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Tissue plasminogen activator (t-PA) is a key 
component of the cardiovascular fi brinolytic 
system. In basal conditions, t-PA is constitu-
tively released from endothelial cells. Upon 
 appropriate stimulation, substantial amounts of 
t-PA can be rapidly released, resulting in a 
marked increase in fi brinolysis (1–4). The local 
presence of fi brin increases the rather slow cat-
alytic activity of t-PA by up to three orders of 
magnitude, leading to immediate plasminogen 
activation (5–7). The activity of t-PA in plasma 
is regulated by specifi c inhibitors. Of these, 
plasminogen activator inhibitor-1 (PAI-1) is 
considered to be the main inhibitor of t-PA in 
the vascular compartment (8). Additionally, α2-
antiplasmin inhibits plasmin (the principle pro-
teolytic enzyme) as long as plasmin is unoccupied 
by fi brin, thereby counteracting overwhelming 
systemic fi brinolytic activity (9).

The acute release of t-PA is crucial for the 
prevention of intravascular fi brin deposits. Until 
recently, t-PA was thought to originate solely 

from endothelial cells (2), but it has now been 
established that vascular sympathetic neurons 
can synthesize, transport, store, and release t-PA 
(3, 10–12). Vascular t-PA expression is known 
to vary regionally and according to vessel size. 
In general, dense sympathetic innervation seems 
to correlate with high t-PA expression as judged 
by immunohistochemistry (4, 11), and the im-
portance of neuronal t-PA is suggested by a 70% 
reduction in blood t-PA activity after chemical 
sympathectomy (10). Moreover, sympathetic 
activation (e.g., physical and mental stress) is 
known to provoke an acute release of t-PA into 
the circulation (13, 14). Recently, electrical 
sympathetic stimulation of the sympathetic cer-
vical ganglion (15) as well as coronary ligation 
(16) were shown to induce a dramatic increase 
in coronary t-PA release.

t-PA is abundantly expressed in adrenal 
chromaffi  n and pheochromocytoma PC-12 cells 
(17–21). In PC-12 cells, t-PA antigen is mainly 
localized in catecholamine storage vesicles (30-fold 
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enrichment; references 19, 20). Stimulation of PC-12 cells and 
primary bovine adrenal chromaffi  n cells with nicotine, KCl,  
and BaCl2 results in a prominent corelease of catecholamines 
and t-PA (19, 20). Accordingly, sympathoadrenal activation 
may be an important physiologic mechanism for the rapid 
 release of t-PA.

Other than fi brinolysis, the functional signifi cance of the 
release of t-PA is presently not fully understood, but an in-
volvement in extracellular matrix degradation, angiogenesis, 
vascular remodeling, and even plaque rupture has been pro-
posed (22–24). In the brain, this serine protease has been 
shown to play diverse roles in addition to its thrombolytic 
activity and participate in long-term potentiation, excitotox-
icity, and postischemic neurodegeneration (25).

The aim of this study was to investigate whether t-PA is 
involved in sympathetic neuronal function and transmitter 
release. We report that t-PA participates in peripheral sympa-
thetic transmission by promoting norepinephrine (NE) re-
lease from sympathetic terminals and, in doing so, is likely 
to contribute to cardiac arrhythmias initiated by NE in 
ischemia/reperfusion.

RESULTS

t-PA inhibition attenuates the contractile response 

of guinea pig vas deferens to electrical fi eld stimulation

The isolated vas deferens, with its very dense sympathetic in-
nervation, has been used extensively as a model to investigate 
drug eff ects at pre- and postsynaptic sites of the sympathetic 
junction (26, 27). As a fi rst assessment of a possible role of 
t-PA in sympathetic transmission, we investigated whether 
the antagonism of t-PA with its synthetic inhibitor 2,7-Bis-
(4-amidinobenzylidene)-cycloheptan-1-one dihydrochloride, 
t-PAstop (28), would aff ect the response of the vas deferens 
to sympathetic nerve stimulation. Sympathetic nerves were 
stimulated by electrical fi eld stimulation (EFS; 0–64 Hz, su-
pramaximal voltage; stimulation duration of 15 s at 5-min 
intervals, with pulses lasting 1 ms each). We fi rst ascertained 
that the typical biphasic contractile response to EFS (i.e., pu-
rinergic and adrenergic phases) was completely blocked by 
10 μM of the P2X antagonist PPADS (29) and by 1 μM of 
the α1-adrenoceptor antagonist prazosin (30). This excluded 
the possibility that EFS might directly elicit smooth muscle 
 contraction rather than via the released neurotransmitters 

Figure 1. t-PA inhibition attenuates sympathetic responses in the 

vas deferens and decreases NE exocytosis in cardiac synaptosomes. 

