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Abstract: Malignant gliomas are heterogeneous neoplasms. Glioma stem-like cells (GSCs) are
undifferentiated and self-renewing cells that develop and maintain these tumors. These cells are
the main population that resist current therapies. Genomic and epigenomic analyses has identified
various molecular subtypes. Bone morphogenetic protein 4 (BMP4) reduces the number of GSCs
through differentiation and induction of apoptosis, thus increasing therapeutic sensitivity. However,
the short half-life of BMP4 impedes its clinical application. We previously reviewed BMP4 signaling
in central nervous system development and glioma tumorigenesis and its potential as a treatment
target in human gliomas. Recent advances in understanding both adult and pediatric malignant
gliomas highlight critical roles of BMP4 signaling pathways in the regulation of tumor biology,
and indicates its potential as a therapeutic molecule. Furthermore, significant progress has been
made on synthesizing BMP4 biocompatible delivery materials, which can bind to and markedly
extend BMP4 half-life. Here, we review current research associated with BMP4 in brain tumors,
with an emphasis on pediatric malignant gliomas. We also summarize BMP4 delivery strategies,
highlighting biocompatible BMP4 binding peptide amphiphile nanostructures as promising novel
delivery platforms for treatment of these devastating tumors.
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malignant glioma
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1. Introduction

Malignant gliomas are the most aggressive category of primary brain tumor [1]. Despite decades
of research, curing these tumors remains a challenge [2]. The incidence of malignant gliomas differs
by age. In adults (≥19 years), the average overall annual incidence is 8.82 per 100,000. In children
(<19 years), malignant gliomas include anaplastic astrocytoma, glioblastoma and diffuse intrinsic
pontine gliomas (DIPGs), with an average annual incidence of 3.48 per 100,000 [1]. Regardless of
age, patients with these devastating tumors have a poor clinical prognosis [3,4]. Radical surgical
resection followed by adjuvant radiotherapy and/or chemotherapy are standard treatments for these
tumors, however, tumor recurrence occurs in nearly all instances, primarily due to intrinsic or acquired
resistance to routinely used therapies [5]. Identifying novel therapeutic approaches to improve survival
in patients with these malignancies is imperative.

Data from the Central Brain Tumor Registry of the United States (CBTRUS) reveals differences
between adult and pediatric patients including tumor incidence and location [1]. Genomic and
epigenomic analyses have also shown significant differences between adult and pediatric tumors [6,7].
In adult high-grade gliomas (aHGGs), epidermal growth factor receptor (EGFR) is a commonly altered
receptor tyrosine kinase (RTK) and mosaic expression of platelet-derived growth factor receptor-α
(PDGFRA), platelet-derived growth factor α (PDGFA), fibroblast growth factor receptor 1(FGFR1),
fibroblast growth factor 1 (FGF1), NOTCH2, JAG1 (Jagged Canonical Notch Ligand 1) are common.
Additionally, IDH1 mutations have been identified in glioblastomas developed from WHO grade II/III
astrocytomas or oligodendrogliomas [8–11]. In pediatric high-grade gliomas (pHGGs), PDGFRA is
a more common RTK alteration and MYC and MYCN are frequently amplified [12]. Furthermore,
multiple hotspot histone mutations have been identified in pHGGs, but are rare in aHGG. These
histone mutations vary further between different pHGG tumor types. For instance, mutations in H3,
family 3A (H3F3A) and histone cluster 1, H3b (HIST1H3B), occur at lysine 27 (K27M) in ~80% of
DIPGs [13,14], a subset of pHGGs arising from the brainstem. Mutations on histone H3G34 (G34V/R)
are present in ~38% of hemispheric pHGGs [12]. In addition to histone mutations, TP53 and activin
receptor type 1 (ACVR1, also known as ALK2) mutations are frequent in DIPG [15–17], and chimeric
fusions involving the kinase domain of neurotrophic tyrosine kinase receptors are present in ~40% of
hemispheric pHGG [13].

Regardless of the aforementioned molecular differences between aHGGs and pHGGs, a small
population of glioma stem-like cells (GSCs) are considered a driving force for tumor growth
and recurrence, and tumor heterogeneity [18–21]. GSCs can initiate tumors that reproduce the
parental tumors’ cellular heterogeneity. GSCs also resist the cytotoxic effects of radiation and
chemotherapy [22–26]. These findings indicate that GSCs may be critical therapeutic targets.

