimate αm of βh(χi; α).

PredSAV
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Therefore, we can obtain

αm ¼ arg mina

XN

i¼1

1

1þ erihðχi;αÞ
ð16Þ

In the fifth step, the estimate parameter of βm is obtained by minimizing the log loss func-

tion L(y, Θ(χ)).

min Lðyi;Ym� 1ðχiÞ þ bhðχi;αmÞÞ

¼ min logð1þ expð� yiðYm� 1ðχiÞ þ bhðχi;αmÞÞÞÞ

ð17Þ

Then, in the sixth step, a new addictive function Θm(χ) is updated by in the eq (8). Finally,

we obtain a classification function ΘM(χ) and a useful GTB model ~YðχÞ as follows:

~YðχÞ ¼ YMðχÞ ð18Þ

We use a grid search strategy to select the optimal parameters of GTB with 5-fold cross-vali-

dation on the benchmark dataset. The optimized number of trees of the GTB is 2000. And the

selected depth of the trees is 3. The rest use the default parameters.

The source code and data are available at http://www.leideng.org/PredSAV/.

Results and discussion

Benefits of the two-step feature selection

The selection of informative attributes is critically important for building effective and accu-

rate classification models. In total 1521 sequence, Euclidean and Voronoi neighborhood fea-

tures are initially generated. We apply a two-step feature selection method, consisting of

stability selection and sequential forward selection. Stability selection is used as the first attri-

bute selection step for two reasons. First, stability selection can address the difficult variable

selection problem with markedly improved error control and structure estimation, especially

for high-dimensional problems. Second, stability selection depends little on the chosen initial

regularisation and can reduce the risk of overfitting [66]. To assess the utility of the stability

selection method, we evaluate the performance by incorporating the GTB classifier with

selected attributes that correspond to different cutoffs of stability selection scores. As shown in

Table 1, when the number of selected features decreases from 1521 to 152 (the cutoff increases

from 0 to 0.2), the highest accuracy of 81.3% is yielded. The other measurements (SEN, SEP,

Table 1. Performance of selected attributes with the two-step feature selection method. The first column lists different cutoffs of stability selection

scores.

Features Number ACC SEN SEP PRE MCC AUC

All features 1521 0.804 0.802 0.807 0.815 0.608 0.881

score>0.1 263 0.808 0.804 0.813 0.812 0.610 0.886

score>0.15 191 0.808 0.809 0.807 0.815 0.616 0.892

score>0.2 152 0.813 0.810 0.817 0.823 0.628 0.896

score>0.25 112 0.810 0.809 0.813 0.819 0.622 0.893

score>0.3 93 0.809 0.810 0.806 0.815 0.618 0.890

score>0.35 84 0.810 0.809 0.808 0.814 0.618 0.889

score>0.4 69 0.809 0.808 0.809 0.814 0.615 0.888

Final optimal features 44 0.826 0.814 0.838 0.839 0.651 0.908

https://doi.org/10.1371/journal.pone.0179314.t001
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PRE, MCC and AUC) are observed as 0.810, 0.817, 0.823, 0.628 and 0.896, respectively. We

select the top 152 features (stability score > 0.2) as the input of the next sequential forward

selection step. A set of 44 optimal features is finally selected with the highest AUC score of

0.908. The results of selected features show *2% and *5% increase in AUC and MCC over

the initial features, respectively.

We compare the proposed two-step feature selection method with three widely used feature

selection methods: random forests(RF), maximum Relevance Minimum Redundancy(mRMR)

[68] and Recursive Feature Elimination(RFE) [69]. The experiment is based on the benchmark

dataset with 5-fold cross-validation. Fig 2 shows the ROC curves of the four feature selection

methods. The results are shown in Fig 2. Our two-step feature selection approach obtains the

best performance. The results indicate that our two-step feature selection algorithm, which is a

composite approach combining the merits of both stability selection and sequential forward

selection, can substantially boost the prediction performance with less computational expense

and lower risk of overfitting.