(A and B) Frequency response curves for the contractile responses of the 

isolated guinea pig (GP) vas deferens to electrical fi eld stimulation (EFS; 

0–64 Hz, supramaximal voltage; stimulation duration of 15 s at 5-min 

intervals, with pulses lasting 1 ms each). Typically, the contractile re-

sponse of the vas deferens to EFS consists of two phases: an initial spike 

(A; purinergic) followed by a plateau (B; adrenergic). Peak response ampli-

tudes (means ± SE [error bars]; n = 4) are expressed as percentages of 

the response to 40 mM K+. Responses were recorded either in the 

 absence or presence of 1 and 10 μM tPAstop. (C, top) Release of endogenous 

NE from guinea pig heart synaptosomes by depolarization with 3–100 

mM K+. Points are mean increases in NE release above basal level (± SE; 

n = 10; EC50 = 32.8 mM). (bottom) Concentration response curves for 

the inhibition of NE exocytosis (elicited by depolarization with 100 mM K+) 

by t-PAstop or rPAI-1. Equieffective inhibitory concentrations of t-PAstop 

and rPAI-1 were predetermined in a photometric assay of t-PA activity 

inhibition (IC50, 1.2 μM tPAstop and 9.2 nM rPAI-1; not depicted). Points 

(means ± SE; n = 4) are expressed as the percent inhibition of NE 

release by 100 mM K+.
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ATP and NE (unpublished data). EFS (8–64 Hz) induced a 
frequency-dependent increase in both purinergic and adren-
ergic twitch responses. t-PAstop inhibited each phase as a func-
tion of its concentration (1 and 10 μM; Fig. 1, A and B).

t-PA inhibition attenuates NE exocytosis in guinea pig 

heart synaptosomes

Because the aforementioned experiments in the vas deferens 
suggested that t-PA inhibition might lead to a decrease in 
neurotransmitter release from sympathetic nerves, we tested 
this possibility in a model of isolated sympathetic nerve end-
ings (i.e., cardiac synaptosomes; Fig. 1 C). We had previously 
shown that these synaptosomes release NE by exocytosis 
when depolarized with K+ (31). Increasing K+ concentra-
tions (3–100 mM) progressively increased NE release from 
�5 to �30% above basal level. t-PAstop inhibited as a function 
of its concentration the NE release elicited by 100 mM K+. 
At concentrations of 0.01–10 μM, t-PAstop-induced inhibi-
tion increased from a minimum of �5% to a maximum of 
�65%. Furthermore, the t-PA inhibitor recombinant PAI-1 
(rPAI-1) also inhibited as a function of its concentration the 
NE release elicited by 100 mM K+. At concentrations of 
4 pM to 40 nM, the rPAI-1–induced inhibition increased 
from a minimum of �8% to a maximum of �75%.

The administration of recombinant t-PA elicits NE release 

in guinea pig heart synaptosomes and neuroblastoma cells

Because the inhibition of t-PA activity was associated with a 
marked inhibition of sympathetic function and NE exocytosis 
(Fig. 1), it was possible that an increase in t-PA availability 
would yield the opposite eff ect. To address this possibility, we 
incubated guinea pig heart synaptosomes with 0.1–10 μg/ml 
of recombinant t-PA (rt-PA). rt-PA elicited a dose-dependent 
increase in the release of NE (EC50 = 1.17 ± 0.15 μg/ml; Fig. 
2 A). In a second set of experiments, we preincubated cardiac 
synaptosomes with a well-known activator of t-PA, cyanogen 
bromide–digested fi brinogen (CNBr-F; reference 32). Prein-
cubation with 200 μg/ml CNBr-F greatly enhanced t-PA–
 induced NE release in cardiac synaptosomes. The amount of 
NE released by r-tPA (1 μg/ml) increased �3.5-fold when syn-
aptosomes were preincubated with CNBr-F (Fig. 2 B).

We subsequently extended this investigation to the neuro-
blastoma cell line SH-SY5Y, which is an ideal model of the 
sympathetic neuron (33). rt-PA induced [3H]NE release in a 
concentration range similar to what was eff ective in cardiac 
synaptosomes (Fig. 2 C). Furthermore, CNBr-F potentiated 
the NE-releasing eff ect of t-PA in SH-SY5Y cells to an extent 
similar to that observed in cardiac synaptosomes (Fig. 2 D).

