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Background & Aims: Hepatocellular carcinoma (HCC) prediction models can inform clinical decisions about HCC screening
provided their predictions are robust. We conducted an external validation of 6 HCC prediction models for UK patients with
cirrhosis and a HCV virological cure.
Methods: Patients with cirrhosis and cured HCV were identified from the Scotland HCV clinical database (N = 2,139) and the
STratified medicine to Optimise Treatment of Hepatitis C Virus (STOP-HCV) study (N = 606). We calculated patient values for 4
competing non-genetic HCC prediction models, plus 2 genetic models (for the STOP-HCV cohort only). Follow-up began at the
date of sustained virological response (SVR) achievement. HCC diagnoses were identified through linkage to nation-wide
cancer, hospitalisation, and mortality registries. We compared discrimination and calibration measures between prediction
models.
Results: Mean follow-up was 3.4–3.9 years, with 118 (Scotland) and 40 (STOP-HCV) incident HCCs observed. The age-male
sex-ALBI-platelet count score (aMAP) model showed the best discrimination; for example, the Concordance index (C-in-
dex) in the Scottish cohort was 0.77 (95% CI 0.73–0.81). However, for all models, discrimination varied by cohort (being better
for the Scottish cohort) and by age (being better for younger patients). In addition, genetic models performed better in pa-
tients with HCV genotype 3. The observed 3-year HCC risk was 3.3% (95% CI 2.6–4.2) and 5.1% (3.5–7.0%) in the Scottish and
STOP-HCV cohorts, respectively. These were most closely matched by aMAP, in which the mean predicted 3-year risk was 3.6%
and 5.0% in the Scottish and STOP-HCV cohorts, respectively.
Conclusions: aMAP was the best-performing model in terms of both discrimination and calibration and, therefore, should be
used as a benchmark for rival models to surpass. This study underlines the opportunity for ‘real-world’ risk stratification in
patients with cirrhosis and cured HCV. However, auxiliary research is needed to help translate an HCC risk prediction into an
HCC-screening decision.
Lay summary: Patients with cirrhosis and cured HCV are at high risk of developing liver cancer, although the risk varies
substantially from one patient to the next. Risk calculator tools can alert clinicians to patients at high risk and thereby in-
fluence decision-making. In this study, we tested the performance of 6 risk calculators in more than 2,500 patients with
cirrhosis and cured HCV. We show that some risk calculators are considerably better than others. Overall, we found that the
‘aMAP’ calculator worked the best, but more work is needed to convert predictions into clinical decisions.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Patients with HCV-related cirrhosis remain at high risk of devel-
oping hepatocellular carcinoma (HCC) after a virological cure,1–3

which does not appear to diminish over time.4 HCC has among
the worst 5-year survival probabilities of any cancer.5 However, if
detected at an early stage (i.e. when curative treatments can be
administered), 5-year survival can exceed 70%.5 The current
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standard-of-care-for early HCC detection is biannual abdominal
ultrasound surveillance with or without alpha foetoprotein.6,7

Although existing clinical guidelines recommend this interven-
tion for all patients with cirrhosis after HCV eradication, there is
growing recognition that a more targeted approach is needed (i.e.
in which clinicians focus their finite resources on patients who
stand to benefit the most from surveillance).8,9

It is against this backdrop that HCC prediction models are
now emerging that can estimate a patient’s risk of developing
HCC from routine data. Currently, such scores include the age-
male sex-ALBI-platelet count score (aMAP),10 the Toronto HCC
risk Index (THRI),11 models derived from the US Veteran Health
Affairs (VHA) cohort,12 and models from the French prospective
ANRS-CO12 Cir Vir cohort.13 In addition, 2 genetic prediction
models for HCC were recently published,14–16 drawing on com-
mon genetic polymorphisms, such as the rs738409 variant in the
gene encoding Patatin-like phospholipase domain-containing
protein 3 (PNPLA3).17

To enhance clinical decision-making, it is crucial that HCC
prediction models are able to accurately predict HCC risk in a
given patient. Inaccurate predictions have the potential to do
harm. For example, underestimating HCC risk could lead to
higher-risk patients being denied biannual ultrasound screening
and, vice versa, overestimating HCC risk could lead to unnec-
essary screening in lower-risk patients.