Feature importance

The feature importance of these features are calculated by using the gradient tree boosting

method. The relative importance and rankings of the optimal features are shown in Fig 3 and

Fig 2. ROC curves of our two-step algorithm and other three existing feature selection methods.

https://doi.org/10.1371/journal.pone.0179314.g002
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Table 2. Among them, the feature with the highest score (>100) is the dScore feature calcu-

lated by PolyPhen2. The dScore represents the difference between the PSIC scores of the wild

type amino acid residue and mutant amino acid residue. Another important feature that have

not been found useful in previous studies is structural neighborhood features (Euclidean and

Fig 3. The relative importance and ranking of the optimal feature group, as evaluated by the gradient tree boosting. The bar represents the

importance score of the corresponding feature group.

https://doi.org/10.1371/journal.pone.0179314.g003

Table 2. Rankings of feature importance for the optimal selected features. SN, EN and VN represent sequence neighborhood, Euclidean neighborhood

and Voronoi neighborhood, respectively. The numbers in the brackets denote the positions in the sliding window for sequence neighborhood features.

Rank Feature name Type Rank Feature name Type

1 dScore(6) SN 23 Flexibility parameter in physicochemical(5) SN

2 dScore VN 24 BLOSUM(H)(7) SN

3 RA in ENDES(4) SN 25 ACC20 in SCRATCH(11) SN

4 Conservation score(1) SN 26 BLOSUM(N)(3) SN

5 Non-polar ABS in Naccess(6) SN 27 BLOSUM(L)(4) SN

6 ASA in SPIDER2(6) SN 28 Main-Chain ABS in Naccess(9) SN

7 Z-fit score in Netsurfp(10) SN 29 PSSM(C)(9) SN

8 RA in ENDES(8) SN 30 PSSM(S)(10) SN

9 ASA in Netsurfp(2) SN 31 PSSM(C)(1) SN

10 Betweenness in NetWork(9) SN 32 ACC EN

11 ASA in Netsurfp(6) SN 33 BLOSUM(L)(6) SN

12 Closeness in NetWork(6) SN 34 hydrophobic moment in physicochemical(3) SN

13 HSEBU in HSEpred(7) SN 35 BLOSUM(T)(7) SN

14 KAPPA in DSSP(7) SN 36 BLOSUM(C)(4) SN

15 SSpro in the SCRATCH(7) SN 37 dScore(11) SN

16 combined2 in ENDES(4) SN 38 dScore(1) SN

17 Total-Side REL in Naccess(9) SN 39 dScore(9) SN

18 PSSM(N)(10) SN 40 dScore(3) SN

19 PSSM(I)(6) SN 41 dScore(2) SN

20 PROPENSITY in ENDES(5) SN 42 dScore EN

21 PSSM(G)(1) SN 43 dScore(10) SN

22 Flexibility parameter in physicochemical(11) SN 44 dScore(7) SN

https://doi.org/10.1371/journal.pone.0179314.t002
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Voronoi). We find that structural neighborhood features achieve the second highest score

compared with other features, suggesting that structural neighborhood features are critical in

distinguishing disease-associated SAVs from neutral SAVs. Solvent accessibilities are also

found to be useful in SAVs phenotype prediction. Many solvent accessibility related features,

including the solvent accessibility feature calculated by NACCESS, NetSurfP, DSSP, solvent

exposure features, ACC20 and the SSpro score, are important and contributive. The results

suggest that sequence and structural neighborhood features complement each other quite well

and thus collectively make a contribution to the performance enhancement.

Gradient tree boosting improves predictions

PredSAV uses Gradient Tree Boosting (GBT) to build the final model with the 44 optimal fea-

tures. We compare GBT with Support Vector Machine (SVM) and Random Forests (RF),

which are well known to perform fairly well on a variety of tasks. Fig 4 shows the AUC scores

of GTB and other machine learning methods on the final optimal feature set. GTB, SVM and

RF achieve AUC values of 0.908, 0.894 and 0.890, respectively. Comparing with the other

methods, the GTB model can improve the prediction preformance. Note that the GBT algo-

rithm is implemented with scikit-learn [67] in this study.