Mechanisms of rt-PA–induced NE release in guinea pig 

heart synaptosomes

Next, we explored the mechanisms of t-PA–induced NE 
 release. Initially, we questioned whether the release of NE 
by t-PA is a primary eff ect or secondary to plasmin formation. 

Figure 2. rt-PA elicits NE release in guinea pig heart synapto-

somes and neuroblastoma cells: potentiation by fi brinogen. (A and C) 

Concentration response curves for the NE-releasing effects of rt-PA in 

guinea pig heart synaptosomes (endogenous NE) and human SH-SY5Y 

neuroblastoma cells ([3H]NE). Points are means (± SE [error bars]; n = 

8–14) of percent increases in NE release above baseline. (B and D) Coincu-

bation of rt-PA with 200 μg/ml of the fi brinogen digest CNBr-F signifi -

cantly potentiates the NE-releasing effect of 1 (B) and 0.3 μg/ml (D) rt-PA 

in guinea pig heart synaptosomes and SH-SY5Y neuroblastoma cells. Bars 

are means (± SE; n = 4–8) of increases in NE release above baseline. 

*, P < 0.05 versus baseline; **, P < 0.01 versus baseline.

Figure 3. Mechanisms of rt-PA–induced NE release in guinea pig 

heart synaptosomes. (A) Concentration response curves for the NE-

releasing effect of rt-PA and plasmin (each at 0.1–10 μg/ml) in guinea pig 

(GP) heart synaptosomes. As opposed to rt-PA, plasmin did not elicit NE 

release. Points are means (± SE [error bars]; n = 10 for r-tPA and n = 4 

for plasmin). (B) Effects of various inhibitors on the NE-releasing effect of 

10 μg/ml r-tPA. Preincubation with the inhibitors reduced the rt-PA–

induced NE release from guinea pig heart synaptosomes. 100 nM Ω-

conotoxin (ω-CTX), 10 μM BAPTA-AM, 300 nM desipramine (DMI), 30 μM 

5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and 1 μM cariporide (HOE642) 

each signifi cantly inhibited rt-PA–induced NE release. In contrast, 0.2 μM 

α2-antiplasmin (α2-AP) did not affect the NE-releasing effect of rt-PA. 

Bars are means (± SE; n = 3–12) of percent increases in NE release above 

basal level. *, P < 0.05 versus rt-PA alone.
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For this, we fi rst determined whether plasmin has the capac-
ity of releasing NE. At concentrations of 0.1–10 μg/ml, plas-
min failed to elicit NE release from guinea pig heart 
synaptosomes, whereas in the same concentration range, rt-PA 
caused an �5–22% increase in NE release above basal level 
(i.e., 72% of the release obtained with 100 mM K+; Fig. 3 A). 
To further test whether the NE-releasing eff ect of t-PA is 
 independent of the generation of plasmin, we preincubated 
cardiac synaptosomes with 0.2 μM of the plasmin inhibitor 
α2-antiplasmin (8) and exposed them to the highest eff ective 
dose of rt-PA (10 μg/ml). α2-Antiplasmin did not aff ect the 
rt-PA–induced NE release (Fig. 3 B).

We next investigated whether the NE-releasing eff ect 
of t-PA is a Ca2+-dependent exocytotic process. Guinea pig 
heart synaptosomes were incubated with 100 nM of the 
N-type Ca2+ channel blocker ω-conotoxin (34) and were 
challenged with 10 μg/ml rt-PA. ω-Conotoxin inhibited 
rt-PA–induced NE release by �30% (Fig. 3 B). Pretreatment 
of cardiac synaptosomes with 10 μM of the intracellular Ca2+ 
chelator BAPTA-AM (35) also markedly reduced (by �50%) 
the rt-PA–induced NE release. This suggested that t-PA may 
release NE by an exocytotic mechanism that is dependent 
both on the infl ux of extracellular Ca2+ and an increase 
in intracellular Ca2+. However, the NE-releasing eff ect of 
10 μg/ml rt-PA was also attenuated (by �40%) when cardiac 

synaptosomes were preincubated with 300 nM of the NE 
transporter inhibitor desipramine (36) and with each of 
two Na+/H+ exchange inhibitors, 5-(N-ethyl-N-isopropyl)-
amiloride (EIPA; 30 μM; �80% inhibition) and cariporide 
(compound HOE642; 1 μM; �40% inhibition; reference 36). 
These fi ndings suggested that in addition to eliciting NE 
 exocytosis, t-PA is also likely to elicit NE release via the NE 
transporter operating in an outward direction (37).