At present, there are uncertainties regarding the performance of
existing HCC prediction models. First, the acid-test of the accuracy
of a prediction model is validation in a cohort that is independent
from the one used to ‘train’ the model (known as external valida-
tion).18 Studies show that model performance is systematically
betterwhenmeasured on the same data set used to train themodel
vs. when measured on an ‘unseen’ dataset,19 Existing HCC predic-
tion models have not been rigorously validated in external cohorts
(with the exception of the aMAP10) and, thus, their performance
could be overly optimistic. Second, studies have not adopted a
competing risk perspective when evaluating model performance.
Thismight be important because patientswith cirrhosis are at high
risk of dying from causes unrelated to HCC, such as liver failure20

and non-HCC cancer21; failing to take this into account could lead
to biased estimates of prognosis.22 Third, the question of whether
model performance is the same for all patients or whether it varies
according to clinical characteristics, has not been explored. Fourth,
genetic prediction models have practical advantages over non-
genetic models (e.g. risk score is constant over time and, hence,
only needs to bemeasured once). However, it is not clear how they
compare performance-wise to their non-genetic counterparts.
With these issues inmind, this study investigated the performance
of selected HCC prediction models for patients with cured HCV
cirrhosis in 2 separate UK cohorts.
Materials and methods
HCC prediction models
This study focuses on 6 HCC prediction models that are suitable or
potentially suitable for patients with cirrhosis after HCV virological
cure. The 6 models were: aMAP (2020)10; THRI (2018)11; VHA
cirrhosis sustained virological response (SVR) score (2018)12; ANRS
CO12 CirVir score (2017)13; Dongiovanni et al. genetic risk score
(GRS; 2020)14,15; and Gellert-Kristensen et al. GRS (2020).16

For each prediction model, we extracted information from
published articles relating to the following aspects of model
derivation: sample size, average duration of follow-up, number
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of HCCs observed, proportion with HCV aetiology; specific
prognostic factors selected, and the discrimination performance
reported (Tables S1 and S2 and Appendix A).

Data sources for external validation
Model performance was assessed on patients with cirrhosis SVR
from 2 UK cohorts, both followed from the date of SVR
achievement.

STOP-HCV cohort
The STratified medicine to Optimise Treatment of Hepatitis C
Virus (STOP-HCV) cirrhosis cohort is a prospective cohort study
of 1,255 patients with liver cirrhosis and a history of chronic HCV
infection. Participants were recruited from 31 liver clinics across
the UK (except Northern Ireland) from January 2015 to July 2016
(i.e. coinciding with the introduction of direct-acting antivirals).
Cirrhosis was defined on the basis of: (i) histological assessment
(Ishak 5/6 or Metavir 4); or (ii) imaging results consistent with
cirrhosis, including Fibroscan >15 kPa; or (iii) validated serum
biomarker consistent with cirrhosis (including APRI >2 and
Enhanced Liver Fibrosis [ELF®] test >10.48). Detailed clinical and
laboratory information was collected on participants at the time
of study enrolment and during subsequent annual study visits.
Participants also provided a blood sample at enrolment, which
was used to generate genotyping information using the Affy-
metrix UK Biobank array, which directly characterises in-
dividuals with respect to >800,000 genetic variants. Participants
were also linked to health registries covering England and/or
Wales, including the Hospital Episodes Statistics Admitted pa-
tients care dataset; cancer registrations collected by Public
Health England; and death registrations. The study was
approved by the West Midlands Research Ethics Committee
(application reference: 14/WM/1128); Informed consent was
obtained from all participants.

Scottish HCV clinical database
The Scottish HCV clinical database has been described exten-
sively elsewhere.23,24 It is a retrospective cohort study of
�25,000 patients in Scotland who have attended a specialist
liver clinic appointment for the care and/or management of
chronic HCV infection. The database records information
collected during routine clinical care, including antiviral treat-
ment episodes, diagnosis of cirrhosis, and the results of labora-
tory tests. It is also linked routinely to national health registries
in Scotland, including the hospital, mortality, and cancer regis-
ters. Approval to link these registries and perform data analysis
was granted by the Privacy Public Benefit Panel for Health and
Social Care in NHS Scotland (application number: 1516-0457).