PredSAV outperforms other predictors

To evaluate the performance of the proposed PredSAV, six existing SAVs prediction methods,

including FunSAV [25], Polyphen2 [24], SusPect [26], SIFT [21], SNAP [23] and nsSNPAnaly-

zer [70], are evaluated on the benchmark dataset.

Table 3 and Fig 5 show the detailed results of comparing our method with the existing

methods. Overall, our approach shows dominant advantage over the existing methods in six

metrics: ACC, SPE, PRE, F1, MCC and AUC. When comparing the AUC score with that of

Fig 4. Comparison of the AUC value of the the three methods using 5-fold cross-validation on the benchmark dataset.

https://doi.org/10.1371/journal.pone.0179314.g004
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the existing classifiers, FunSAV (0.814), Polyphen2 (0.813), SusPect (0.800), SIFT (0.760) and

SNAP (0.706), our PredSAV classifier (0.908) shows greater improvement by 9%, 9%, 11%,

14% and 20%, respectively. For the remaining measurements ACC, SPE, PRE, F1 and MCC,

we can observe similar increases. Especially, the specificity of PredSAV is significant higher

than other methods (increased by 10%), which suggests that it has better performance detect-

ing true negatives and may help for reducing experiment cost. Only in SEN, PredSAV is lower

than PolyPhen2 and SNAP (0.855 and 0.866 for SNAP and PolyPhen2, respectively). We can

observe that PredSAV gains a balanced sensitivity and specificity (0.814 and 0.838, respec-

tively), suggesting that PredSAV has better balance of prediction accuracy between disease-

associated and neutral SAVs.

Performance confirmed for independent test

We also validate the performance of PredSAV on the independent test dataset to avoid over-

optimistic performance estimates. Results of the independent test are presented in Table 4,

which indicate marked improvements for all the performance measures except SEN compar-

ing PredSAV with the exiting methods. Fig 6 shows the ROC curves. The ROC curves indicate

the trade-off between the amounts of true positives (TP) and false positives (FP) generated by

the classifiers. We observe that PredSAV produces higher true positive rates of prediction

across most of the false positive rates. Overall, these observations suggest that the performance

of our PredSAV approach is superior to that of the state-of-the-art approaches.

Case study

To further illustrate the effectiveness of PredSAV, we present examples by comparing predic-

tions for variants that are difficult to classify with commonly applied methods. The enzyme

phenylalanine hydroxylase (PAH, PDB ID: 1J8U, chain A) [71, 72] is responsible for the con-

version of phenylalanine to another amino acid, tyrosine. PAH works with a molecule called

tetrahydrobiopterin (BH4) to carry out this chemical reaction. The majority of mutations in

PAH result in deficient enzyme activity and cause hyperphenylalaninemia. Some cause phe-

nylketonuria (PKU), others cause non-PKU hyperphenylalaninemia, while still others are

silent polymorphisms. As shown in Fig 7A, three PKU-associated SAVs, Q160P (dbSNP:

rs199475601), V177L (dbSNP:rs199475602) and V388L (dbSNP:rs62516101), are colored in

red. This example illustrates how PredSAV combines gradient tree boosting with optimal

neighborhood features to provide better predictions. PredSAV (TP = 3) correctly identified all

the three disease-associated variants, compared to Suspect (TP = 0), PolyPhen (TP = 0), SNAP

(TP = 2), FunSAV (TP = 0), SIFT (TP = 1) and nsSNP (TP = 0).

Table 3. Prediction performance of PredSAV classifiers in comparison with six other prediction tools on the benchmark dataset.

