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Abstract

Background—Multidrug-resistant tuberculosis (MDR-TB) can be acquired through de novo 

mutation during TB treatment or through transmission from other individuals with active MDR-

TB. Understanding the balance between these two mechanisms is essential when allocating 

resources for MDR-TB.

Methods—We constructed a dynamic transmission model of an MDR-TB epidemic, allowing for 

both treatment-related acquisition and person-to-person transmission of resistance. We used 

national TB notification data to inform Bayesian estimates of the fraction of each country’s 2013 

MDR-TB incidence that resulted from MDR transmission rather than treatment-related MDR 

acquisition.

Findings—Global estimates of 3·5% MDR-TB prevalence among new TB notifications and 

20·5% among retreatment notifications translate into an estimate that resistance transmission 

rather than acquisition accounts for a median 96% (95% UR: 68–100%) of all incident MDR-TB, 

and 61% (16–95%) of incident MDR-TB in previously-treated individuals. The estimated 

percentage of MDR-TB resulting from transmission varied substantially with different countries’ 

notification data; for example, we estimated this percentage at 48% (30–75%) of MDR-TB in 

Bangladesh, versus 99% (91–100%) in Uzbekistan. Estimates were most sensitive to estimates of 

the transmissibility of MDR strains, the probability of acquiring MDR during tuberculosis 

treatment, and the responsiveness of MDR TB to first-line treatment.

Interpretation—Notifications of MDR prevalence from most high-burden settings are most 

consistent with the vast majority of incident MDR-TB resulting from transmission rather than new 
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treatment-related acquisition of resistance. Merely improving the treatment of drug-susceptible TB 

is unlikely to greatly reduce future MDR-TB incidence. Improved diagnosis and treatment of 

MDR-TB – including new tests and drug regimens – should be highly prioritized.

Background

An estimated 480,000 people developed incident multidrug-resistant tuberculosis (MDR-

TB) in 2013.1 The prevalence of MDR is generally much higher among TB patients who 

have been previously treated for TB than among treatment-naive patients. This disparity is 

widely assumed to suggest that a large proportion of MDR-TB arises from selection of drug 

resistance mutations during previous ineffective TB treatment, as opposed to transmission of 

pre-existing MDR strains.2–5 This interpretation has major implications for the control of 

MDR-TB: if most MDR arises from ineffective treatment of drug-susceptible TB, then 

better treatment of susceptible strains should be the focus in preventing additional cases of 

MDR-TB.6,7 Previous transmission modeling analyses, which illustrated the difficulty of 

controlling established MDR-TB epidemics, urged programs to improve the treatment of 

drug-susceptible TB.8 Over time, however, the predominant etiology of incident MDR-TB 

shifts from acquisition of resistance during treatment to direct person-to-person transmission 

of MDR strains,9 and there is a point at which MDR-TB epidemics cannot be contained 

without early and effective treatment of drug-resistant TB.10 This evolving balance between 

treatment-related acquisition and primary transmission of MDR therefore has critical public 

health implications: when MDR-TB epidemics are driven by primary transmission, 

resources must increasingly be allocated to MDR-TB treatment and ongoing development of 

novel regimens (to make MDR-TB treatment shorter, cheaper, and more tolerable11), rather 

than to treatment of drug-susceptible TB alone.11–13 Where this balance currently stands in 

most high-burden settings is uncertain.

The World Health Organization (WHO) publishes widely-cited estimates of the prevalence 

of MDR-TB among notified new and previously treated cases. These estimates have known 

weaknesses,14,15 but they are nonetheless widely used for country-level planning (as no 

better estimates exist for most countries). Unfortunately, these estimates of MDR-TB 

prevalence cannot be directly translated into estimates of the proportion of MDR-TB 

incidence that reflects primary transmission. For example, when individuals are infected 

with drug-resistant strains and subsequently develop MDR-TB disease in an area where drug 

susceptibility testing is not routinely performed for new cases, these patients will be initially 

notified as drug-susceptible, and only after failing initial treatment might they be notified as 

(previously treated) MDR-TB. Molecular epidemiologic studies have variably found that 

from <25%16,17 to >80%18 of MDR-TB clinical isolates are genetically clustered, but 

incomplete sampling biases these numbers as an estimate of transmitted disease.19 To 

understand how current notification data regarding the prevalence of MDR-TB would 

translate into the estimated proportion of MDR-TB that arises from prior TB treatment 

versus from MDR transmission, a mechanistic understanding of MDR-TB transmission in 

the context of TB notification practices is required. We therefore created a dynamic 

transmission model of an MDR-TB epidemic to convert the notified prevalence of MDR-TB 

into estimates of the separate contributions of resistance transmission and treatment-related 

resistance acquisition to incident MDR-TB cases.
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Methods

Model structure

We constructed a deterministic compartmental model of a historical (through 2012) adult 

pulmonary TB epidemic involving a drug-susceptible strain (i.e. a weighted average of all 

non-MDR strains) and an MDR strain in a homogeneous adult population (Figure 1). 

