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Summary

 

Calcium ions represent universal second messengers within
neuronal cells integrating multiple cellular functions, such
as release of neurotransmitters, gene expression, prolif-
eration, excitability, and regulation of cell death or
apoptotic pathways. The magnitude, duration and shape
of stimulation-evoked intracellular calcium ([Ca

 

2+

 

]i) tran-
sients are determined by a complex interplay of mech-
anisms that modulate stimulation-evoked rises in [Ca

 

2+

 

]i
that occur with normal neuronal function. Disruption of
any of these mechanisms may have implications for
the function and health of peripheral neurones during
the aging process. This review focuses on the impact of
advancing age on the overall function of peripheral
adrenergic neurones and how these changes in function
may be linked to age-related changes in modulation of
[Ca

 

2+

 

]i regulation. The data in this review suggest that
normal aging in peripheral autonomic neurones is a subtle
process and does not always result in dramatic deterio-
ration in their function. We present studies that support
the idea that in order to maintain cell viability peripheral
neurones are able to compensate for an age-related decline
in the function of at least one of the neuronal calcium-
buffering systems, smooth endoplasmic reticulum calcium
ATPases, by increased function of other calcium-buffering
systems, namely, the mitochondria and plasmalemma
calcium extrusion. Increased mitochondrial calcium uptake

may represent a ‘weak point’ in cellular compensation as
this over time may contribute to cell death. In addition,
we present more recent studies on [Ca

 

2+

 

]i regulation in
the form of the modulation of release of calcium from
smooth endoplasmic reticulum calcium stores. These stud-
ies suggest that the contribution of the release of calcium
from smooth endoplasmic reticulum calcium stores is altered
with age through a combination of altered ryanodine
receptor levels and modulation of these receptors by
neuronal nitric oxide containing neurones.
Key words: age and calcium homeostasis; calcium buffer-
ing; superior cervical ganglion.

 

Introduction

 

Calcium is widely recognized as a universal second messenger

within neuronal cells and integrates multiple cellular functions.

These include release of neurotransmitters, gene expression,

proliferation, excitability and regulation of cell death or apoptotic

pathways (Malenka 

 

et al

 

., 1989; Choi, 1992; Berridge, 1995, 1998;

Clapham, 1995; Ginty, 1997; Wuytack 

 

et al

 

., 2002).

At rest, neurones maintain a large intracellular calcium

([Ca

 

2+

 

]i) concentration gradient between the extracellular milieu

and cytosol. In peripheral neurones, calcium signaling begins

with the opening of L and N and some R type calcium channels,

allowing calcium to flow from outside of the cell into the cytosol

(Kostyuk, 1989; Trouslard 

 

et al

 

., 1993; Vanterpool 

 

et al

 

., 2005).

Much of this signal is damped by calcium-buffering proteins.

However, calcium signaling initiated by calcium influx is sustained

by the rapid release of calcium from smooth endoplasmic reticulum

(SER) calcium stores. This process is known as calcium-induced

calcium release (CICR) and is mediated by calcium acting on

ryanodine receptor (RyR) channels (Belan 

 

et al

 

., 1993; Verkhratsky

& Shmigol, 1996; Usachev & Thayer, 1997, 1999a,b; Verkhratsky

& Petersen, 1998; Akita & Kuba, 2000).

Following a rapid rise in [Ca

 

2+

 

]i, and depending on the mag-

nitude of the [Ca

 

2+

 

]i transient, complex buffering systems that

include multiple calcium-buffering proteins, smooth endo-

plasmic reticulum calcium ATPases (SERCA), mitochondrial

calcium uptake, plasmalemma calcium ATPases (PMCA) and the

sodium–calcium exchanger (Na

 

+

 

/Ca

 

2+

 

), work together to reduce

[Ca

 

2+

 

]i from its peak levels, and restore [Ca

 

2+

 

]i back to resting

levels (Werth & Thayer, 1994; Buchholz 

 

et al

 

., 1996; Werth

 

et al

 

., 1996; Usachev & Thayer, 1999a; Pottorf 

 

et al

 

., 2000a,c,

2002; Wuytack 

 

et al

 

., 2002). In particular, the CICR process is

dependent on buffering by SERCA as this buffering not only
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participates in control of [Ca

 

2+

 

]i levels, but serves as a refilling

of endoplasmic reticulum calcium stores (Vanterpool 

 

et al

 

.,

2005). These complex processes are illustrated in Fig. 1(A).

Overall, the magnitude, duration, and shape of stimulation-

evoked [Ca

 

2+

 

]i transients are determined by a complex interplay

of mechanisms that increase, buffer, and return these transients

to resting levels. Disruption of any of these mechanisms may

have implications for the function and health of peripheral neu-

rones during the aging process. This review will focus on the

impact of advancing age on the overall function of peripheral

adrenergic neurones and how these changes in function may

be linked to age-related changes in modulation of [Ca

 

2+

 

]i levels.

In addition, other consequences of age-related alterations in

the modulation of [Ca

 

2+

 

]i in peripheral adrenergic neurones will

be addressed. Data from studies on peripheral sensory and

central neurones will also be incorporated into the discussion,

as these models lend insight into the function of adrenergic

neurones during the aging process.

 

Why are adrenergic nerves arising from the 
superior cervical ganglion an important study 
model?