t-PA gene deletion attenuates and PAI-1 gene 

deletion potentiates the contractile response 

of mouse vas deferens to EFS

Because our fi ndings in guinea pig preparations and the neu-
roblastoma cell line indicated a role for t-PA in sympathetic 
nerve activity, we further tested this possibility in mice lack-
ing either the t-PA (t-PA−/−) or PAI-1 gene (PAI-1−/−). 
The contractile responses of vasa deferentia isolated from 
control mice (WT) to EFS had both purinergic and adrener-
gic phases that were characterized by a progressive increase 
in tension with increasing frequencies of stimulation (4–64 Hz). 
The contractile responses to EFS were greatly diminished in 
vasa isolated from t-PA−/− mice (P < 0.0001 vs. WT; puri-
nergic and adrenergic phases); in contrast, there were greater 
increases in tension in response to EFS in vasa isolated from 
PAI-1−/− mice (P < 0.05 vs. WT; purinergic phase; Fig. 4, 

Figure 4. Vas deferens contraction and NE exocytosis in the heart 

are both attenuated in t-PA–null mice, potentiated in mice with 

PAI-1 gene deletion, and unaffected in plasminogen-defi cient mice. 

(A and B) Frequency response curves for the contractile responses of the 

isolated mouse vas deferens to electrical fi eld stimulation (EFS; 0–64 Hz, 

supramaximal voltage; every 1 ms for 15 s). Peak response amplitudes of 

both purinergic and adrenergic phases (means ± SE [error bars]; n = 6–9) 

are expressed as percentages of the response to 80 mM K+. Vasa deferen-

tia isolated from t-PA−/− mice developed markedly less tension in re-

sponse to EFS than vasa from WT control mice. In contrast, vasa from 

PAI-1−/− mice developed more tension than vasa from WT mice. Vasa 

from plasminogen−/− mice developed the same tension as vasa from WT 

mice. (C) Coronary NE overfl ow from isolated mouse hearts in response to 

EFS (0–9 Hz; 5 V for a duration of 60 s, with pulses of 2 ms each). Hearts 

were perfused with buffer containing 0.1 μM desipramine, 0.1 μM rau-

wolscine, 1 μM atropine, and 10 μM hydrocortisone. NE overfl ow was 

signifi cantly smaller in hearts from t-PA−/− mice than in hearts from WT 

mice, whereas it was signifi cantly greater in PAI-1−/− hearts. Points are 

means (± SE; n = 6–9) of x-fold increases in NE overfl ow above basal 

levels. (D) K+-induced NE exocytosis in mouse heart synaptosomes. Points 

are means (± SE; n = 12–16) of increases in NE release above basal levels. 

Synaptosomes isolated from hearts of t-PA−/− mice released signifi cantly 

less NE in response to K+ than synaptosomes from WT hearts. In contrast, 

synaptosomes from PAI-1−/− hearts released greater amounts of NE than 

synaptosomes from WT hearts, whereas NE exocytosis in synaptosomes 

from plasminogen−/− mice was not different from that of synaptosomes 

from WT hearts.
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A and B). Notably, in vasa deferentia from plasminogen-null 
mice, the contractile responses to EFS were not diff erent 
from WT controls (Fig. 4, A and B), supporting the notion 
that the modulatory function of t-PA at sympathetic junc-
tions is independent of plasminogen availability.

t-PA gene deletion attenuates and PAI-1 gene deletion 

potentiates NE exocytosis in the mouse heart

In isolated Langendorff -perfused mouse hearts, EFS (3–9 Hz) 
elicited a frequency-dependent increase in NE overfl ow over 
baseline (Fig. 4 C). NE overfl ow was greatly diminished in 
hearts isolated from t-PA−/− mice as compared with WT 
control hearts (a 76.5% decrease; P < 0.01). In contrast, NE 
overfl ow was markedly increased in hearts isolated from PAI-
1−/− mice (a 275% increase over WT; P < 0.05; Fig. 4 C).