Liver cirrhosis was defined as compensated or decom-
pensated cirrhosis diagnosed during routine clinical investiga-
tion. Diagnoses were typically made following liver biopsy,
transient elastography, abdominal ultrasound, clinical examina-
tion, and routine liver function tests, according to clinical
guidelines at that time. No information on genetic risk factors
and/or polymorphisms was available in the Scottish cohort.

Inclusion criteria
For both cohorts, we included all patients with cirrhosis before
initiating antiviral therapy and who subsequently achieved SVR.
All SVRs were included irrespective of antiviral treatment
regimen. If a patient had more than 1 treatment episode
resulting in SVR, then the first episode was selected.
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Exclusion criteria
Of those satisfying our aforementioned inclusion criteria, we
then excluded patients as follows: for the STOP-HCV cohort, we
first excluded participants recruited from Scottish and Welsh
clinics for whom linkage data to health registries were unavai-
lable or incomplete. This exclusion also ensured that there was
no patient overlap between the STOP-HCV and Scottish cohorts.
Second, we excluded participants with a diagnosis of HCC before
completing antiviral therapy. Third, we excluded participants
who had already achieved an SVR at the time of STOP-HCV study
enrolment. This exclusion was applied to prevent immortal time
bias25 between SVR achievement and STOP-HCV study enrol-
ment. For the Scottish cohort, we excluded individuals with a
history of HCC before achieving SVR. No other exclusions were
made.

HCC risk predictions
Many of the prognostic factors included in the non-genetic HCC
risk prediction models are dynamic insofar as they change over
time. For prognostic factors based on laboratory tests (i.e. albu-
min, platelet count, etc.), we selected the most recent test on or
before the start of antiviral treatment. Tests conducted more
than 12 months before initiating treatment were excluded. We
considered using laboratory tests conducted up to 12 months
before SVR achievement to align with the date of follow-up
commencement (see ‘Definition of risk sets’ section); however,
we decided against this because antiviral treatment can cause
acute and temporary changes in liver blood test values that
might not necessarily reflect long-term risk profile. Nevertheless,
age was based on age at the time of SVR achievement (i.e. time
0). Information on gamma glutamyl transferase was not available
in the STOP-HCV cohort, precluding calculating values for the
ANRS C012 CirVir model.13

Primary outcome event
The primary outcome event was diagnosis of HCC, identified
through linkage to relevant administrative health databases.
Specifically, for the STOP-HCV study, we used data from the
England Admitted Patient Care Database, the National Cancer
Registry, and Mortality Register to identify incident cases of HCC.

For the Scottish HCV clinical database, we used the equivalent
National Inpatient Hospital Admission Database (SMR01), Cancer
Registry (SMR6) and Mortality Register to identify HCC cases. For
all registries/administrative databases, we used the standard
ICD10 ‘C22.0’ or ICD9:155.0 code in the primary diagnostic and/
or cause of death position to define HCC.

Statistical analysis
Definition of risk sets
All statistical analyses were underpinned by survival analysis
methods. Follow-up time began at the date of SVR achievement.
This was defined as 6 months after the treatment completion
date for episodes initiated before the year 2014 (i.e. SVR24), and
3 months after the treatment completion date for episodes
initiated from 2014 onwards (i.e. SVR12). This aligns with how
SVR was defined by clinicians during the time period of this
study. Follow-up ended at the date of incident HCC (if at all),
mortality (if at all), or the date of study completion. For both
cohorts, the study completion date was 1 January 2020, corre-
sponding to the date the hospital admission registers were
complete to. Unless indicated otherwise, non-HCC mortality was
treated as a competing risk in all analyses.
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Multiple imputation
Multiple imputation was used to replace missing data for the
individual components of each HCC prediction model with
plausible imputed estimates.26 We generated 20 imputations for
each missing prediction using predictive mean matching. The
following variables were used to predict these imputed values:
(i) the Nelson–Aalen estimate of the baseline cumulative hazard;
(ii) the outcome variable (i.e. HCC status); (iii) sex; (iv) decom-
pensated cirrhosis; (v) age; (vi) alcohol use; and (vii) type of
antiviral treatment [i.e. interferon (IFN) based or not]. Rubin’s
rules were used to combine statistics of interest across imputa-
tion data sets.27 Similarly, cumulative incidence curves by risk
tertile are based on the average estimate across the 20 imputa-
tion datasets created. Risk ‘tertiles’ refer to 3 groups: (i) those
whose prediction is in the 33rd percentile or lower; (ii) those in
the 33–67th percentile; and (iii) those in the 68–100th
percentile.