 

The superior cervical ganglion (SCG) has been suggested to be

a peripheral neuroendocrine center because of the plethora of

tissues that receive adrenergic input from this source (Cardinali

 

et al

 

., 1981). The SCG has been shown to be an important

modulator of cardiac function that relays cardioregulatory

impulses from the central nervous system (CNS) to the SCG

axons terminating in the heart that release noradrenaline (NA)

Fig. 1 (A) Representation of mechanisms that 
modulate stimulation-evoked [Ca2+]i transients in 
peripheral adrenergic nerves. Depolarization 
increases [Ca2+]i by rapid calcium influx through 
voltage-gated calcium channels. Calcium is rapidly 
attenuated via calcium-binding proteins and the 
residual calcium signal acting on ryanodine 
receptors (RyR) evoke release of calcium from the 
endoplasmic reticulum known as calcium-induced 
calcium release (CICR). The elevation in [Ca2+]i 
is controlled by a dynamic interplay of 
buffering systems: (1) smooth endoplasmic 
reticulum calcium ATPases (SERCA) sequestration 
into the ER that serves to buffer and refill ER 
calcium stores thus maintaining the ability of the 
neurone to undergo repetitive CICR; (2) 
mitochondrial calcium uptake by a H+/Ca2+ 
uniporter; (3) removal of calcium via plasma 
membrane calcium ATPases (PMCA) pumps and 
the Na+/Ca2+ exchanger. Plum dotted lines 
represent calcium influx and release pathways that 
elevate [Ca2+]i. Light blue dashed lines represent 
calcium-buffering pathways that control increases 
in [Ca2+]i and restoration to resting levels.
(B) Model illustrating the hypothesis that 
advancing age in the absence of pathology, results 
in a subtle decline in the control of [Ca2+]i. 
Compensation by other control mechanisms may 
allow neurones to adapt to an age-related decline 
in control of [Ca2+]i. Specifically, this model 
illustrates the mechanisms that lead to elevated 
[Ca2+]i in aged peripheral adrenergic neurones. 
The rise in [Ca2+]i mediated via calcium influx and 
release from the SER is buffered by SERCA whose 
function declines with age (broken red line). 
In response to the decline in SERCA function 
mitochondria, PMCA and Na+/Ca2+ exchanger 
compensate (thick red solid lines) for the decline 
in SERCA function by increasing Ca2+ uptake and 
removal so as to preserve overall neuronal viability. 
In addition, the decline in SERCA function may 
possibly alter ER Ca2+ filling levels, which may have 
consequences for sustained CICR in senescent 
neurones.



 

Age and Ca

 

2+

 

 homeostasis in peripheral neurones, J. N. Buchholz 

 

et al.

 

© 2007 Loma Linda University
Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2007

 

287

 

and activate 

 

β

 

1 adrenergic receptors causing strengthening

of the heart contractions (Wingerd 

 

et al

 

., 2004). In addition,

altered adrenergic innervation to the heart has been implicated

in sudden cardiac death following myocardial infarction (Chen

 

et al

 

., 2001). Furthermore, the maintenance of neuronal

numbers in the SCG by trophic factors such as nerve growth

factor (NGF) is necessary to ensure proper function of the target

tissues innervated by the SCG. For example, the levels of NGF

decline with advancing age, however, the trophic response of

perivascular sympathetic nerves to NGF is preserved (Isaacson

& Crutcher, 1998; Dickason & Isaacson, 2002). Thus, the

response to NGF during the aging process may have implica-

tions for the function of target organs innervated by the SCG

(reviewed by Cowen & Gavazzi, 1998). Overall, the evidence in

terms of normal aging argues that peripheral neurones attempt

to maintain homeostasis and can respond to trophic influences

later in life.

In the rat cerebrovasculature, adrenergic and sensory inner-

vation is fully developed within the first 30 days of life (Tsai

 

et al

 

., 1989). Specifically, in the cerebrovasculature adrenergic

innervation influences the development of cerebral blood vessels

and their motor function, as their presence is necessary for angio-

genesis and the modulation of contractile function. For example,

in rabbits aged 3–20 weeks, removal of the SCG results in loss

of vascular smooth muscle mass, reduced wall thickness and

attenuated contractility (Bevan & Tsuru, 1981).

In addition to the cardiovascular regulatory effects of the

SCG, it also plays a role in protecting the cerebrovasculature

from stroke. Hemorrhagic stroke accounts for about 10% of

cerebrovascular disease with a peak incidence near the age of

60 years and high probability of morbidity or mortality. Risk

factors for stroke include age-related hypertension and changes

in the structure of cerebral blood vessels (Abbott 

 

et al

 

., 2003;

Zhang 

 

et al

 

., 2003; Lawes 

 

et al

 

., 2004). Numerous mechanisms

contribute to regulation of cerebral blood flow and modulate

blood vessel wall tension (Faraci & Heistad, 1998; Zhang 

 

et al

 

.,

2003). Spontaneous constriction of blood vessels in response

to increased blood pressure from 60 to 140 mmHg is called

myogenic tone or autoregulation, which reduces wall tension

and risk of blood vessel rupture. At systolic pressures, above

140 mmHg myogenic response alone can no longer control wall

tension, and activation of adrenergic nerves arising from the

SCG provides additional constrictor response to protect the

cerebrovasculature from ruptured blood vessels (Van Riper &

Bevan, 1991; Faraci & Heisted, 1998; Furuichi 

 

et al

 

., 1999).