Because the experiments with Langendorff -perfused 
mouse hearts suggested that the absence of t-PA leads to a 
decrease in NE exocytosis from sympathetic nerves, we ex-

tended our observations to the cardiac synaptosome model. 
Depolarization of mouse heart synaptosomes with increasing 
K+ concentrations (30, 50, and 100 mM) resulted in a con-
centration-dependent increase in NE release (Fig. 4 D). NE 
release was greatly reduced in synaptosomes isolated from 
t-PA−/− mouse hearts but were markedly enhanced in PAI-
1−/− synaptosomes (Fig. 4 D). K+-induced NE release in 
synaptosomes isolated from plasminogen−/− mice was not 
diff erent from that of their WT controls (Fig. 4 D).

Similar to NE, K+-induced (100 mM) ATP release (as-
sessed with a luciferin-luciferase assay; reference 38) was 4.4-
fold (P < 0.01) greater in synaptosomes from WT mice than 
in those from t-PA−/− mice. Furthermore, 10 μM t-PAstop 
markedly reduced (by 45.8%; P < 0.05) the K+-induced 
ATP release in synaptosomes from WT mice.

The administration of rt-PA restores the contractile 

response of vasa deferentia isolated from mice lacking t-PA

We questioned whether supplying exogenous t-PA to a 
t-PA–depleted system would restore functional responses to 
normality. Accordingly, we isolated vasa deferentia from 
t-PA−/− mice and incubated them with rt-PA. The  contractile 
response of vasa deferentia isolated from WT mice and sub-
jected to EFS (30 Hz) was measured in the absence or pres-
ence of 0.6 and 1 μg/ml rt-PA. In the presence of 1 μg/ml 
rt-PA, both purinergic and adrenergic responses to EFS were 
signifi cantly increased (P < 0.05), whereas the 0.6-μg/ml 
concentration was without eff ect (Fig. 5 A). Notably, when 
this subthreshold concentration of 0.6 μg/ml rt-PA was 
added to vasa deferentia isolated from t-PA−/− mice, both 
purinergic and adrenergic contractile responses were restored 
to the levels of WT controls (Fig. 5 B).

The potentiation of sympathetic responses by t-PA 

is not caused by an action at postjunctional sites

Because the contractile response of the vas deferens to EFS 
is a composite of pre- and postjunctional events (i.e., neuro-
transmitter release and postsynaptic eff ects), we questioned 
whether t-PA might potentiate sympathetic responses in part 
by an action at postjunctional sites. Therefore, we assessed 
whether the postsynaptic eff ects of sympathetic neurotrans-
mitters (i.e., ATP and NE) would be aff ected by changes in 
endogenous t-PA availability. Mouse vasa deferentia were in-
cubated in increasing concentrations of exogenous ATP or 
NE, and the contractile response was measured. The concen-
tration response curves for the eff ects of ATP and NE in vasa 
from t-PA−/− and PAI-1−/− mice were superimposable on 
the curve obtained from vasa of WT control mice (Fig. 6, A 
and B). These observations indicated that t-PA modulates 
sympathetic responses by acting solely at prejunctional sites.

t-PA promotes NE release and associated arrhythmias 

in myocardial ischemia/reperfusion

Langendorff -perfused mouse hearts were subjected ex vivo 
to 30-min stop-fl ow global ischemia followed by 30-min re-
perfusion. Hearts isolated from WT mice released �90 pg 