Method ACC SEN SEP PRE F1 MCC AUC

PredSAV 0.826 0.814 0.838 0.839 0.826 0.651 0.908

FunSAV 0.749 0.762 0.736 0.753 0.757 0.508 0.814

PolyPhen2 0.732 0.866 0.590 0.690 0.768 0.476 0.813

SusPect 0.723 0.653 0.798 0.775 0.709 0.455 0.800

SIFT 0.697 0.699 0.695 0.707 0.703 0.394 0.760

SNAP 0.635 0.855 0.395 0.605 0.709 0.284 0.706

nsSNPAnalyzer 0.712 0.745 0.661 0.774 0.759 0.401 -

https://doi.org/10.1371/journal.pone.0179314.t003
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Another example is lanosterol synthase (LSS, PDB ID: 1W6K, chain A) [73, 74], which cata-

lyzes the cyclization of (S)-2,3 oxidosqualene to lanosterol, a reaction that forms the sterol

nucleus. Through the production of lanosterol may regulate lens protein aggregation and

increase transparency. The variants R614W (dbSNP:rs35785446) and P688L (dbSNP:

rs17293705) in LSS are neutral substitutions. From Fig 7B, we can see that PredSAV can pre-

dict the neutral SAVs successfully, while other existing methods result in almost completely

wrong results (except Suspect in P688L). This suggests that PredSAV has the highest

Fig 5. The ROC curves of seven classifiers on the benchmark dataset.

https://doi.org/10.1371/journal.pone.0179314.g005

Table 4. Prediction performance of PredSAV classifiers in comparison with six other prediction tools on the independent test dataset.

Method ACC SEN SEP PRE F1 MCC AUC

PredSAV 0.790 0.780 0.802 0.800 0.789 0.581 0.855

FunSAV 0.731 0.769 0.701 0.679 0.721 0.480 0.792

PolyPhen2 0.727 0.868 0.583 0.679 0.762 0.471 0.806

SusPect 0.716 0.684 0.749 0.734 0.708 0.434 0.774

SIFT 0.729 0.774 0.684 0.714 0.742 0.460 0.786

SNAP 0.594 0.879 0.305 0.562 0.686 0.225 0.671

nsSNPAnalyzer 0.639 0.705 0.550 0.677 0.691 0.258 -

https://doi.org/10.1371/journal.pone.0179314.t004
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specificity, which is desirable for many biological applications since it allows researchers to

identify a short list of SAVs for targeted phenotype studies.

Conclusion

In this study, we present a novel approach named PredSAV for producing reliable predictions

in distinguishing between effect and neutral variants. To be able to do this, we first extract a

very large collection of imformative and complementary features, including sequence, struc-

ture, network and neighborhood features that describe the local environments proximal to the

centered variant and neighboring residues. A two-step feature selection approach, which com-

bines stability selection and sequential forward selection, is utilized to select an optimal subset

of features within a reasonable computational cost, and thus improves the prediction perfor-

mance and reduces the risk of overfitting. Importantly, the use of gradient tree boosting algo-

rithm further attains higher levels of prediction accuracy. We evaluate the PredSAV method

with both cross-validation and independent test, and the results indicate that the proposed

PredSAV is able to identify disease-associated SAVs with higher overall performance, espe-

cially in terms of specificity, when compared with other existing approaches.

Fig 6. The ROC curves of seven classifiers on the independent test dataset.

https://doi.org/10.1371/journal.pone.0179314.g006
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A limitation of PredSAV is that it requires the 3D protein structure, which may limit its

broader application. However, with the increasing solved protein structures, protein homology

modeling projects [76] and predicted 3D structures [77], it is expected that PredSAV can be

used as a powerful tool to prioritize the disease-associated variants and help towards the phe-

notypic effect annotation of these targets.

As for future work, we will explore more efficient features to further improve the perfor-

mance and learn from other methods [78–82] to provide a a web-server for the method pro-

posed in this paper.

Supporting information

S1 File. The disease-associated and neutral variant data used in these experiments.
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