More recent studies on how neural input regulates cerebrovas-

cular tone and blood flow have resulted in the rediscovery of

the ‘neurovascular unit’. These studies suggest that the combi-

nation of neuronal input into smooth muscle and the inherent

contractile properties of smooth muscle provide for the opti-

mum function of cerebral blood vessels (reviewed by Hamel,

2006). Given that adrenergic nerves arising from the SCG inner-

vate numerous organs including the cerebrovasculature and the

importance of their homeostatic modulatory function, our group

has chosen to focus our aging studies on this neuronal model.

 

Overview of aging and calcium regulation in 
neurones

 

Aging in all creatures is inexorable and has been suggested to

be a combination of developmental changes, genetic defects,

environmental influences, and an inborn genetic aging process

(Harman, 1998; Guarente & Kenyon, 2000; Clancy 

 

et al

 

., 2001;

Tatar 

 

et al

 

., 2001; Troen, 2003). These studies suggest that basic

metabolism and ability to control accumulation of oxidants as

well as genetic control pathways are involved in the aging process.

For example, caloric restriction prolongs lifespan and reduces

age-related morbidity and organ pathology (Bodkin 

 

et al

 

., 2003;

Forster 

 

et al

 

., 2003). Overall, studies on caloric restriction, reduced

oxidative stress, and lifespan render little explanation of age-

related changes in the function of critical organ and neuronal

systems, and little is known about the vulnerability of particular

physiological processes to advancing age.

Given that calcium acts as a universal second messenger in

neurones, subtle age-related declines in mechanisms that

modulate stimulation-evoked increases in [Ca

 

2+

 

]i have been

hypothesized to contribute to age-related neuronal dysfunction

and degeneration (Kirischuk & Verkhratsky, 1996; Verkhratsky

& Toescu, 1998). In particular, one potential mechanism of

calcium-mediated cell death suggests that calcium overload results

in mitochondrial dysfunction leading to mitochondrial calcium

overload and activation of caspases that mediate cell apoptosis

(Ichas & Mazat, 1998; Thibault 

 

et al

 

., 1998; Begley 

 

et al

 

., 1999).

An important issue in aging studies is a tendency to assume a

general age-related deterioration of calcium regulatory processes

leading to increased susceptibility to pathology and cell death

(Porter 

 

et al

 

., 1997). This assumption does not take into account

compensatory mechanisms that serve to regulate [Ca

 

2+

 

]i homeo-

stasis, thus maintaining some degree of neuronal function in

senescent neurones or during acute insults such as stroke

(Murchinson & Griffith, 1998; Verkhratsky & Toescu, 1998; Lee

 

et al

 

., 1999; Griffith 

 

et al

 

., 2000; Pottorf 

 

et al

 

., 2000a, 2002).

Studying normal aging uncomplicated by disease holds the most

promise in trying to understand the aging process under normal

circumstances.

 

Aging and alterations in control of 
neurotransmitter release in adrenergic 
neurones: multiple mechanisms

 

The risk of stroke increases with age, and the single most impor-

tant factor is rising systolic blood pressure (Faraci & Heisted,

1998; Abbott 

 

et al

 

., 2003; Zhang 

 

et al

 

., 2003; Lawes 

 

et al

 

.,

2004). Systolic blood pressure rises in both F344-Rats and in

humans and is associated with increased plasma catecholamine

levels suggesting that there is a fundamental age-related change

in the function of peripheral adrenergic nerves (Palmer 

 

et al

 

.,

1978; Esler 

 

et al

 

., 1981; Barnes 

 

et al

 

., 1982; Yu 

 

et al

 

., 1985;

Insel, 1993). This concept is supported by studies showing that

stimulation-evoked fractional NA release increases with age in

arteries studied 

 

in vitro

 

. These include the rat tail artery and
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superior mesenteric artery (Buchholz & Duckles, 1990; Buchholz

 

et al

 

., 1998). In addition, we have shown that the age-related

increase in NA release is not dependent on any particular stimu-

lation frequency as the increase occurs over a wide range of

frequencies (Tsai 

 

et al

 

., 1995). The change in function of vas-

cular adrenergic neurones may be explained by multiple mech-

anisms. For example, changes in density of adrenergic neurones,

NA content, re-uptake, function of prejunctional inhibitory

 

α

 

2

 

-autoreceptors, and calcium regulation (Pottorf 

 

et al

 

., 2000b).

Furthermore, additional complicating factors must also be

addressed. Our studies and others have shown that the SCG

(Dun 

 

et al

 

., 1995; Wu 

 

et al

 

., 1997) and the cerebral vasculature

contain adrenergic and neuronal nitric oxide (nNOS) containing

nerves; NO released from nNOS neurones augments stimulation-

evoked NA release in both blood vessels and the CNS (Montague

 

et al

 

., 1994; Yamamoto 

 

et al

 

., 1997; Zhang 

 

et al

 

., 1998; Lee

 

et al

 

., 2000; Mbaku 

 

et al

 

., 2000, 2003). Facilitation of the func-

tion of adrenergic nerves via nNOS nerves may occur through

enhancement of Ca

 

2+

 

 influx and/or Ca

 

2+

 

 release from internal

stores. These mechanisms may also be altered with age and is

the subject of early ongoing studies in our laboratory.