Bone morphogenetic protein 4 (BMP4) can abolish cancer stem cell populations in human
cancers [27–32], including in malignant gliomas [33–37]. In a current phase I clinical trial
(NCT02869243) human recombinant BMP4 is being administered through intratumoral and interstitial
convection-enhanced delivery (CED) for adult glioblastoma treatment (https://clinicaltrials.gov/ct2/

show/NCT02869243). BMP4 signal pathways appear to play critical roles in the regulation of malignant
glioma tumor biology, further suggesting that it is a promising therapeutic molecule. However, to
fully elucidate BMP4 therapeutic potential, differential roles of BMP4 in tumor molecular subgroups
should be examined. In addition, to take advantage of this potential, novel biocompatible materials for
effective BMP4 binding and delivery are being synthesized. Preliminary unpublished results from
our laboratory showed that an innovative biocompatible peptide amphiphile nanostructure binds
BMP4 and markedly extends its half-life, an important factor for its clinical utility [38]. In this review,
we have discussed the recent discoveries elucidating the role of BMP4 signal pathways in malignant
gliomas and reviewed innovative biocompatible materials for BMP4 delivery and their prospects for
clinical applications.

https://clinicaltrials.gov/ct2/show/NCT02869243
https://clinicaltrials.gov/ct2/show/NCT02869243
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2. BMP4 Signal Pathways and Glioma Biology

BMP4 is a member of the TGF-β family. BMP4 signal pathways are critical in early embryonic
development, central nervous system (CNS) formation and development through regulation of
stemness and differentiation of neural stem cells (NSCs) [39,40]. In the subventricular zone of
the adult brain, BMP4 promotes NSC differentiation into astrocytes [41]. BMP4 directly binds to
BMPR1A, BMPR1B, and BMPRII, resulting in phosphorylation of cytosolic Smad (mothers against
decapentaplegic homolog) proteins. Smad proteins translocate to the cell nucleus, where they bring
about Smad-mediated gene expression as well as activation of MAPK (mitogen-activated protein
kinase) signaling as described [42]. Increasing evidence indicates that BMP4 signaling pathways are
relevant to human gliomas. However, the role of BMP4 signaling pathways varies between aHGGs
and pHGGs, due to differences in the molecular background. For example, a mutation in ACVR1, a
member of the BMPRI family, is more frequent in pHGGs, compared to aHGGs [12,15–17,37,43,44].
In light of the molecular background differences, BMP4 action needs to be interpreted with respect to
the distinct features of each tumor group.

3. BMP4 Signaling in Adult High-Grade Gliomas

HGGs are the most common solid CNS adult tumors. We analyzed the Data from The Cancer
Genome Analysis (TCGA) using the GlioVis data portal for visualization and analysis of brain tumor
expression datasets [45] (http://gliovis.bioinfo.cnio.es/). The results showed that low-grade gliomas
(LGG) express higher BMP4 levels and exhibit lower mortality rates than HGGs that express lower
levels of BMP4 (Figure 1). These results were consistent over multiple data sources [46,47], and suggest
that BMP4 can be a robust prognostic marker for adult gliomas. The results further suggest that
therapeutic targeting of BMP4 may be an effective strategy for treating aHGG.
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GSCs are considered a source for tumors and these cells are resistant to radiation and
chemotherapy [48,49]. One strategy to improve treatment outcomes for aHGG is to target GSCs
to improve tumor response to conventional therapies. Another strategy is to induce GSC differentiation,
resulting in a reduction of the tumorigenic cell population [50]. Treatment with BMPs, including
BMP4 provides an approach for inducing GSC differentiation. GSCs express BMP receptors, and
have a functional BMP4 signal pathway. The addition of exogenous BMP4 to GSCs enhances
SMAD phosphorylation and reduces GSC proliferation [41,51]. Furthermore, in response to BMP4,
CD133, a GSC marker, decreases, whereas GFAP, a marker for differentiated astrocytes, increases.
Treatment with exogenous BMP4 also decreases GSC tumorigenicity in vivo [51] and reduces tumor
cell proliferation [52]. These results, in total, suggest that BMP4 promotes GSC differentiation, and
may prove useful in treating HGGs [53]. BMP4 also reduces multidrug resistance in glioma cells and
suppresses glioblastoma invasiveness. Multidrug resistance is reduced through the inhibition of B-cell
lymphoma 2 (BCL-2) and glial cell derived neurotrophic factor (GDNF), while invasiveness is reduced
through increased E-cadherin and claudin expression [33].