Similar to previously-published models,20,21 susceptible individuals could be infected with 

either strain, resulting either in immediate progression to active disease (which, after a 

subclinical phase, progressed to care-seeking and TB treatment) or in latent infection (a non-

infectious state with a continuous ongoing probability of reactivation and progression to 

active, infectious disease). In this historical model of high-burden countries, we assumed 

that, at the population level, treatment for MDR-TB was negligible, consistent with global 

estimates that <20% of incident MDR-TB was treated prior to 20131 and <10% through at 

least 2009.22 Thus, individuals diagnosed with TB were treated with first-line therapy in the 

primary analysis, although sensitivity analysis was performed for alternative scenarios in 

which 25% or 50% of all people who failed initial therapy were treated with appropriate 

second-line therapy, with little difference in outcomes (see supplementary material, section 

1c). Probabilities of treatment outcomes – including cure, treatment failure (with or without 

acquired resistance), and apparent cure with subsequent relapse (also with or without 

acquired resistance) – depended on a patient’s resistance status (MDR or DS) and treatment 

history (treatment-naïve DS or previously-treated DS). Previously-treated individuals were 

assumed to have worse outcomes because of accumulated resistance to isoniazid or other 

single drugs, more advanced disease, or patient characteristics that contributed to their initial 

failure.

It was possible for MDR to be acquired during any course of TB treatment. The outcome of 

DS TB treatment was determined through a series of events (illustrated in Figure S1); the 

probability of each subsequent event was conditional on the preceding events. First, early 

bacteriologic response (i.e. an expected initial decline in bacterial burden leading to culture 

conversion) either was or was not achieved. Second, an MDR mutant either was or was not 

selected. Third, treatment either was or was not completed. Finally, with a probability 

conditional on each of the steps above, relapse after treatment either did or did not occur. 

Acquisition of resistance was more likely for previously-treated patients (who were more 

likely to already harbor resistance to some drugs in a regimen) than for treatment-naïve 

patients, and for patients who failed to achieve early bacteriologic response (for initial 

reasons unrelated to MDR, e.g., large bacillary burden or inadequate doses of drug) than for 

patients in whom early bacteriologic response to treatment was achieved. If de novo MDR 

mutation occurred, the probability of subsequent relapse to new active MDR-TB was high. 

Preexisting MDR-TB also could, rarely, respond to first-line therapy, but then also had a 

high probability of relapse.

Model simulations

We generated a series of model simulations to account for uncertainty related to the 

transmissibility, natural history, and treatment of TB and MDR-TB; each simulation used a 

specific set of parameters sampled from the ranges shown in Table 1. Then, as described in 
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detail below, we weighted each simulation based on its fit to notified TB data. We evaluated 

the resulting weighted set of simulations to generate estimates of how TB and MDR-TB 

notifications would best translate into estimates of the proportion of incident MDR-TB that 

reflected transmitted, as opposed to treatment-acquired, MDR-TB. We generated a total of 

1,000,000 simulations for consideration as follows: First, for model parameters not related to 

drug resistance, we took 2000 Latin hypercube samples23 uniformly distributed on either the 

arithmetic or logarithmic scale (i.e., uniform or truncated exponential distributions), across 

plausible ranges for a medium- to high-burden setting (Table 1), to generate 2,000 

equilibrium epidemics of drug-susceptible TB. Further details are in the Supplementary 

Material, section 1b. We then similarly sampled a different 500 sets of drug resistance-

related parameters for each initial drug-susceptible epidemic and allowed acquisition of 

MDR-TB during treatment of DS-TB (and subsequent transmission from person to person) 

to start at a specific point in time 20–60 years in the past. We evaluated the resulting MDR-

TB epidemic at five-year intervals up to sixty years (beyond which our reported results were 

stable), with the primary analysis performed after twenty years of MDR emergence18 and 

with sensitivity analysis for other durations. The probability of acquiring resistance was 

sampled over a wide range, considering values of up to 10% per treatment course for new 

patients and even higher values for those previously treated (even if they initially responded 

appropriately to a second course of treatment) and those without an initial rapid 

bacteriologic response to treatment (in whom ongoing bacterial replication under antibiotic 

pressure may promote selection of drug resistance). We assumed that the MDR strain had a 

transmissibility relative to the drug-susceptible (DS) strain that was bounded from zero (no 

MDR transmission) to one (equivalent transmissibility of both strains).24

Among all 1,000,000 simulations generated, those with TB incidence between 20 and 1400 

per 100,000 per year, TB prevalence between 20 and 1200 per 100,000, and MDR-TB in at 

least 0·1% of new TB notifications, were considered consistent with plausible 

epidemiological scenarios for a medium- to high-TB-burden setting, and were retained for 

consideration in comparison to present-day notification data.