 

NA content and adrenergic density in the periphery

 

The content of NA in peripheral organs and blood vessels has

been used as an index of adrenergic density. In the rat heart,

NA content decreases with age (Martinez 

 

et al

 

., 1981; Dawson

& Meldrum, 1992) while in blood vessels the story is much less

clear. For example, NA content in rat arteries (renal, femoral,

and saphenous) increases with age, while in veins (renal, femoral,

and saphenous) there is no change, and a decline in tail arteries

(Handa & Duckles, 1987). Consistent with NA content in rat

arteries, catecholamine histofluorescence, another measure of

adrenergic nerve density, increases with age in rat superior

mesenteric and renal arteries and portal vein (Mione 

 

et al

 

., 1988).

In contrast, spinal cord blood vessels show no age related

change in adrenergic nerve density (Amenta 

 

et al

 

., 1990). In

another study in the internal carotid artery, sympathetic inner-

vation declines with age. However, after intracerebral infusion

of NGF, the number of sympathetic axons increases in aged

animals (Isaacson & Crutcher, 1998). In a follow-up to this study

using internal carotid and anterior cerebral arteries as models,

NA content and numbers of tyrosine hydroxylase containing

nerve fibres decline with age. However, after infusion of NGF,

NA content and the number of tyrosine hydroxylase-containing

neurones significantly increased in old animals (Dickason &

Isaacson, 2002). These studies would suggest that there is an

innate age-related ability to maintain a critical number of func-

tioning sympathetic neurones. The NGF studies cited above

offer some interesting possibilities with regards to therapeutic

interventions in terms of maintaining cardiovascular homeostasis

with advancing age. In light of these studies, there appears

to be no clear relationship between age-related changes in

adrenergic nerve density, increases in circulating plasma NA

levels reported by others and increased stimulation-evoked

NA release in our earlier studies. Thus, age-related changes in

NA content may be species or vascular bed dependent.

 

Transmitter uptake and function of inhibitory 
prejunctional αααα

 

2

 

-adrenoceptors

 

Modulation of NA concentration in the synaptic cleft is medi-

ated by a combination of re-uptake and activation of prejunc-

tional 

 

α

 

2

 

-adrenceptors. The latter mechanism has been shown

to attenuate NA release by decreasing stimulation-evoked calcium

influx in adrenergic neurones (Schofield, 1990; Delcour & Tsien,

1993). Both mechanisms are critical to controlling the biophase

concentrations of NA with ongoing moment-to-moment vascular

adrenergic nerve activity (Illes, 1986; Langer & Rbilla, 1990;

Buchholz 

 

et al

 

., 1992; Insel, 1993; Esler 

 

et al

 

., 1995).

The effect of chemical agents such as cocaine and deoxycor-

ticosterone that block the neuronal and extraneuronal uptake

of NA, respectively, is reduced with age in the atria and vas def-

erens in the pithed rat (Borton & Docherty, 1989; De Avellar

 

et al

 

., 1990). These studies suggest that NA uptake declines

with age in peripheral adrenergic nerves. Contrasting studies

using direct measurement of 

 

3

 

H-NA uptake support the idea

that the function of NA uptake transporters does not change with

age in peripheral adrenergic nerves (Duckles 

 

et al

 

., 1985). In

addition, in the rat heart (Limas, 1975) and tail artery (Buchholz

& Duckles, 1990) the effect of cocaine and deoxycoricosterone

on NA uptake increased with advancing age. These contrasting

studies appear to be difficult to reconcile. However, in the tail

artery model, when release of NA in the presence of uptake

blockers was corrected for total NA release in the absence of

uptake blockers, no change with age was observed (Buchholz

& Duckles, 1990). These data suggest that the age-related

change in the effectiveness of uptake blockers on NA may

reflect the age-related differences in NA concentrations within

the junctional cleft of the model under study. In light of the

latter approach, overall the data would suggest that NA uptake

with advancing age remains as a constant fraction of the

amount of NA released.

Taken together, direct measurement of NA uptake and effect

of uptake blockers, an age-related increase in stimulation-

evoked fractional NA release in peripheral adrenergic nerves is

not explained by an age-related change in the function of

NA transporters. Thus, age-related changes in NA release may

possibly be explained by other mechanisms such as presynaptic

inhibition.

Studies measuring NA overflow have shown an age-related

decline in the effect of prejunctional 

 

α

 

2

 

-adrenoceptor antago-

nists in pithed rats, rat vas deferens and heart and tail artery

(Hyland & Docherty, 1985; Docherty & Hyland, 1986; Daly et al.,
1989; Buchholz & Duckles, 1990; Buchholz et al., 1992). These

studies appear to support the idea of a general age-related

decline in the function of feedback prejunctional α2-adrenoceptors.

However, we have found that while the sensitivity of the

prejunctional α2-adrenoceptors to the antagonist, idazoxan,

declined with advancing age, there appears to be no age-related
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difference in the maximal response to this drug (Buchholz et al.,
1992). Given that fractional stimulation-evoked NA release

increases with age, there would be more NA to interact with

the α2-adrenoceptor and increased competition between higher

NA levels and an antagonist. This chemical competition may

possibly reduce the apparent sensitivity of the applied antagonist

and account for the decrease in the potency of α2-adrenoceptor

antagonists with age (Pottorf et al., 2000b). Overall, in light

of others and our studies cited above, it is difficult to explain

age-related alterations in NA release in terms of age-related

alterations in the function of NA uptake mechanisms or

α2-adrenoceptor function. Therefore, we looked at other

mechanisms that may account for age-related changes in

adrenergic nerve activity. These included further studies on

stimulation-evoked NA release with altered extracellular

calcium, calcium influx and altered calcium buffering capacity.