With advances in biotechnology, including integrative application of high-throughput sequencing
such as single cell RNA-seq (scRNA-seq), 450K DNA methylation profiling, high-throughput m6A-seq,
and whole-genomic sequencing (WGS), it is possible to obtain precise molecular signatures, and
identify the diverse genetic and epigenetic programs that drive cancers such as gliomas. For example,
scRNA-seq reveals proneural, classic and mesenchymal GSC subtypes within individual tumors, thus
demonstrating intratumoral cellular heterogeneity [10,54,55]. Preliminary results from our laboratory
have indicated that these cell subtypes respond differently to BMP4 (Figure 2A). Proliferation of
mesenchymal subtype GSCs does not decrease following treatment with 100ng/ml BMP4 for 4 days.
In comparison, proliferation of proneural subtype GCSs does decrease under these conditions. This
may reflect different levels of endogenous BMP4 expression (Figure 2B). For instance, the mesenchymal
glioblastoma subtype expresses higher levels of BMP4 than proneural and classic GSC subtypes.
The pre-glioblastoma subtype within isocitrate dehydrogenase 1 (IDH1) mutant gliomas express
low BMP4 (Figure 2C) [56], in comparison to early progenitor-like and neuroblastic subtypes, and is
associated with a poor patient prognosis (Figure 2D) [54,57].
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Figure 2. BMP4 expression in adult glioblastoma subtypes, associated with patient outcome.
(A) Representative images show that mesenchymal stem cell (MSC) subtype M83 glioma stem-like
cells (GSCs) and proneural (PN) PN84 GSCs respond differentially to BMP4 treatment for 96 h, with
only PN84 GSCs showing decreased proliferation. (B–D) In silico TCGA data analysis with Gliovis
indicates that: BMP4 levels vary in adult glioblastoma subtypes (B); BMP4 expression varies in isocitrate
dehydrogenase 1 (IDH1) mutant early progenitor-like, neuroblastic and preglioblastoma cells (C) and
BMP4 level is associated with survival in patients with IDH1 mutant glioblastoma (D).
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4. BMP4 Signaling in Pediatric High-Grade Gliomas

Pediatric brain tumors are distinct from their adult counterparts in terms of epidemiology,
cellular origins, response to cytotoxic and radiation therapy and clinical outcomes. Recent wide-spread
genome-wide profiling that has been applied to pediatric brain tumors has provided full characterization
at the molecular genetic level. These large-scale analyses have revealed distinct tumor driving
events, gene expression profiles, mutation targets and mutation frequencies [7]. Accordingly, BMP4
involvement in pHGG biology warrants its own examination.

In silico analysis of data from dataset GEO: GSE73038 ([58] shows that BMP4 is differentially
expressed among histopathologically-defined pediatric CNS brain tumors (Figure 3, left panel),
including in pHGGs (Figure 3, right panel). DIPGs, pHGGs arising in the brainstem, are characterized
by an H3K27M mutation in either histone H3.1 or H3.3. H3.3 K27M mutations are also present in other
pHGGs from midline regions, including from areas such as the thalamus, cerebellum and spine [59].
While H3.1 K27M mutations are restricted to DIPG [60], they usually occur in conjunction with abnormal
signaling pathway activity including pathways associated with BMP4 [14–16,29,61]. Recurrent
somatic mutations involving ACVR1 have also been discovered in DIPGs [13,15,16]. Interestingly,
gain-of-function mutations in ACVR1 appear to be restricted to DIPGs with an H3.1 K27M of the
HIST1H3B gene, and are not present in DIPGs with H3.1 K27M mutation of the H3F3A gene. DIPGs
harboring ACVR1 mutations exhibit hyperactivation of BMP-ACVR1 signaling, which results in
elevation of phosphorylated SMAD1/5/9 and increased expression of BMP downstream response
genes [16]. DIPG patients whose tumor harbors an ACVR1 mutation show improved survival [13,17].
Therapeutic targeting of AVCR1 has beneficial anti-tumor effects in preclinical DIPG models [43].
However, the targeting effect is mutation domain dependent [43,44].
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pHGGs also display other histone mutations, for instance the histone H3G34 (G34V/R) mutation
is present in hemispheric pHGGs [12]. Preliminary unpublished results from our laboratory showed
increased phosphorylated SMAD1/5/9 and decreased multidrug resistance gene 1 (MDR1) expression,
in pediatric glioblastoma KNS42 cells harboring an H3F3A G34V mutation, following BMP4 treatment.
Decreasing MDR1 increases tumor cell sensitivity to cytotoxic therapies. Thus, the result with KNS42
cells indicates that, in addition to ACVR1 mutated H3.1 K27M DIPGs, other pHGGs may benefit from
BMP4 targeted therapy.