Prediction model performance
Each prediction model was assessed in terms of 2 main aspects
of prognostic model performance18: (i) discriminative ability (i.e.
ability to differentiate between patients who develop HCC and
those who do not); and (ii) calibration (agreement between the
3-year risk of HCC predicted by the model vs. the 3-year HCC risk
observed).

Discrimination
The discriminative ability of each HCC prediction model was
investigated in 3 ways.

First, we assessed the discrimination of each model visually,
by plotting the cumulative incidence of HCC for individuals with
low, moderate, and high scores. Categorisation into low, medium,
and high groups was based on risk tertiles, as described earlier.
Cumulative incidence was computed non-parametrically using
the ‘stcompet’ command within Stata v16.28 Non-HCC mortality
was treated as the competing risk event.

Second, we determined the discriminative ability of each
prediction model quantitatively using the Concordance index (C-
index), which provides an overall summary of the discriminative
ability of a risk score. Specifically, the C-index measures the
proportion of all possible ‘participant pairs’ that are ‘concordant’.
A ‘participant pair’ refers to a random selection of 2 individuals
from the data set, and this pair is said to be ‘concordant’ if the
individual with the higher risk score develops the outcome event
of interest sooner than the individual with the lower risk score.29

In our base-case analysis, we used a version of the C-index
adapted for a competing-risk scenario, as previously described
by Wolbers et al.30 The key difference between the standard C-
index and competing-risk adjusted C-index is that, in the latter,
individuals with a competing risk event are assumed to have an
infinite survival time. In addition, we also calculated the stan-
dard Harrell C-index, which does not account for competing
risks. For all versions of the C-index, higher values indicate better
discrimination; a value of 0.5 indicates zero discrimination (i.e.
no better than chance), whereas a value of 1.0 indicates perfect
discrimination.

Third, we assessed whether the C-index of each prediction
model varied according to selected patient characteristics. These
characteristics were as follows: age <60 years; sex; history of
heavy alcohol use (defined as consumption of >50 units/week for
a sustained period of >6 months before SVR); genotype 3; and
SVR through IFN-free therapy.
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Calibration
Calibration measures how closely the predicted risk of HCC
matches the observed risk of HCC.18,31 For this analysis, we
calculated the 3-year predicted and 3-year observed risk of HCC
for individuals with low, moderate, and high predictions (again
defined according to risk tertiles).

The predicted 3-year probability of HCC was calculated using
standard Cox regression, as prescribed by the authors of each risk
score, namely:

1–S0(t)exp(linear predictor)

where t = 3 years, and S0(t) refers to the estimated 3-year
HCC-free survival for individuals with zero for all indepen-
dent variables in the model. We contacted the authors for
this information if these details were not clear in the original
paper.

Our calculation of the 3-year observed HCC probability was
based on the cumulative incidence function, with non-HCC
mortality treated as a competing risk.

Finally, we did not perform a calibration analysis for the ge-
netic models, because they were not intended to estimate the
probability of HCC at a particular point in time.
Table 1. Description of Scottish and STOP-HCV cohorts.

Characteristic

Scottish cohort (n = 2,139)

Mean
value/proportion

Numb
missing d

Demographic, clinical, and
behavioural factors

Age, years (SD) 50.2 (9.0)
% Age >60 years 14.0
% Male sex 74.0
% White ethnicity 94.3
% IFN-free therapy 61.1
% Decompensated cirrhosis 10.5
% Past genotype 3 infection 50.1
% IDU history 75.7 37

Laboratory markers
ALBI (SD) -2.43 (0.53) 29
Platelet count (SD) 148.4 (68.0) 27
ALT (SD) 88.0 (71.5) 25
AST (SD) 84.3 (56.8) 44
GGT (SD) 154.6 (172.4) 1,03
Albumin (SD) 37.2 (5.2) 29

Genetic markers
rs738309:G AF Not available
rs58542926:T AF
rs72613567:TA AF
rs641738:T AF
rs1260326:T AF

HCC prediction model scores
aMAP (SD) 57.1 (7.4) 33
VHA model (SD) 0.64 (0.47) 51
THRI model (SD) 145.9 (58.6) 27
ANRS CO12 CirVir (SD) 4.4 (2.0) 1,28
Gellert-Kristensen GRS (SD) n.a.
Dongiovanni GRS (SD) n.a.