Effects of altering extracellular calcium, role of calcium 
influx and altering buffering capacity on function of 
peripheral adrenergic nerves

In light of the studies on the tail artery model cited above, our

attention was directed toward the possibility that age-related

changes in stimulation-evoked NA release is possibly due to

changes in calcium regulation in the nerve endings. We carried

out experiments to examine the effects of increased or lowered

extracellular calcium on stimulation-evoked NA release in tail

arteries of young and old rats (Buchholz et al., 1994). Stimulation-

evoked fractional NA release in tail arteries from old animals

was found to be more sensitive to an increase and less sensitive

to a decrease in extracellular calcium as compared to young

animals. The explanation for these results is complex and may be

attributable to altered calcium influx, buffering capacity, or

sensitivity of the NA release mechanisms to stimulation-evoked

increases in [Ca2+]i. Thus, in another study, we measured NA

release from rat tail arteries via transmural nerve stimulation or

KCl. Under both conditions, NA release was greater in tail arteries

from old as compared to young animals (Tsai et al., 1997).

These data could be explained in part by an age-related increase

in calcium influx with age. However, other reports of the impact

of age on calcium influx are mixed. Calcium influx has been

reported to increase with age in central neurones (Landfield &

Pitler, 1984; Pitler & Landfield, 1990), to decrease in peripheral

neurones (Kostyuk et al., 1993), or to remain unchanged in

central neurones (Murchinson & Griffith, 1996). Therefore, in

another experiment, we bypassed voltage-gated calcium chan-

nels using the calcium ionophore, ionomycin, and found that

the age-related increase in NA release persisted (Tsai et al.,
1997). While stimulation-evoked calcium influx may possibly

increase with age in the tail artery model, from the latter experi-

ments we would also argue that other mechanisms such as

[Ca2+]i buffering and/or alterations in the sensitivity of the NA

release mechanisms may also change with age.

We tested the hypothesis that an age-related alteration in [Ca2+]i

buffering may play a partial role in the increase in NA release

from tail arteries (Tsai et al., 1997). The addition of the [Ca2+]i

chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic

acid (BAPTA) decreased stimulation-evoked NA release to a

greater extent in old arteries as compared to young, suggesting

that age-related changes in NA release is in part due to altered

calcium-buffering capacity. Overall, the age-related changes in

the function of peripheral adrenergic neurones in terms of NA

release appears to be at least due in part to altered [Ca2+]i

handling mechanisms. However, altered sensitivity of the NA

release mechanisms has not been ruled out.

Alterations in neuronal calcium buffering and 
extrusion during aging in peripheral neurones

The introduction of cell permeant fluorometric calcium indicator

dyes such as Fura-2, allowed for the measurement of real-time

changes in [Ca2+]i in living cells (Tsien et al., 1985; Roe et al.,
1990; Thayer & Miller, 1990; Neher, 1995). Microfluorometry

coupled with calcium sensitive dyes allows investigators to

measure the impact of advancing age on the mechanisms that

modulate stimulation-evoked [Ca2+]i transients and overall calcium

homeostasis (Kirischuk et al., 1992; Kirischuk & Verkhratsky,

1996; Neher, 1998; Baylor & Hollingworth, 2000; Pottorf et al.,
2002).

Each component of the [Ca2+]i buffering and extrusion system

participates in controlling the shape and duration of stimulation-

evoked [Ca2+]i transients (Fig. 1A). An age-related alteration

in any one or a combination of the components of this

[Ca2+]i control system may alter the function of neurones and

or contribute to neuronal degeneration (Meldrum & Garthwait,

1990; Peterson, 1992; Verkhratsky et al., 1994; Pottorf et al.,
2000b, 2002). Given the complex interplay between numerous

buffering systems to control [Ca2+]i transients, declining func-

tion of one or more systems may be compensated for by

increased function of other mechanisms (Pottorf et al., 2000b).

Age-related decline in SERCA function in peripheral 
neurones

Active transport of calcium into the SER is mediated by SERCA

and an age-related decline in their function has been suggested

to contribute to calcium dysregulation in peripheral sympathetic

and sensory neurones (Kirischuk et al., 1992; Kirischuk &

Verkhratsky, 1996; Pottorf et al., 2002). In addition, a decline

in SERCA function with age may have greater consequences.

For example, SERCA buffer [Ca2+]i transients and load the SER

calcium stores, thus, an age-related decline in their function may

possibly cause alterations in CICR from the SER (Murchinson &

Griffith, 1999; Usachev & Thayer, 1999a).