Cancers 2020, 12, 516 6 of 13

5. BMP4 Delivery Methods for Glioma Treatment

The BMP signaling pathway is a potential therapeutic target for treating gliomas. Therapeutic
applications of BMP4 for both adult and pediatric HGGs are based on its ability to induce differentiation
and apoptosis of GSCs and thus reduce this cell population. The mechanism for BMP differentiation
therapy involves driving GSCs into a post-mitotic state that limits tumor growth. However, there
are obstacles that must be overcome relative to BMP4 clinical treatment of malignant gliomas via
differentiation therapy [62,63]. For instance, autocrine BMP4 enhances tumor aggressiveness in IDH1
mutant gliomas [64]. It is possible that only certain subsets of GSCs, based on molecular characteristics,
are targetable in response to high doses of BMP4. Some cell subsets may show incomplete cell-cycle
arrest and/or tumor cell retention of growth-promoting DNA methylation patterns [63]. Further
investigation of cell molecular characteristics and differentiation needs to be done to help overcome
these obstacles. Another limiting factor for clinical application of BMP4 is its short half-life [65–67]. One
strategy for overcoming this limitation is the delivery of large doses of BMP4 via polymer beads [51].
Other delivery systems have been designed to overcome the short half-life of BMP4 and improve its
biomedical effects, including recent advances in the synthesis of biocompatible BMP4 binding materials.
The following discussion reviews delivery systems (Figure 4) and our innovative peptide amphiphile
nanostructures as an innovative BMP4 delivery platform (Figure 5).
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BMP4 plasmids are transduced into oncolytic virus to infect glioblastoma cells, which consequently
induces apoptosis and differentiation to improve the therapeutic outcome. (B) Human mesenchymal
stem cell (hMSC) based delivery. BMP4 is encapsulated into polymer nanoparticles (NP) and transfected
into human adipose MSCs, which sustainably release BMP4 to target glioblastoma cells. (C) BMP4
plasmids are transfected into human neural stem cells (NSCs). When these NSCs are co-cultured with
glioblastoma cells or injected into glioblastomas, BMP4 is produced and released to target tumor cells.
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binding to the fiber surface. (Figures provided by Dr. Samuel Stupp with permission for publication).

5.1. Viral Vector Based Delivery

Viral vectors have been used for high efficiency gene delivery, including for the production of
BMP4 in gliomas. An oncolytic vaccinia virus (VACV) expressing BMP4 was delivered both in vitro to
primary glioma cultures and in vivo intracranially to xenograft gliomas (Figure 4A). The results of the
in vitro study showed cytotoxic activity against GSCs and the in vivo study improved survival rates
in treated mice and reduced recurrence of glioma following VACV infection [68]. VACVs, however,
are associated with risks including neurodegeneration and demyelination, which limits their clinical
application for expressing BMP4 in gliomas [69].