HCC prediction model scores refer to the raw values and are all on different scales. Labora
dynamic variables (e.g. age) are based on the value at SVR achievement. See main text
AF, allele frequency; ALBI, albumin/bilirubin; ALT, alanine aminotransferase; aMAP, ag
glutamyl transferase; GRS, genetic risk score; HCC, hepatocellular carcinoma; IDU, inject
of Hepatitis C Virus; THRI, Toronto HCC Risk Index; VHA, Veteran Health Affairs.
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Results
Derivation of external validation cohorts
In total, 2,245 patients met our inclusion criteria from the
Scottish cohort. We then excluded 106 patients with HCC before
treatment completion. Thus, the final sample size was 2,139
(Fig. S1).

Overall, 1,019 participants from the STOP-HCV study met our
inclusion criteria. We then excluded 79 patients from Scotland
and Wales. In addition, 77 patients with HCC before SVR
achievement were also excluded. Finally, a further 257 patients
who achieved SVR before enrolling in STOP-HCV were removed
to avoid immortal time bias. Thus, the final sample size was 606
(Fig. S1).

Patient characteristics
Patients in both cohorts were mainly middle-aged (i.e. between
40 and 65 years old), male (>70%), and of white ethnicity (>80%)
(Table 1). However, there were notable differences between
these 2 cohorts. First, patients in the STOP-HCV cohort were
older than in the Scottish cohort (mean age: 56.5 vs. 50.2 years,
respectively). Second, the proportion of patients who had ach-
ieved SVR through IFN-free therapies was higher in the STOP-
HCV that in the Scottish cohort (92% achieved SVR via IFN-free
STOP-HCV cohort (n = 606)

er with
ata (%)

Mean value/proportion/allele
frequency

Number with
missing data (%)

0 (0.0) 56.5 (9.6) 0 (0.0)
0 (0.0) 38.4 0 (0.0)
0 (0.0) 70.6 0 (0.0)
0 (0.0) 82.0 0 (0.0)
0 (0.0) 91.7 0 (0.0)
0 (0.0) 11.2 0 (0.0)
21 (1.0) 38.3 34 (5.6)
9 (17.7) 44.8 30 (5.0)

7 (13.9) -2.62 (0.54) 55 (9.1)
1 (12.7) 136.3 (66.7) 57 (9.4)
3 (11.8) 90.2 (65.6) 61 (10.1)
3 (20.7) 89.0 (59.3) 106 (17.5)
4 (48.3) Not available n.a.
6 (13.8) 39.4 (5.3) 54 (8.9)

n.a. 26.1 60 (9.9)
8.2 60 (9.9)

20.3 67 (11.1)
41.1 60 (9.9)
37.6 60 (9.9)

6 (15.7) 59.5 (7.2) 64 (10.6)
0 (23.8) 0.88 (0.55) 123 (20.3)
1 (12.7) 168.4 (58.8) 62 (10.2)
8 (60.2) Not available –

n.a. 2.28 (0.91) 67 (11.1)
n.a. 0.28 (0.21) 60 (9.9)

tory markers are based on values at the time of treatment initiation, whereas all other
for further explanation.
e-male sex-ALBI-platelet count score; AST, aspartate aminotransferase; GGT, gamma
ing-drug user; IFN, interferon; STOP-HCV, STratified medicine to Optimise Treatment
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therapies in STOP-HCV vs. 61% in Scottish cohort). Third, the
proportion of patients with past HCV genotype 3 infection was
lower in the STOP-HCV cohort (38% vs. 50%, respectively). Finally,
average values for the VHA, THRI, and aMAP scores were all
higher in the STOP-HCV cohort vs. the Scottish cohort, indicating
that STOP-HCV had higher predicted HCC risk.