In our studies in adrenergic nerve endings in tail arteries, the

SERCA blocker, thapsigargin, increased stimulation-evoked NA

release in young arteries with no change in arteries from old

animals (Tsai et al., 1998). In isolated SCG cells the SERCA

blocker cyclopiazonic acid or thapsigargin caused a decline in

the rate of recovery of high K+-evoked [Ca2+]i transients only in
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cells from young animals with no significant change in old cells

(Tsai et al., 1998). In another study using SCG cells, we blocked

the contribution of PMCA’s, mitochondrial calcium uptake, and

the Na+/Ca2+ exchanger in controlling high K+-evoked [Ca2+]i

transients. Under these conditions, the neurones are required

to rely on SERCA to modulate the rate of recovery of high K+-

evoked transients, and clearly the rate of recovery was slower

in old as compared to young SCG neurones (Pottorf et al.,
2000c). Overall, one mechanism that may account for an age-

related decline in [Ca2+]i homeostasis in peripheral neurones is

a decline in SERCA function. A reasonable explanation for a

decline in SERCA function is that there is a decline in the genetic

expression of SERCA isoforms and this has been shown in

cardiac tissue (Maciel et al., 1990). However, in skeletal muscle

and myocardium SERCA-mediated 45Ca2+ uptake declines with age

while SERCA protein levels remain stable. These data suggest

that the change in function of SERCAs is possibly mediated by

a decline in their modulation by mechanisms such as phospho-

rylation, as opposed to a decline in protein levels per se. (Gafni

& Yuh, 1989; Xu & Narayanan, 1998). Further studies are

necessary to determine the mechanisms that account for why

SERCA function is altered with age.

Aging and mitochondrial calcium uptake in peripheral 
neurones

Mitochondrial calcium uptake has been shown to be a robust

mechanism in the control and shaping of [Ca2+]i transients in

peripheral and central neurones (Thayer & Miller, 1990; Buchholz

et al., 1996; Murchinson & Griffith, 1999; Colegrove et al., 2000).

In addition, it has been suggested that an age-related decline

in mitochondrial function may be a mechanism that promotes

cellular aging (Duckles et al., 2006). As mitochondria participate

in calcium buffering, if there is a decrease in mitochondrial func-

tion with age, or if there is an increased reliance on mitochon-

dria to control [Ca2+]i levels, both conditions may possibly result

in disruption of mitochondrial function due to calcium overload

and apoptosis. There are studies in central neurones supporting

an age-related decline in mitochondrial calcium uptake (Vitorica

& Satrustegui, 1985; Villalba et al., 1995; Satrustegui et al., 1996).

However, our studies in isolated SCG neurones and adrenergic

nerve endings suggest that mitochondrial calcium uptake in

peripheral neurones may be preserved with age. For example,

when SCG neurones are exposed to dinitrophenol to block

mitochondrial calcium uptake, peak, and rate of rise of high K+-

evoked [Ca2+]i were only increased in neurones from old animals

with no significant effect in young neurones (Buchholz et al.,
1996). Similarly, in adrenergic nerve endings in tail arteries,

dinitrophenol increased stimulation-evoked NA release in arteries

from old animals with no significant effect in young arteries (Tsai

et al., 1995). In another study, we blocked PMCA, SERCA, and

the Na+/Ca2+ exchanger in SCG neurones to cause the neurones

to rely primarily on mitochondrial calcium uptake to regulate

[Ca2+]i transients. The results showed that the capacity of mito-

chondrial calcium uptake did not change with age (Pottorf et al.,

2000a). What is most interesting about these studies is that

when multiple calcium modulatory systems are blocked, mito-

chondria are still capable of controlling [Ca2+]i transients in SCG

neurones and appear to be preserved with age. This increased

reliance on mitochondria to control [Ca2+]i may place an added

stress on aged neurones. For example, in brain slices from mice,

mitochondrial depolarization as an index of mitochondrial cal-

cium uptake in response to high K+-evoked [Ca2+]i transients,

occurs in both young and old mice. However, in the old animals

the rate of mitochondrial repolarization is slower that corre-

sponded to slowed recovery of high K+-evoked [Ca2+]i transients

(Xiong et al., 2002). Thus, in the case of high neuronal activity

in CNS neurones, the ability of the mitochondria to sustain its

buffering of repeated [Ca2+]i transients may be compromised.

The studies cited above are consistent with other studies in

CNS neurones suggesting that mitochondrial calcium uptake is

essential in the modulation of [Ca2+]i transients with advancing

age (Murchinson & Griffith, 1998, 1999). In a more recent review

on CNS neurones, it has been suggested that as more stress is

placed on the mitochondria to control stimulation-evoked

increases in [Ca2+]i the ‘polarization state’ of the mitochondria

may subtly decline over the lifespan (Toescu, 2005). This would

in turn lead to a gradual decline in function of the mitochondria

in terms of controlling [Ca2+]i and possibly maintaining energy

status of the cell. Overall, the cited studies argue that mito-

chondrial calcium uptake may become more central to control-

ling [Ca2+]i transients in neurones with advancing age. In

addition, maintaining mitochondrial function with improved

diet and exercise as we age is emerging as an important topic

in relation to cellular aging (Duckles et al., 2006).

Aging and function of plasma membrane calcium 
transport systems

The PMCA and Na+/Ca2+ exchange systems are two plasma

membrane calcium-pumping mechanisms in peripheral and

central neurones that play an important role in buffering [Ca2+]i

transients via extrusion of calcium from the cytosol (Werth et al.,
1996; Blaustein & Lederer, 1999; Pottorf & Thayer, 2002;

Pottorf et al., 2006). Blockade of SERCA and prolonged calcium

transients have been shown to induce PMCA gene expression

and accelerate the function of PMCA via increased interaction

of calmodulin with PMCA (Kuo et al., 1997; Pottorf & Thayer,

2002). These data suggest that components of the calcium buff-

ering systems can compensate for a reduction in function of

one component or in the case of prolonged [Ca2+]i transients.