Model calibration

After reducing the initial simulations to this broadly plausible set, we applied a Bayesian 

melding process25 to translate TB notification estimates from WHO into corresponding 

estimates of the fraction of MDR-TB incidence that resulted from MDR transmission. To 

achieve this aim, we first took all plausible simulations, generated as described above, as an 

uninformative prior distribution of epidemic trajectories consistent with existing knowledge 

about TB epidemiology, natural history, and treatment practices in medium-to-high-burden 

settings. Then, in order to prioritize the simulations most consistent with a given set of 

notification data, we assigned each simulation a weight, based on a joint likelihood that 

represented how closely the simulation replicated the notification data of interest, including 

proportions of new and retreatment cases with MDR-TB and the WHO-estimated TB 

incidence and prevalence. Using this generalizable framework, we evaluated both a “global” 

scenario (fit only to the global estimates of MDR-TB prevalence, among new and among 

retreatment notifications) and “country-level” scenarios (fitting the same generalizable 

model to country-level estimates of both MDR-TB, as done for the global scenario, and total 
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TB burden). We evaluated country-level scenarios for six countries representing a variety of 

geographic settings, TB and MDR-TB burdens, and retreatment-to-new MDR prevalence 

ratios, as shown in Table 2. We also applied the country-specific process to notification 

estimates for all countries for which WHO reported a TB incidence >40/100,000/year, at 

least 10 TB notifications, and nonzero prevalence among new TB notifications in 2013. 

Eleven countries (notably including China) were excluded on the basis that appropriate fits 

could not be obtained while assuming stable TB natural history parameters and no second-

line treatment through 2013 (see supplementary material, section 2a, for details).

Details of model calibration are described in supplementary material section 1b. Results are 

reported as a median value, weighted by the likelihood (with weighted 2·5th and 97·5th 

quantiles as the bounds of the 95% uncertainty range (UR)).

Sensitivity analyses

For each model parameter, we computed partial rank correlation coefficients for the 

correlation of the parameter (simultaneously adjusted for all other model parameters) with 

the percentage of MDR incidence that resulted from MDR transmission rather than MDR 

acquisition during prior treatment in the same individual. We computed these correlation 

coefficients among all plausible simulations for a medium-to-high-TB-burden country as 

described above, and, for each of the six representative countries shown in Table 2, among 

the subset of simulations that fell within that country’s WHO-reported uncertainty intervals 

for each of the four notification measures considered, as shown in Table 2. We also 

performed illustrative sensitivity analysis for the variation in a specific parameter (rate of 

TB diagnosis and treatment initiation) between individual countries, by restricting our set of 

simulations based on country-level estimates of that parameter and recalculating our primary 

result (see Supplementary material).

Then, in addition to the sensitivity analyses noted above related to time since MDR 

emergence and availability of second-line MDR treatment, we also considered the impacts 

of non-equilibrium TB epidemiology and of epidemic heterogeneity. To evaluate the impact 

of the declining overall TB incidence seen over the past decade in much of the world,1,26 we 

first reduced the TB reactivation rate linearly by 2% per year and determined the resulting 

percent of incident MDR-TB that resulted from transmission. We then repeated a similar 

analysis in which the declining overall TB incidence instead results from a 1%/year linear 

decrease in the TB transmission rate. Both of these scenarios approximately replicated the 

observed 1·5% annual decline in TB incidence that is currently estimated.1 Finally, we 

tested the sensitivity of our results to our assumption of population homogeneity by 

evaluating the impact of MDR hotspots on the fraction of MDR-TB that results from MDR 

transmission. For each homogeneous-model simulation, we increased the acquisition and 

transmission of resistance within a hotspot, and decreased those of the background 

population, by random amounts, calibrating the hotspot population size to achieve equal 

average MDR incidence in the heterogeneous and homogeneous populations (details in 

supplement, section 1c). All analyses were performed in R version 3·1·2.27
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Role of the funding source

The funding sources had no role in study design, in collection, analysis, or interpretation of 

data, in the writing of the report, or in the decision to submit for publication. The 

corresponding author had full access to all the data in the study and had final responsibility 

for the decision to submit for publication.

Ethical approval

This study did not involve human subjects and did not require ethics or IRB approval.