The proportion of patients with missing predictions was
generally <20%. However, missing data were more substantial in
the Scottish cohort for the VHA model (24% missing) and the
ANRS C012 model (60% missing) compared with the other
models.
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Fig. 1. Stacked cumulative incidence curves for HCC and non-HCC mortal-
ity. Cumulative incidence curves are generated non-parametrically (i.e.
without any modelling assumptions). For the purple line, non-HCC mortality is
treated as a competing risk event, whereas for the green line, HCC outcome is
treated as a competing risk event. CI, cumulative incidence; HCC, hepatocel-
lular carcinoma.
Cumulative incidence of HCC and non-HCC mortality
In the Scottish cohort, participants were followed for a mean 3.9
years after SVR, during which time 118 incident HCC events and
214 non-HCC-related deaths occurred (Table 2). The cumulative
incidence of HCC and non-HCC mortality at 3 years was 3.3%
(95% CI 2.6–4.2) and 8.5% (95% CI 7.2–9.8), respectively (Table 2
and Fig. 1).

Patients in the STOP-HCV cohort were followed for a mean of
3.4 years after SVR, during which time 40 incident HCCs and 36
non-HCC deaths occurred (Table 2). The cumulative incidences of
HCC and non-HCC mortality at 3 years were 5.1% (95% CI 3.5–7.0)
and 5.0% (95% CI 3.5–7.0), respectively (Fig. 1).

Drug-related mortality and deaths from external causes were
more common in the Scottish cohort vs. the STOP-HCV cohort.
One-third of non-HCC mortality was from drug-related or
external causes in the Scottish cohort, compared with only 10%
in the STOP-HCV study (Table 2).
Performance of HCC prediction models
Discrimination
In cumulative incidence plots, higher predicted HCC risks were
associated with a higher HCC cumulative incidence (Figs S2 and
S3). However, the degree of discrimination varied considerably
by both prediction model and cohort.

In the Scottish cohort, the aMAP score exhibited the best
discrimination (C-index: 0.771; 95% CI 0.731–0.810), followed
by the VHA model (0.715; 95% CI 0.668–0.761), THRI (0.719; 95%
CI 0.673–0.764), and ANRS CO12 (0.703; 95% CI 0.656–.749)
(Fig. 2).
Table 2. Description of follow-up data and outcome events observed in the S

Cohort
No. of

individuals

Person years (PYs)

Total
Mean per

patient
Median per

patient Eve

Scottish cohort 2,139 8,380 3.9 3.5 HC
No
Dru
Ext
No
All-

STOP-HCV cohort 606 2,041 3.4 3.7 HC
No
Dru
Ext
No
All-

Drug-related, external causes, and non-HCC liver mortality represent specific types of n
HCC, hepatocellular carcinoma; STOP-HCV, STratified medicine to Optimise Treatment
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HCC prediction models exhibited poorer discriminative per-
formance (i.e. lower C-index values) in the STOP-HCV cohort, but
the general ranking was similar. For example, aMAP was also the
top-performing score in the STOP-HCV cohort (C-index: 0.701;
95% CI 0.638–0.764), followed by VHA (0.657; 95% CI
0.576–0.737), and then by THRI (0.648; 95% CI 0.577–0.718). The
Dongiovanni GRS had a C-index value of 0.613 (95% CI
0.530–0.695) and the Gellert-Kristensen GRS C-index value was
0.559 (95% CI 0.473–0.645) (Fig. 2). All C-index values were
marginally higher when using the standard Harrell’s C-index as
opposed to the Wolbers-modified C-index (Table S3).

Variability in discrimination
Our analysis of variability in model discrimination highlighted 2
patient factors of interest (Figs S4 and S5). First, discrimination
was better for younger patients vs. older patients. This was
apparent across both cohorts for all non-genetic models. For
example, in the Scottish cohort, the aMAP had a C-index of 0.59
cottish and STOP-HCV cohorts.

Outcome

nt
No. of
events

Crude rate,
per 1,000 PYs

(95% CI)
3-year cumulative

incidence (%)

C 118 14.1 (11.8–16.9) 3.3% (2.6–4.2)
n-HCC mortality 214 25.5 (22.3–29.2) 8.5% (7.2–9.8)
g-related mortality 52 6.2 (4.7–8.1) 2.2% (1.6–2.9)
ernal causes mortality 12 1.4 (0.8–2.5) 0.6% (0.3–1.0)
n-HCC liver mortality 45 5.4 (4.1–7.2) 2.1% (1.5–2.8)
cause mortality 278 32.2 (28.6–36.2) 9.8% (8.5–11.2)
C 40 19.60 (14.4–26.7) 5.1% (3.5–7.0)
n-HCC mortality 36 17.6 (12.7–24.5) 5.0% (3.5–7.0)
g-related mortality 3 1.5 (0.5–4.6) 0.5% (0.1–1.4)
ernal causes mortality 0 0 0
n-HCC liver mortality 18 8.8 (5.6–14.0) 2.2% (1.2–3.6)
cause mortality 50 23.9 (18.1–31.6) 7.3% (5.4–9.6)