Indeed, in the failing myocardium, the Na+/Ca2+ exchanger levels

increase as SERCA levels decline (Hasenfuss et al., 1991).

Our studies in isolated SCG neurones support the notion that

multiple components of the calcium buffering systems can com-

pensate for a loss of SERCA function. Indeed, we have found

that SCG neurones become more reliant on mitochondria to

control [Ca2+]i transients. When SERCA and mitochondrial

calcium uptake were blocked in SCG neurones, the PMCA

and Na+/Ca2+ exchanger are required to control high K+-evoked
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[Ca2+]i transients. Under these experimental conditions, SCG

neurones from both young and old animals were able to fully

recover from high K+-evoked [Ca2+]i transients (Tsai et al., 1998).

These data suggest that in peripheral adrenergic neurones

plasma membrane calcium extrusion systems can by themselves

control [Ca2+]i and their function is maintained with advancing

age. In support of this study, we used vanadate, which at low

concentrations (0.25 µM) blocks PMCA function but does not

significantly affect SERCA function. Under these conditions, the

rate of recovery was diminished to a greater extent in SCG neu-

rones from old as compared to young animals (Pottorf et al.,
2000a). These data suggest that PMCA function may increase

with advancing age as SERCA function declines. Although PMCA

function has been reported to decline with age in synaptosomes

derived from neurones in the CNS (Qin et al., 1998), our studies

suggest that during normal aging PMCA function in peripheral

adrenergic neurones is maintained with age.

Model for age-related changes in [Ca2+]i regulation in 
peripheral adrenergic neurones

One hypothesis suggested by numerous researchers is that

advancing age leads to [Ca2+]i dysregulation and neuronal loss

(Choi, 1992; Kirischuk & Verkhratsky, 1996; Ichas & Mazat,

1998; Thibault et al., 1998; Begley et al., 1999). However, this

hypothesis may apply more to pathological conditions as

opposed to normal aging. Thus, in light of our studies of peri-

pheral adrenergic neurones we pose another hypothesis. That

is advancing age in the absence of pathology results in subtle

changes in the control of [Ca2+]i that may lead to altered neu-

ronal function, and that other [Ca2+]i control mechanisms may

allow neurones to adapt to an age-related decline in the control

of [Ca2+]i. This model is summarized in Fig. 1(B) and emphasizes

that loss of SERCA function may be compensated for by increased

buffering by mitochondria and plasma membrane calcium

extrusion so as to preserve some degree of cell viability in the

face of advancing age.

Consequences of age-related decline in SERCA 
Function in peripheral adrenergic neurones: 
CICR

The function of neurones depends in part on the release of

calcium from the SER in response to an elevation in [Ca2+]i

mediated by voltage-gated Ca2+ channels (Usachev & Thayer, 1997,

1999a,b). This process has been termed CICR and is relevant

in processes such as release of neurotransmitters and hormones.

To sustain calcium release during neuronal activity requires

refilling of the SER calcium through calcium influx and subsequent

uptake into the SER via SERCA pumps (Kostyuk & Verkhratsky,

1994; Verkhratsky et al., 1994; Shmigol et al., 1996). Thus, buffering

of [Ca2+]i transients and refilling [Ca2+]i stores by SERCA suggest

that calcium release and [Ca2+]i buffering are intimately related

processes. In CNS, SCG, and sensory neurones, SER Ca2+ stores

can be rapidly refilled by activation of voltage gated calcium

channels with high K+ or they can spontaneously refill within

3–10 min following depletion with caffeine via activation of

store operated calcium channels (Friel & Tsien, 1992; Shmigol

et al., 1994, 1996; Usachev & Thayer, 1999b; Baba et al., 2003).

In the discussion above, our work has consistently shown that

SERCA mediated calcium uptake declines with age in isolated

SCG neurones. Given that SERCA function declines with age in

the SCG we studied how aging may alter the refilling and release

of Ca2+ from the SER. We measured both rapid depolarization

evoked refilling of SER calcium stores and spontaneous refilling

following caffeine-evoked depletion of SER calcium stores in

isolated Fura-2 loaded SCG neurones from rats aged 6, 12, 20,

and 24 months. The data showed that both rapid and sponta-

neous refilling of SER via SERCA declined with age. Overall, the

data suggest that a functional consequence of reduced SERCA

activity with advancing age is a compromise in the ability of SCG

neurones to sustain release of [Ca2+]i during ongoing neuronal

activity (Vanterpool et al., 2005).

Altered expression of ryanodine receptors 
and selective modulators of CICR with 
advancing age

Calcium-induced calcium release is mediated via the RyR channels

and their function depends in part on density and regulation.

The regulation of the function of RYRs is complex and overall

this regulation serves to modulate the sensitivity of RYRs to

cellular Ca2+ levels. These modulators include FK506 binding

protein proteins, which serve to activate or inhibit channel state

depending on its binding status, and activators such as phos-

phorylation and intracellular molecules including cyclic adenosine

diphosphate ribose (cADPr) (Hua et al., 1994; Ogawa et al., 2000;

Marx & Marks, 2002). Specifically, cADPr levels are modulated

by nitric oxide released from nNOS containing neurones.

As RYRs are integral components in [Ca2+]i signaling in SCG

neurones, we used molecular techniques of reverse transcription-

polymerase chain reaction and enzyme-linked immuno-

sorbent assay to test the hypothesis that the genetic and protein

expression of the predominant RyR isoform(s) in adult rat SCG,

along with selective modulators, are altered during late matu-

ration and advancing age in F-344 rats aged 6, 12, and 24 months

(Vanterpool et al., 2006).