Figure 5. The administration of rt-PA restores the contractile re-

sponse of vasa deferentia isolated from mice lacking t-PA. (A) Con-

tractile responses (both purinergic and adrenergic) of vasa deferentia 

isolated from WT mice to EFS (30 Hz, supramaximal voltage;  duration of 

15 s at 5-min intervals, with pulses of 1 ms) either in the absence or pres-

ence of 0.6 and 1 μg/ml rt-PA (15-min incubation). The 0.6-μg/ml con-

centration was ineffective, whereas at 1 μg/ml, rt-PA potentiated both 

the purinergic and adrenergic responses by �70 and �50%, respectively 

(*, P < 0.05). Bars represent the mean contractile response amplitude, 

which is expressed as a percentage of the response to 80 mM K+ (± SE 

[error bars]; n = 4–8). (B) Frequency response curves for the contractile 

response of vasa deferentia to EFS (0–32 Hz, supramaximal voltage; for 

1 ms every 15 s). Vasa were isolated from t-PA−/− mice and from their WT 

controls. Incubation of vasa from t-PA−/− mice with rt-PA (at the sub-

threshold concentration of 0.6 μg/ml for 15 min) restored the depressed 

contractile response to EFS to the same magnitude as in vasa from con-

trol mice. Points are means (± SE; n = 8 and 4 for WT and t-PA−/−, re-

spectively) of maximal contractile amplitudes expressed as percentages of 

the response to 80 mM K+.  Arrows indicate the upward shifts elicited by 

the administration of rt-PA in vasa deferentia isolated from animals de-

prived of t-PA.
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NE/gram of tissue in the fi rst 5 min of reperfusion (Fig. 7 A). 
NE overfl ow subsided in the following 5 min. In hearts iso-
lated from PAI-1−/− mice, NE overfl ow was slightly but not 
signifi cantly greater than that of control hearts. In contrast, in 
hearts isolated from t-PA−/− mice, NE overfl ow during re-
perfusion was approximately fi vefold lower than that of WT 
control and PAI-1−/− mouse hearts. Preischemia NE over-
fl ow was comparable in all hearts. Reperfusion was also asso-
ciated with the development of ventricular arrhythmias such 
as ventricular tachycardia (VT), ventricular fi brillation (VF), 
and premature ventricular contractions (PVCs). The lowest 
incidence and shortest duration of rhythm disturbances was 
observed in hearts from t-PA−/− mice (Fig. 7 B). In contrast, 
PAI-1−/− mouse hearts had the highest number of PVCs. 
These fi ndings suggested that t-PA may contribute to NE-
initiated arrhythmias in ischemia and reperfusion.

D I S C U S S I O N 

Our fi ndings clearly demonstrate that t-PA plays an impor-
tant role in peripheral sympathetic responses by promoting 
neurotransmitter release from sympathetic neurons via an 
action restricted to presynaptic terminals. As a result, in hy-
peradrenergic states such as myocardial ischemia/ reperfusion, 

in which excessive NE release is a primary arrhythmogenic 
factor (39, 40), t-PA participates with NE in arrhythmic 
 cardiac dysfunction.

Although endothelial cells have traditionally been viewed 
as a major source of t-PA (41, 42), we were intrigued by the 
report that the stimulation of cardiac sympathetic nerves 
caused the release of t-PA into the coronary circulation (15) 
and by the prospect that this t-PA might derive from sympa-
thetic neurons, which can both synthesize it and release it 
(11, 12). It had also been shown that chemical sympathec-
tomy decreases t-PA release from blood vessels (10) and that 
t-PA is stored in the same vesicular pool with NE in adrenal 
chromaffi  n and PC12 cells, from where it could be released 
together with NE upon depolarization (19, 20). As all of 
these studies favored the notion of a dual neuronal and endo-
thelial t-PA release, we questioned what function neuronally 
released t-PA might have other than a plausible involvement 
in fi brinolysis, and we hypothesized that t-PA might modu-
late sympathetic neuronal activity.

Figure 6. t-PA potentiates sympathetic responses by an action at 

prejunctional sites. (A) Noncumulative concentration response curves 

for the contractile response of mouse vas deferens to the administration 

of exogenous ATP. Vasa deferentia were isolated from t-PA−/−, PAI-1−/−, 

and their WT control mice. The maximum contractile response for each 

increment in ATP concentration occurred within 30 s; ATP was quickly 

washed out thereafter to prevent receptor desensitization. The following 

higher ATP concentration was added after 30 min of reequilibration. 

(B) Cumulative concentration response curves for the contractile response of 

mouse vas deferens to the administration of exogenous NE. Vasa deferen-

tia were isolated from t-PA−/−, PAI-1−/−, and their WT control mice. The 

fi nding that the concentration response curves obtained from vasa defer-

entia of gene-deleted mice were superimposable on the curves obtained 

from their WT controls indicates that the lack of t-PA or PAI-1 does not 

infl uence postsynaptic responses at sympathetic junctions and that the 

action of t-PA on sympathetic neurons is limited to presynaptic sites. 

(A and B) Points are means (± SE [error bars]; n = 7–10) of maximal con-

tractile responses to ATP (A) and NE (B) expressed as percentages of the 

response to 80 mM K+.

Figure 7. t-PA promotes NE release and associated arrhythmias in 

myocardial ischemia/reperfusion. (A) Coronary NE overfl ow before 

ischemia (basal) and during 10-min reperfusion in hearts isolated from 

t-PA−/−and PAI-1−/− mice and their WT controls. Global stop-fl ow ischemia 

was applied for 30 min after an initial stabilization period of 30 min. NE 

overfl ow was individually adjusted for coronary fl ow and heart weight. 