on-HCC mortality.
of Hepatitis C Virus.
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(95% CI 0.49–0.70) for those aged >60 years at SVR achievement
vs. 0.80 (95% CI 0.75–0.84) for those aged <60 years (Fig. 3).
Second, GRS discrimination was better for patients with past
genotype 3 infection. For example, the C-index of the Dongio-
vanni GRS was 0.78 (95% CI 0.70–0.87) in patients with geno-
type 3 vs. 0.50 (95% CI 0.39–0.62) in patients with non-
genotype 3.

Otherwise, no major heterogeneity in model discrimination
was observed according to IFN-free therapies, alcohol history,
sex, or decompensated disease. (Figs S4 and S5).

Calibration
In the Scottish cohort, the observed 3-year probability of HCC
was 3.3% (95% CI 2.6–4.2), compared with predicted probabilities
of 2.0% (THRI), 3.1% (VHA), 3.6% (aMAP), and 3.9% (ANRS CO12
model). In STOP-HCV, the 3-year observed probability of HCC
was 5.1% (95% CI 3.5–7.0) compared with predicted probabilities
of 2.5% (THRI model), 3.8% (VHA model), and 5.0% (aMAP model)
(Fig. S6).

When we examined calibration according to risk tertiles, we
saw some instances of underprediction in higher-risk patients.
For example, in the Scottish cohort, the observed 3-year risk for
individuals whose THRI score was in tertile 3 (11.3% 95% CI
4.6–18.0) was almost twice the predicted risk (6.4%). This
underprediction also affected the VHA model to some extent, but
did not affect either the aMAP or ANRS CO12 models (Fig. 4).

Discussion
HCC risk prediction models have the potential to support clinical
decision-making, but could equally cause harm if their pre-
dictions are not robust. In this study, we used external validation
to quantify the performance of existing HCC prediction models
JHEP Reports 2021
for individuals with cirrhosis and cured HCV, with 3 key findings.
First, our data confirm that HCC prediction models are able to
discriminate between patients who go on to develop HCC and
those who do not. In other words, across all models, an increase
in predicted HCC risk was mirrored by an increase in observed
HCC risk (and vice versa). Nevertheless, not all models provide
the same level of discrimination in a UK setting. Overall, the
aMAP model exhibited the best discriminative ability, with a C-
index of 0.78 in the Scottish and 0.71 in the STOP-HCV cohorts.
The aMAP model is derived entirely from routinely available
prognostic factors (i.e. age, albumin, bilirubin, platelet count, and
sex) and, thus, this provides encouragement regarding oppor-
tunities for ‘real-world’ risk stratification in this growing patient
group. Another corollary is that aMAP should be used as a
benchmark for rival prognostic models to surpass. This will help
the research community evaluate whether a proposed new
model (of which many are likely to emerge in the years ahead)
provides added value over existing alternatives. A second novel
aspect of this study is that it highlights the existence of hetero-
geneity in model performance (i.e. variability in model perfor-
mance according to patient characteristics). For example, we
found that most prediction models were more discriminating in
younger patients vs. older patients (Fig. 3), although it is unclear
why this is the case. In a similar vein, we showed that the
Dongiovanni et al. GRS exhibited better discrimination for pa-
tients with past genotype 3 infection (C-index: 0.78) than for
those with non-genotype 3 infection (C-index: 0.50). This could
be because the Dongiovanni GRS was originally developed as a
risk score for hepatic steatosis, which is well known to be a more
prominent histological feature of HCV genotype 3 infection vs.
genotype 2/3 infection.32,33 A third important observation from
this study is to caution that some models might underpredict 3-
6vol. 3 j 100384
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year HCC risk. This was most prominent for the THRI model
among higher-risk patients. Thus, recalibration might be neces-
sary before adopting this model in a UK setting (although we
acknowledge that underpredicting high-risk patients would
probably not alter HCC screening decisions).