Results

Of the one million potential TB epidemics we simulated, 315,567 simulations had plausible 

TB incidence and prevalence for a medium-to-high burden setting and were retained for 

consideration. Figure 2 shows the estimated proportion of incident MDR-TB representing 

transmission of resistance rather than selection of resistance during previous treatment in 

each of those 315,567 “plausible” simulations (see also Figure S2). In the 15% of these 

plausible simulations in which fewer than half of MDR infections resulted from 

transmission, the ratio of MDR prevalence among retreatment versus new notifications was 

extraordinarily high (median 37, IQR 24–61). Among the remaining 85% of plausible 

simulations, the retreatment-to-new MDR prevalence ratio was 7 (IQR 4–12), similar to the 

reported median ratio of 6 (IQR 5–11) across WHO notifications in 2013 from all countries 

with TB incidence >40/100,000/year and >10 cases/year.28

In this transmission model, the global estimates of 3·5% (95% CI: 2·2–4·7%) MDR-TB 

prevalence among new TB notifications and 20·5% (95% CI: 13·6–27·5%) among 

retreatment notifications1 corresponded to a median 95·9% (95% UR: 68·0–99·6%) of all 

incident MDR-TB, and 61·3% (95% UR: 16·5–95·2%) of incident MDR-TB among 

previously treated individuals, resulting from MDR transmission (Figure 2, inset). When 

separate fits were generated for the notification data of representative individual countries 

(Table 2), the estimated percentage of incident MDR-TB that resulted from MDR 

transmission ranged from 48% in a setting (Bangladesh) where MDR prevalence is 

estimated to be far higher (15 times higher) among retreatment than among new TB cases, to 

>75% in multiple countries representing a range of TB and MDR prevalence and more 

typical ratios of MDR in retreatment versus new TB patients, and to 99% in a setting 

(Uzbekistan) with very high (23%) MDR prevalence among new TB cases. Among the 92 

medium- to high-burden countries whose notification data could be adequately fit, the 

median proportion of incident MDR estimated to arise from transmission rather than 

treatment-related acquisition was 92% (IQR 82–97% and full range 24% to >99% for 

individual countries’ median estimates) (Table S4).

Both before and after notification-data-based constraints were applied, the estimated 

contribution of transmission to MDR incidence was highly sensitive to the transmissibility 

of MDR strains (figure 3). Before applying notification-data constraints (figure 3A), 

parameter values that caused a shift in overall tuberculosis epidemiology to more recent 

transmission rather than reactivation (eg, a higher proportion of infections progressing 
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rapidly to active disease, or a slower reactivation rate) also increased the relative amount of 

transmitted versus treatment-acquired MDR TB. Once only simulations consistent with a 

given country’s notification data were considered (figure 3B), the proportion of MDR TB 

that resulted from MDR TB was also sensitive to the probability of acquiring resistance 

during treatment and to assumptions about the responsiveness of MDR infections to first-

line therapy.

Given the sensitivity of estimates to MDR strain fitness and to per-treatment probabilities of 

acquiring resistance, we re-evaluated our results after restricting our initial broad sampling 

ranges for these parameters in order to verify that our original estimates were not driven by 

inclusion of extreme parameter values. Data are sufficiently limited and variable that we 

considered the original ranges to better represent the uncertainty in our estimates, but a 

probability of acquired resistance 0·1%–2% per new-patient treatment28 and an MDR-TB 

transmissibility of 0·5–0·8 relative to DS-TB24 are supported by data. With these 

restrictions, the estimated percentages of incident MDR-TB reflecting MDR transmission in 

the global-average scenario were 94·4% (95% UR: 76·4–98·8%) when restricted by per-

treatment resistance acquisition, 96·2% (95% UR: 81·6–99·5%) when restricted by MDR 

strain fitness, and 94·9% (95% UR: 83·5–98·7%) when restricted by both, versus 95·8% 

(95% UR: 68·0%–99·6%) without the restrictions as above. Additional sensitivity analyses – 

(a) varying the time period over which MDR is assumed to emerge, (b) adding appropriate 

second-line treatment for up to half of MDR-TB patients, (c) reducing the TB reactivation or 

transmission rate in order to generate a declining epidemic, and (d) including a high-MDR-

TB-incidence “hotspot” on a background of lower incidence – each caused no more than 2% 

variation in the point estimate for the fraction of incident MDR-TB cases resulting from 

MDR transmission (see Figure S4).