Points are means (± SE [error bars]; n = 9–11). Asterisks indicate signifi -

cant differences from 5-min reperfusion levels in t-PA−/− hearts (*, P < 

0.05). (B) Analysis of ventricular arrhythmias during reperfusion of the 

same hearts as in A. The incidence of high-grade ventricular arrhythmias 

(i.e., ventricular tachycardia [VT] and ventricular fi brillation [VF]) is ex-

pressed as percentages of the total number of hearts used in each of the 

three groups (± SE). The duration of VT and VF represents the cumulative 

duration of arrhythmia during the 30-min reperfusion. The occurrence of 

premature ventricular contractions (PVCs) is expressed as the total num-

ber (n) of PVCs counted during the 30-min reperfusion. Bars are means 

(± SE; n = 9–11). Asterisks indicate signifi cant differences from WT and 

PAI-1−/− hearts (incidence of VT/VF) and from WT and t-PA−/− hearts 

(number of PVCs).
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We reasoned that if t-PA were to play such a role, it 
should be possible to uncover it with the use of t-PA inhibi-
tors. For this, we used t-PAstop, a synthetic inhibitor of t-PA 
(28), and the recombinant form of the high affi  nity physio-
logical serine protease inhibitor rPAI-1. In the isolated vas 
deferens of the guinea pig, a prototypical model of sympa-
thetic neuromuscular junction (26, 27), t-PAstop, attenuated 
both the purinergic and adrenergic responses to EFS, demon-
strating that a fully functional t-PA is required for a complete 
sympathetic response and suggesting that neuronal t-PA is 
likely to potentiate either the release or the eff ects of the 
sympathetic neurotransmitters. The fi rst indication that sym-
pathetic nerve terminals are the likely site of this potentiation 
emerged from fi nding that each of the two t-PA inhibitors, 
t-PAstop and rPAI-1, inhibited NE exocytosis as a function of 
its concentration in guinea pig heart synaptosomes, which is 
a typical model of sympathetic nerve endings (31). 

As these results suggested that t-PA enhances the release 
of NE elicited by the depolarization of sympathetic nerve 
terminals, we sought to confi rm this view by determining 
whether the administration of rt-PA to native nerve endings 
(cardiac synaptosomes) or neuroblastoma cells in culture di-
rectly enhanced NE release. We chose to use concentrations 
of t-PA approximating those clinically achieved for intraarte-
rial thrombolysis (43). We not only found that t-PA indeed 
promotes NE release but particularly important was discover-
ing that fi brin (CNBr-F), which is known to potentiate the 
plasmin-generating eff ect of t-PA (6, 7), also potentiated the 
NE-releasing eff ect of rt-PA. Inasmuch as the generation of 
plasmin is pivotal for the fi brinolytic activity of t-PA, we 
next assessed whether the NE-releasing eff ect of rt-PA might 
also be plasmin dependent. Clearly, it was not. Indeed, the 
administration of plasmin did not signifi cantly aff ect basal NE 
release in guinea pig heart synaptosomes, and the administra-
tion of α2-antiplasmin (9) did not modify the NE-releasing 
eff ect of rt-PA. Moreover, the contractile response of the vas 
deferens to EFS and the NE exocytosis from cardiac synapto-
somes isolated from plasminogen-defi cient mice did not dif-
fer from those of WT mice, excluding a role for plasminogen 
and, thus, for plasmin in these responses. Accordingly, we 
concluded that t-PA acts directly at sympathetic nerve termi-
nals to release NE by an action that is potentiated by fi brin 
(CNBR-F) but independent of plasmin formation.

Having determined that sympathetic responses are either 
attenuated when endogenous t-PA is inhibited or potentiated 
by the administration of rt-PA, we sought defi nitive proof of 
the relevance of t-PA actions in sympathetic neural function 
in animals lacking t-PA or PAI-1. Consistent with a t-PA–
induced promotion of NE release, we found that in tissues 
isolated from t-PA–null mice, sympathetic responses and NE 
release were markedly reduced. Conversely, sympathetic re-
sponses and NE release were potentiated in tissues from the 
PAI-1–null mice. The notion that the lack of t-PA was indeed 
the cause of the depressed sympathetic responses was proven by 
our reconstitution experiments, demonstrating the restoration 
of sympathetic responses upon administration of a subthresh-

old amount of rt-PA in the vas deferens. Most importantly, 
postjunctional contractile responses elicited by the administra-
tion of the neurotransmitters ATP and NE in the vas deferens 
of mice lacking either t-PA or PAI-1 were indistinguishable 
from the responses recorded in their WT controls. This clearly 
excluded the possibility that t-PA might act at a postsynaptic 
site in its potentiation of sympathetic responses.