Surprisingly, we have found that RyR1 mRNA was undetect-

able in the rat SCG, in contrast with other studies demonstrating

RyR1 mRNA is expressed in excitable cells, including neurones

(Fill & Copello, 2002). Thus, independent of late maturation and

advancing age RyR1 does not appear to play a role in mediating

the release of calcium in the SCG. However, RyR2 and RyR3

are the major receptor isoforms that regulate calcium release

from RyR-sensitive stores in the SCG in all age groups. In addi-

tion, during late maturation from 6 to 12 months RyR3 mRNA

and protein levels increased and then decreased in senescent

(24 month) animals while RyR2 mRNA and protein levels

remained constant during late maturation and advancing age

(Vanterpool et al., 2006). It is difficult to make a straightforward
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conclusion as to the functional consequences of this age-related

decline in RyR levels. We have shown that caffeine-evoked

release of calcium declines with age (Vanterpool et al., 2005)

and the capacity to release calcium from the SER depends on

SER calcium filling levels, as well as the modulation of the RYRs.

Indeed, we have shown that SERCA function declines in the

SCG (Tsai et al., 1998; Pottorf et al., 2000c). Thus, filling levels

of the SER may also be compromised that may alter the func-

tional capacity of the release mechanism. In addition, It has been

reported that RyR function can be influenced by several factors,

including phosphorylation, binding proteins, calcium levels, and

nNOS, which modulates cADPr levels that in turn modulates

CICR by changing the sensitivity of RYRs to changes in [Ca2+]i

(reviewed in Galione, 1993; Eu et al., 1999; Balshaw et al.,
2002; Meissner, 2002; Danila & Hamilton, 2004).

In addition to measuring the impact of age on RyR gene

expression and protein levels, we extended our studies to

include possible age-related changes in selected modulators of

the RYRs, which include phosphorylation and nNOS levels

within the SCG (Vanterpool et al., 2006). Total phosphorylation

of RyR channels was not altered with age suggesting that

changes in steady state phosphorylation and hence regulation

by this mechanism is not necessarily occurring. However, nNOS

protein expression increases from 6 to 12 months and signifi-

cantly declines from 12 to 24 months. As nNOS activity modulates

cADPr levels, it is reasonable to speculate that these data may

possibly suggest that cADPr levels may also decline with age.

As there appear to only be two RYRs contributing to calcium

release in the SCG, overall, given the age-related decline in

RyR3, coupled with a decline in nNOS levels, we hypothesize

that an age-related reduction in RyR3 receptor levels and cADPr

levels may account in part for a decline in the function of RYRs.

We are currently determining if advancing age alters cADPR

levels in the SCG, which may shed light on activity of nNOS

during the aging process and regulation of RYRs.

Summary and conclusions

The data suggest that normal aging in peripheral autonomic

neurones is a subtle and complex process and does not always

result in dramatic deterioration. Moreover, the aging process

does not necessarily alter the function of excitable neurones in

a uniform manner. In terms of age-related changes in [Ca2+]i

regulation, we present the idea that in order to maintain cell

viability peripheral neurones are able to compensate for an age-

related decline in the function of at least one calcium-buffering

system, SERCA, by increased function of other calcium-buffering

systems, namely, the mitochondria and plasmalemma calcium

extrusion. Increased mitochondrial calcium uptake may represent

a ‘weak point’ in cellular compensation as this over time may

contribute to cell death (Ichas & Mazat, 1998; Thibault et al.,
1998; Begley et al., 1999).

This review summarizes our work on the dynamics of intra-

cellular calcium regulation and possible consequences for auto-

nomic nerve function with advancing age. The major findings

of all of our studies are summarized in Fig. 2. Based on results

of our most current studies (Vanterpool et al., 2005, 2006) and

our previous work and that of others we propose that an age-

related alteration in [Ca2+]i signaling and function of peripheral

adrenergic neurones represents a complex interplay of mech-

anisms, including increased sensitivity of the neurotransmitter

release mechanism to calcium, a decline in SERCA function that

alters calcium buffering and refilling of SER calcium stores,

reduced RyR3, and nNOS levels, which in turn modulate cADPr

levels and the CICR process. The consequences of these changes

are currently being studied in our laboratory by direct measure-

ment of cADPr during aging and the contribution of release of

calcium from SER stores to stimulation-evoked increases in

[Ca2+]i. Given the advances in molecular techniques future

studies may include a comprehensive study on the impact of

age on the genetic expression and protein levels of multiple

buffering systems, including soluble calcium-buffering proteins,

SERCA, mitochondrial calcium pumps, PMCA, and the Na+/Ca2+

exchanger. In addition, another mechanism that modulates

calcium influx and SER refilling are store operated calcium

channels. Their genetic expression and function with advancing

age has not been studied and may provide a fruitful avenue

of future research. Finally, SERCA function declines with age

thus possibly altering the levels of SER calcium stores and CICR.

With calcium indicators available to study SER calcium levels, it

Fig. 2 Summary of major findings of age-related 
alterations in the function of peripheral autonomic 
neurones and [Ca2+]i regulation.
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is possible to examine how advancing age may impact the cal-

cium levels of the SER. This type of study may provide additional

insight on how CICR may be altered with advancing age.
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