Discussion

This population-based transmission model of MDR-TB epidemics, which aims to translate 

notification data into estimates of MDR transmission, suggests that current estimates of 

MDR-TB prevalence among TB notifications are most consistent with a hypothesis that over 

80% of incident MDR-TB in most present-day epidemic settings results from transmission 

of MDR-TB rather than selection of de novo resistance during previous treatment of the 

index case. To the extent that these notification data are accurate and our model is an 

adequate representation of TB transmission dynamics, these findings suggest that better 

treatment of drug-susceptible strains alone is unlikely to curb MDR-TB epidemics in most 

settings. Our estimates of MDR-TB transmission are robust to a wide array of sensitivity 

analyses and assumptions about the transmissibility of MDR strains, MDR-TB treatment 

practices, and TB natural history at the population level. These results should prompt further 

research to validate the findings of this model-based analysis and to improve these estimates 

by developing more accurate surveillance measures of drug resistance and by clarifying TB 

natural history and transmission-related parameters. A predominance of MDR transmission 

as the etiology of new MDR cases should motivate the global TB community to expand 

resource outlays and infrastructure for the rapid diagnosis and effective treatment of MDR-

TB.
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Although epidemiologic and molecular estimates of transmitted MDR-TB vary, a 

predominance of MDR transmission as suggested by our model has been observed in some 

clinical settings. Transmission in high-incidence urban settings can result in extensive 

MDR-TB strain clustering,29 and a large fraction of MDR isolates in a small country can 

even arise from transmission of a single strain.30 Molecular epidemiologic analyses have 

demonstrated transmitted MDR clusters even in previously treated patients whose initial 

infection was documented to be drug susceptible,16 and across wide geographic and 

temporal separation.31 Worldwide spread of MDR strains of the Beijing lineage has also 

been observed, and even when sampling is global and avoids bias from local outbreaks, 

clustering has been observed among 42% to 100% of MDR isolates within any single 

Beijing clonal complex.18 Other molecular epidemiologic studies have yielded much lower 

estimates of MDR clustering, 16,17 but genotypic clustering is an imperfect and lower-bound 

estimate of MDR transmission (especially when sampling coverage is incomplete and study 

duration is short). This principle is evidenced by the finding that even MDR-TB cases with 

no history of previous TB treatment – and thus no opportunity to acquire MDR in any way 

other than through transmission – did not belong to any identified cluster in many 

studies.32–34 The profound geographic heterogeneity of MDR-TB, particularly when 

observed within single jurisdictions and clinical catchment areas,35,36 is similarly consistent 

with high rates of ongoing MDR transmission. Settings (e.g. New York City,37 or more 

recently, Baltic states38) that have achieved rapid control of MDR are generally 

characterized by prioritization of MDR-TB detection and treatment. Importantly, of all 

notified TB patients worldwide who have MDR, over half have never before been treated,1 a 

finding that is also consistent with this analysis.

If, as our results suggest, most MDR-TB is the result of MDR transmission, then reducing 

transmission through early and effective treatment of MDR-TB is essential to preventing 

incident MDR-TB and controlling MDR-TB epidemics. Although treating a case of MDR-

TB costs five to ten times more than treatment of DS-TB,39 the cost-effectiveness and 

affordability of MDR-TB treatment should be reconsidered in light of the population-level 

impact of ongoing widespread MDR transmission. Despite the challenges of treating MDR-

TB, this analysis nevertheless offers hope that MDR-TB can be contained, as current MDR 

treatment coverage and MDR treatment outcomes both have much room for improvement 

through ongoing pharmacologic and programmatic innovations, whereas further improving 

DS-TB treatment outcomes on a population level is arguably more difficult.

Our model, which sought to translate estimates of notified MDR prevalence into the 

estimates of MDR transmission that are most consistent with current WHO notification data, 

is dependent upon the accuracy and precision of those data. To the extent that the quality of 

those data is variable or the WHO-reported confidence intervals are too narrow, so also are 

our model-based estimates of MDR transmission. These findings should motivate improved 

notification data – upon which updated and improved estimates of MDR transmission could 

be generated. In addition, our study has limitations common to model-based analyses. Our 

model’s assumptions, including population homogeneity, static TB treatment practices, and 

uniform transmissibility of MDR strains, necessarily simplify a complex reality. Although 

our sensitivity analyses suggest that these simplifying assumptions do not drive our primary 

results, our quantitative estimates may be inaccurate in settings where our model 
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formulation does not align with local TB epidemiology. For example, we did not explicitly 

incorporate HIV (though we calibrate our model to increased TB incidence in HIV-endemic 

countries); HIV may alter the balance of MDR acquisition versus transmission by increasing 

the probability of acquiring drug resistance,40 increasing the rate of progression to active TB 

after transmission events,41 increasing nosocomial MDR-TB transmission through 

clustering in healthcare settings,42 and increasing TB mortality (which may reduce MDR-

TB transmission). Our model also may not fit well to settings in which TB epidemiology 

and treatment practices are rapidly changing. Such settings may include those where MDR-

TB may be rapidly emerging as the result of poor treatment practices (e.g., Somalia43), or 

those where the DS-TB epidemic has been declining steeply since MDR-TB emerged (e.g., 