An important question that this study does not answer is how
to translate a HCC risk prediction into an HCC screening decision
for a given patient. There is agreement in the field that HCC risk
prediction models will have most clinical utility for identifying
patients whose risk of HCC is too low for screening to be of net
benefit. However, there is considerable ambiguity regarding
which patients are ‘low risk’ and how this should be defined. In
our view, the definition of low risk should reflect a compromise
between multiple factors, such as: (i) cost-effectiveness data; (ii)
general population HCC incidence; (iii) patient preferences; (iv)
clinical view and other clinical factors (e.g. likelihood of receiving
curative treatment in the event of a HCC diagnosis); and (v) re-
sources available for HCC screening. In the real world, ‘low risk’ is
likely to represent a range of values rather than a hard threshold,
and is unlikely to be the same for all patients. It will also
JHEP Reports 2021
inevitably change as new surveillance technologies emerge with
different performance characteristics to abdominal ultrasound.
Thus, to support HCC screening decisions, versatile models are
needed with good calibration across the risk spectrum. This is
why we focused on calibration in this study. We deliberately
avoided defining ‘low risk’ based on what is optimal for a given
model (i.e. which previous studies have done by identifying the
risk threshold at which the sensitivity/specificity are optimised).
This approach is statistically dubious,34 but more to the point, it
is equivalent to letting a statistical model dictate a clinical de-
cision, as opposed to using a statistical model to help implement
a clinical decision. Thus, auxiliary research to define ‘low risk’
might be needed before models, such as aMAP, can be confi-
dently deployed. Microsimulation Markov models35 could be
7vol. 3 j 100384
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useful for estimating the benefits of screening (i.e. in terms of
life-years or quality-adjusted-life-years gained) according to 3-
year HCC probability.

This study has several strengths. First, our focus on exter-
nally validating competing models fills an important gap in the
literature (i.e. most previous studies have opted to develop new
risk models, rather than evaluate the performance of existing
ones). Second, as previously discussed, we assessed model
performance in terms of not only discrimination, but also
calibration. A third strength is that our estimates of model
performance account for non-HCC mortality as a competing
risk. This perspective is important because patients with
cirrhosis are at high risk of mortality from liver failure, and this
can bias estimates of model performance.22 However, although
we found that C-indexes were lower when accounting for
competing risks, the differences were modest. A fourth
strength is the adoption of a dual-cohort perspective, enabling
us to perform the same analysis in 2 different cohorts and
analyse variability. This supported our investigation of het-
erogeneity in model performance. Another unique asset of this
study is that we collected data on genetic and non-genetic
models and, thus, were able to compare the discriminative
ability of these 2 model types. Our study also has limitations
that warrant discussion. One of the main limitations is that
predictions were missing for some patients. Although the
proportion of missing data was generally low (<20%), missing
data were more substantial for the ANRS-CO12 (60% missing
from the Scottish cohort) and VHA models (24% missing from
JHEP Reports 2021
the Scottish cohort). We used multiple imputation to maximise
statistical power and correct potential bias from a complete-
case analysis. Nevertheless, the performance of the ANRS-
CO12 model in particular should be viewed with caution in
light of the missing data. Second, we cannot exclude the pos-
sibility that some of the patients in our data set might have had
HCC or been developing HCC before SVR was achieved. Third,
we were unable to evaluate all models developed so far for
patients with HCV cirrhosis, including those proposed by Pons
et al.,36 Audurea et al.,37 and Alonso Lopez et al.38 These scores
were omitted from our analysis because data for factors such as
liver stiffness and prothrombin time were unavailable in the
Scottish and STOP-HCV studies. This is also an inherent weak-
ness of the scores themselves insofar as a model can only be
useful if it can be calculated using ‘real-world’ data. Fourth,
although patients were followed up from the point of SVR
achievement, we did not have information on the specific date
that the SVR test was performed. Thus, a conservative estimate
of 6 months after treatment completion was used to ensure our
analysis was not affected by immortal time bias25 (i.e. equiva-
lent to SVR24).

In summary, this is the first study comparing the performance
of competing HCC risk prediction models. Our findings highlight
the opportunities for practical HCC risk stratification in a UK
setting for patients with cirrhosis and cured HCV. However, if
models are to support HCC screening decisions, then a consensus
will ultimately be needed regarding the individualised proba-
bility of HCC at which screening should be avoided.
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