5.2. Human Adipose-Derived Mesenchymal Stem Cell (hAMSC) Based Delivery

Because of their high glioma tropism, human adipose-derived mesenchymal stem cells (hAMSCs)
have been touted as a potential therapeutic delivery vehicle for glioma treatment. Though originally
derived from bone marrow, large amounts of MSCs can be isolated from adipose tissue, with
cells from either source relatively equivalent in treatment efficacy [70]. Furthermore, hAMSCs
can be altered with nanoparticles to be more effective than conventional polymers in delivering
BMP4 [70]. Nanoparticle-engineered hAMSCs expressing BMP4 cross the blood brain barrier, migrate
to and penetrate intracranial tumors, and extend survival. In vivo and in vitro studies showed
that hAMSC-BMP4 decreased migration and proliferation of GSCs while promoting differentiation
(Figure 4B). Additionally, mice bearing murine GBM experienced improved survival after treatment with
hAMSC-BMP4. Significantly, in vivo, hAMSCs maintain their multipotency and hAMSC malignant
transformation has not been observed, despite exposure to the GBM microenvironment [71]. However,
with the application of tumor growth factors, hAMSCs can transform into fibroblasts and potentially
contribute to tumor expansion [71,72]. Further, hAMSCs stop proliferating in vivo after a few days, so
that the effect of BMP4 from hAMSC production is limited [73].

5.3. Human Neural Stem Cell (hNSC) Based Delivery

To address deficiencies in the distribution of “free” oncolytic vectors, the use of virally transduced
human neural stem cells (hNSCs) has been proposed to treat gliomas. These cells would deliver
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conditionally replicating adenovirus (CRAd) (Figure 4C). NSCs have shown an intrinsic migratory
capacity towards brain tumors, though the mechanisms of this tropism are poorly understood [70,74].
Harnessing the homing ability of hNSCs in conjugation with BMP4 expression inhibits GSC growth
both in vivo and in vitro, likely via the Smad signaling pathway. In vivo, hNSC-BMP4 treatment is
effective in promoting GSC differentiation and apoptosis in xenograft gliomas, and improves the
survival of mice bearing these tumors [74].

5.4. Biocompatible Nanomaterial Based Delivery

Self-assembling materials such as peptide amphiphiles (PAs) have been a focus of medical
applications over the past two decades. PAs can be designed to self-assemble in cylindrical
nanostructures that resemble the structural characteristics of native extracellular matrix (ECM) fibers.
The molecular design of PAs allows for the incorporation of bioactive signals that will be displayed on
the surface of the self-assembled nanofibers creating opportunities for exciting novel therapies with
broad potential impact in regenerative medicine and cancer. Recently, Srikanth et al. [75] reported
that PA nanofibers displaying an IKVAV peptide signal could be used to treat GSCs. They showed
that this specific PA potentially increases immobilized β1-integrin at the GSC membrane, activating
integrin-linked kinase while inhibiting focal adhesion kinase (FAK), which consequently induces
apoptosis in GSCs. PA nanofibers can also be designed to display binding peptide sequences allowing
the nanofibers to bind and deliver specific proteins, nucleic acids, drugs and cells [76]. For example,
PA nanofibers as a delivery mechanism have been investigated to deliver BMP2. This particular PA
nanofiber displays a peptide sequence found through phage-display techniques with an affinity for
BMP2. The use of this binding nanofiber led to more efficient delivery and protein activity that resulted
in a ten-fold dose reduction of BMP2 required for successful spinal fusion in a rat model [77]. More
recently, Lee et al. [38] synthesized a novel sulfated glycopeptide nanostructure that has a binding
affinity for multiple proteins including BMP4 (Figure 5). Most importantly, these PA nanostructures are
biocompatible, thus they do not cause side effects while providing more efficient delivery to increase
therapeutic benefit.

6. Future Prospects

Here, we have summarized recent BMP4 associated progress in aHGG and pHGG. BMP4 treatment
could be a valuable adjunct to conventional therapies for these devastating tumors. However, BMP4
mediated differentiation therapies must be used in a patient-specific context since a subset of gliomas
do not differentiate in response to BMP4 [21,78,79]. To better predict therapeutic value, the roles of
BMP4 in subsets of aHGGs and pHGGs with specific molecular signatures should be further examined.
The means delivering BMP4 is also a key factor. We described current BMP4 delivery strategies and
proposed that biocompatible nanocarriers could be a novel highly efficient delivery platform. Further
studies need to develop PA nanostructures for brain tumor treatment via systemic administration.
These nanostructures must be designed to have high BMP4 affinity and to cross the blood-brain barrier.
We hope advanced nanotechnology based on self-assembling peptides will enhance BMP4 delivery
efficacy and lead to new therapeutic options that, in combination with conventional cytotoxic and/or
radiation therapy, will improve outcomes for patients with HGGs.
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