China44). Furthermore, we did not model specific historical circumstances in individual 

countries (e.g., prisons in the former Soviet Union) but rather aimed to create a generalizable 

platform for translation of notification data into estimates of MDR transmission. Future 

studies should evaluate the degree to which these findings hold in specific settings, 

especially those with rapidly changing MDR-TB epidemics or unique historical features that 

merit customized modeling efforts. We also assumed MDR to be a uniform entity and did 

not explicitly incorporate resistance profiles to individual drugs or transmission of 

monoresistant strains, although we capture their individual-level impact through poorer 

treatment outcomes including more frequent MDR acquisition for previously-treated DS-TB 

cases among whom single-drug-resistance is more prevalent. Relatedly, because our model 

considers the historical development of MDR epidemics before widespread second-line 

treatment, second-line drug resistant does not impact our model’s results and was not 

included, although second-line drug resistance has an important impact on the ability to treat 

MDR-TB using current standard second-line regimens. Finally, the probability of acquiring 

resistance during treatment was important in sensitivity analyses but has little supporting 

data to inform its value.28,45 Further studies of drug resistance acquisition during treatment 

could be helpful in this regard.

This mechanistic model of TB treatment and drug resistance suggests that existing 

notifications are most consistent with today’s MDR-TB epidemic being predominantly 

(>80%) an epidemic of MDR transmission. A preponderance of transmission is consistent 

with both observed MDR-TB epidemiology and historical successes in MDR-TB control. If, 

as our model suggests, only a small fraction of MDR-TB incidence results directly from 

previous treatment, then incremental improvements in DS-TB treatment are unlikely to bend 

the epidemic curve of MDR-TB in most settings. By contrast, expansion of MDR-TB 

treatment availability, along with improvement in MDR-TB treatment outcomes, has 

tremendous potential to limit the spread of MDR-TB in the future. If the current MDR-TB 

epidemic is to be controlled, expanding effective MDR-TB treatment while developing 

novel rapid drug susceptibility tests and more tolerable, less resource-intensive drug 

regimens for MDR-TB should be prioritized by the global public health community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Panel: Research in context

Evidence before this study

We performed a PubMed search, updated through September 15, 2015, for “((((selected 

OR acquired OR amplified) OR (primary OR transmit* OR index OR cluster)) and 

tuberculosis)) AND (resistan*[Title/Abstract] OR MDR*[Title/Abstract])”, and reviewed 

reference lists of relevant results for additional relevant citations.

Transmission of MDR-TB is recognized in some settings as a common reason for first-

line treatment failure,1 MDR outbreaks,2,3 and drug resistance among treatment-naïve 

individuals4 and children,5 but the much higher prevalence of MDR-TB in previously-

treated individuals than in new cases has been taken as informal and indirect evidence of 

low transmission levels. Molecular epidemiologic analyses of strain clustering often 

identify likely transmission relationships in only a minority of MDR-TB cases,6–11 but 

these methods have known biases that could greatly underestimate the proportion of 

incident MDR-TB that reflects transmission. Apart from these molecular epidemiologic 

analysis, we found no other estimates (model-based or otherwise) of how many MDR-TB 

cases among all or previously-treated TB patients are attributable to selection of 

resistance during that individual’s previous treatment versus MDR transmission.

Added value of this study

This mechanistic model of the etiology of incident MDR-TB translates estimates of 

MDR-TB prevalence based on notifications into estimates of the proportion of incident 

MDR-TB that reflects transmission of MDR strains. In providing such analysis calibrated 

to country-level and global epidemiology, we show that current notification data are most 

consistent with MDR transmission dominating in most settings.

Implications of all the available evidence

A predominance of MDR-TB transmission as the cause of new MDR-TB cases, even 

those that arise in individuals with a history of TB treatment, highlights the need for 

prevention of MDR-TB transmission as a focus of MDR-TB control efforts.
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Figure 1. Model structure
This simplified schematic of the model shows progression through stages of tuberculosis 

infection, disease, and treatment, and shows opportunities to develop drug-resistant (DR) 

tuberculosis (TB) via either acquisition or transmission of resistance. The arrows labeled as 

pathway “A” show how drug resistance in a previously treated case may result from prior 

treatment, and the arrows labeled as pathway “B” show how drug resistance in a previously 

treated case may result from transmission of resistance (with subsequent failure of the initial 

course of standard treatment). MDR-TB in a previously treated case, indicated by the box 

with a heavy outline, can result from either acquired (pathway A) or transmitted (pathway 

B) resistance.

Asterisks (*) indicate that transitions through these states, including possibilities for 

reinfection, proceed as for states of the same name to the left (denoted with daggers (†)). 

Not shown here, but also included in the model, are subdivisions into treatment-naïve and 

treatment-experienced compartments (with differing probabilities of each treatment 

outcome; see Figure S1), and death and spontaneous cure (either of which can occur from 

any active disease or treatment state).
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Figure 2. Converting multidrug-resistant tuberculosis (MDR-TB) notifications into estimated 
percentage of incident MDR-TB due to MDR transmission
Shown is the estimated percentage of incident MDR-TB reflecting MDR transmission 

(rather than acquisition during previous treatment in the same person) across all simulations 

(upper left) and within the estimated prevalence of MDR among notifications globally 

(namely, MDR prevalence of 2·2–4·7% among new TB notifications and four to eight times 

higher MDR prevalence among retreatment notifications (inset)). Current global 

notifications were most consistent with a vast majority of MDR-TB cases reflecting 

transmission (median 96%, 95% uncertainty range: 68–100%) (inset). Treatment-related 

acquisition of resistance was high only when the ratio of MDR prevalence in retreatment 

versus new notifications was extremely high (red and yellow dots). The same trends are 

illustrated in line graphs without a color scale in Figure S2.
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Figure 3. Partial rank correlation coefficients (PRCCs)
with the fraction of incident MDR-TB cases resulting from MDR transmission, after 

adjusting for other parameters. PRCCs were calculated both without notification constraints 

(Panel 1) and within the notification-based tolerance ranges for each of the representative 

countries shown in table 2 (Panel 2, mean and SD of PRCCs over six countries). Parameters 

that had either a PRCC > 0.2 across all models or a mean PRCC >0.2 across the six 

countries are shown in the figure.
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Table 1

Model parameters

Parameter Sampled range References and notes

Baseline mortality rate (year−1) 0·015–0·025 Life expectancy at age 15 = 
55–82

TB Transmission coefficient (annual secondary infections produced in a 
susceptible population, per active DS-TB case, [persons/year])

8–14 a Calibrated to target TB 
incidence range b

Relative transmissibility of MDR versus DS strain 0–1 Uninformative prior

Probability of acquiring resistance per new-patient treatment course 0·00025–0·1 a 28 b

Multiplier for probability of acquiring resistance, retreatment 1–10 a 45 b

Multiplier for probability of acquiring resistance, if failing treatment 1–4 a b

Additional mortality rate from active TB (year−1) 0·1–0·4 a 46 b

Spontaneous resolution rate of active TB (year−1) 0·08–0·32 a 6,46 b

Fraction of new TB infections progressing rapidly to active disease 0·04–0·18 47

Reduction in rapid progression if latently infected 0–0·86 47,48

Reactivation rate from latent to early-active TB (year−1) 0·0005–0·0020 a 48 –51 b

Rate of progression from early-active to clinical active TB (year−1) 0·7–2·8 a 52,53

TB diagnosis and treatment initiation rate (year−1) 0·5–2·0 a 54

Relative infectiousness and mortality of early-stage active TB 0·11–0·44 a 55 b

Relative infectiousness and mortality of TB on ineffective treatment 
(without appropriate bacteriologic response), versus no treatment

0–1 b

Relative mortality of TB on effective treatment, versus no treatment 0–0·2 1 b

Fraction of patients with initial bacteriologic response to first-line therapy 
(includes those who will relapse with or without acquired resistance):

 -treatment-naïve, DS-TB 0·97–1·00 1

 -treatment-experienced, DS-TB 0·88-[treatment-naïve rate] 1

 -MDR-TB 0–0·5 56 –58

Fraction of patients lost to follow-up from first-line therapy

 -Initial treatment 0–0·08 1

 -Retreatment [Initial treatment value]-0·16 1

Fraction of treatment-responsive patients who relapse after first-line 
therapy

 -Initial treatment, if no preexisting or acquired MDR 0·01–0·09 a 28,59

 -Retreatment, if no preexisting or acquired MDR 1–4x[initial-treatment fraction] a 45,59

 -Preexisting or acquired MDR-TB 0·6–1 57

Relapse probability multiplier if treatment not completed 1–9 a 28,59,60

Average time to relapse (years) 0·5–4·5 a 59

a
indicates parameter sampled from a uniform distribution on a logarithmic scale (i.e. from a truncated exponential distribution) as further described 

in SI; all others were sampled from uniform distributions on an arithmetic scale over the indicated range

b
Additional details about parameter estimation are provided in supplement, section 1b.2

Lancet Respir Med. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kendall et al. Page 21

T
ab

le
 2

M
od

el
 c

al
ib

ra
tio

n 
an

d 
es

tim
at

es
 o

f 
tr

an
sm

itt
ed

 M
D

R
-T

B
 f

or
 s

ix
 r

ep
re

se
nt

at
iv

e 
co

un
tr

ie
s 

w
ith

 d
is

pa
ra

te
 M

D
R

-T
B

 n
ot

if
ic

at
io

n 
da

ta

R
ep

re
se

nt
at

iv
e 

co
un

tr
y

B
an

gl
ad

es
h

E
th

io
pi

a
M

al
aw

i
P

er
u

P
hi

lip
pi

ne
s

U
zb

ek
is

ta
n

F
ea

tu
re

s 
of

 n
ot

if
ic

at
io

n 
da

ta
H

ig
h 

T
B

, m
od

er
at

e 
M

D
R

, v
er

y 
hi

gh
 r

at
io

M
od

er
at

e 
T

B
, 

m
od

er
at

e 
M

D
R

, 
m

od
er

at
e 

ra
tio

M
od

er
at

e 
T

B
, l

ow
 

M
D

R
, h

ig
h 

ra
tio

M
od

er
at

e 
T

B
, h

ig
h 

M
D

R
, m

od
er

at
e 

ra
tio

H
ig

h 
T

B
, m

od
er

at
e 

M
D

R
, m

od
er

at
e 

ra
tio

L
ow

 T
B

, v
er

y 
hi

gh
 

M
D

R
, l

ow
 r

at
io

T
B

 p
re

va
le

nc
e,

 p
er

 1
00

,0
00

 
W

H
O

*
40

2 
(2

10
–6

56
)

21
1 

(1
70

–2
57

)
13

5 
(6

7–
22

6)
12

4 
(1

10
–1

42
)

43
8 

(3
85

–4
95

)
12

0 
(6

1–
19

9)

 
M

od
el

*
35

5 
(2

59
–4

67
)

22
7 

(1
94

–2
68

)
20

7 
(1

68
–2

46
)

17
9 

(1
38

–2
34

)
44

1 
(3

83
–4

87
)

12
0 

(8
9–

15
0)

T
B

 in
ci

de
nc

e,
 p

er
 1

00
,0

00
/y

ea
r

 
W

H
O

22
4 

(1
19

–2
53

)
22

4 
(1

88
–2

76
)

15
6 

(1
52

–1
68

)
16

4 
(7

7–
28

3)
29

2 
(2

61
–3

31
)

80
 (

68
–9

7)

 
M

od
el

22
2 

(1
98

–2
49

)
20

1 
(1

64
–2

38
)

15
7 

(1
48

–1
65

)
12

1 
(1

08
–1

39
)

28
9 

(2
61

–3
19

)
80

 (
66

–9
3)

M
D

R
 a

m
on

g 
ne

w
 T

B
 c

as
es

, %

 
W

H
O

1.
4 

(0
.7

–2
.5

)
1.

6 
(0

.9
–2

.8
)

0.
4 

(0
.1

–1
.0

)
3.

9 
(3

.6
–4

.2
)

2.
0 

(1
.4

–2
.7

)
23

 (
18

–2
9)

 
M

od
el

1.
2 

(0
.3

–2
.1

)
1.

5 
(0

.5
–2

.4
)

0.
3 

(0
.1

–0
.8

)
3.

9 
(3

.6
–4

.2
)

2.
0 

(1
.3

–2
.6

)
27

 (
23

–3
1)

M
D

R
 r

at
io

: 
%

 a
m

on
g 

re
tr

ea
tm

en
t 

ca
se

s 
to

 %
 a

m
on

g 
ne

w
 c

as
es

 
W

H
O

20
.7

 (
17

.1
–2

4.
3)

7.
5 

(3
.5

–1
3.

1)
12

.0
 (

8.
0–

17
.3

)
9.

0 
(8

.5
–9

.5
)

10
.5

 (
8.

0–
14

.5
)

2.
7 

(2
.3

–3
.1

)

 
M

od
el

20
.5

 (
17

.4
–2

4.
4)

8.
1 

(5
.2

–1
3.

7)
12

.1
 (

8.
7–

17
.4

)
9.

0 
(8

.5
–9

.5
)

10
.1

 (
7.

7–
13

.4
)

3.
0 

(2
.7

–3
.4

)

M
od

el
 e

st
im

at
e 

of
 tr

an
sm

itt
ed

 M
D

R
 (

%
 o

f 
in

ci
de

nt
 M

D
R

 c
as

es
 (

95
%

 U
R

))
48

%
 (

30
–7

5%
)

92
%

 (
58

–9
9%

)
82

%
 (

56
–9

7%
)

95
%

 (
79

–1
00

%
)

76
%

 (
51

–9
8%

)
99

%
 (

91
–1

00
%

)

* W
H

O
 e

st
im

at
es

 a
re

 s
ho

w
n 

as
 r

ep
or

te
d 

po
in

t e
st

im
at

e 
(r

ep
or

te
d 

un
ce

rt
ai

nt
y 

in
te

rv
al

).
 M

od
el

 e
st

im
at

es
 a

re
 s

ho
w

n 
as

 th
e 

w
ei

gh
te

d 
m

ed
ia

n 
(9

5%
 u

nc
er

ta
in

ty
 r

an
ge

).

Lancet Respir Med. Author manuscript; available in PMC 2016 December 01.