NE is known to be released from sympathetic neurons by 
two modalities: exocytosis and reversal of its transporter in an 
outward direction (i.e., carrier-mediated release; reference 
44). The opening of N-type Ca2+ channels and activation of 
the Na+/H+ exchanger (NHE) at the axonal membrane are 
pivotal events initiating these two types of release, respec-
tively (35). NHE activation leads to an increase in intracellu-
lar Na+, which is critical for the initiation of carrier-mediated 
NE release (45). Inasmuch as the inhibition of N-type Ca2+ 
channels with ω-conotoxin (34) and of NHE with the 
amiloride derivative EIPA each attenuated the NE-releasing 
eff ect of rt-PA in cardiac synaptosomes, both mechanisms of 
NE release are likely to play a role in the action of t-PA. 
Given that the intracellular Ca2+ chelator BAPTA-AM and 
cariporide (compound HOE642, a selective NHE-1 blocker; 
reference 35) also inhibited the NE-releasing eff ect of rt-PA, 
a transient increase in intracellular Ca2+ is probably involved 
in the activation of NHE-1 and the initiation of carrier-
 mediated NE release (35). A further indication that the NE 
transporter is outwardly bound under the infl uence of t-PA is 
suggested by the fi nding that the NE transporter inhibitor 
desipramine attenuated the NE-releasing eff ect of t-PA.

How t-PA might modulate Ca2+ entry and intracellular 
Ca2+ transient and NHE-1 activation, eventually culminating 
in enhanced NE release, is presently a matter of speculation. 
The action of t-PA could be initiated by protease–substrate 
 reactions, such as those involved in plasmin formation (23, 
43, 46). Indeed, the only known substrate of the remarkably 
specifi c t-PA in vivo is a single peptide bond (Arg560-Val561) 
within the proenzyme plasminogen,  which is converted to 
plasmin (47). However, we found that the neuromodulatory 
action of t-PA is independent of plasmin formation. There-
fore, it is conceivable that either an unknown substrate is 
 activated by t-PA, leading to enhanced transmitter release, 
or a receptor protein is proteolytically activated by t-PA, 
thereby disinhibiting/augmenting NE release from nerve 
endings. In fact, our fi ndings with t-PAstop and CNBr-F sug-
gest that the activity level of t-PA is the major determinant 
of its neuromodulatory action. So far, a specifi c t-PA recep-
tor has not been discovered, although diff erent binding pro-
teins for t-PA have been described previously (46, 48, 49). 
Nevertheless, it is likely that a specifi c substrate or receptor 
is implicated because the NE-releasing effect of rt-PA 
appears to involve mechanisms (i.e., intracellular Ca2+, NHE-1, 
and NE transporter) known to mediate NE exocytosis and 
carrier-mediated release, which are all modulated by  receptor 
activation (37).

t-PA has been reported to overfl ow into the coronary ef-
fl uent of isolated rat hearts during reperfusion after ischemia 
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(50). Also, it was recently shown that myocardial ischemia 
elicits the release of t-PA in the coronary vasculature of the 
pig (16, 51). Despite the long-held belief that increased en-
dogenous fi brinolysis is benefi cial in cardiovascular disease 
(52), recent studies in the brain emphasize possible adverse 
eff ects of t-PA (25). Notably, t-PA is overexpressed in ath-
erosclerotic coronary arteries (53), and elevated t-PA plasma 
concentrations correlate with the severity of coronary artery 
disease (54) and are an independent predictor of myocardial 
infarction (55, 56). Moreover, arrhythmias are often associ-
ated with the thrombolytic use of t-PA in the setting of myo-
cardial infarction (57–61). In hyperadrenergic states such as 
myocardial ischemia and reperfusion, excessive NE release is 
a primary arrhythmogenic factor (37, 39, 40), and t-PA is re-
leased upon the stimulation of cardiac sympathetic nerves 
(15). Therefore, it is conceivable that t-PA may participate 
with NE in the generation of arrhythmias associated with 
 ischemia and reperfusion. In fact, we found that ischemia/ 
reperfusion hearts from t-PA knockout mice released sig-
nifi cantly less NE (P < 0.05) and had fewer and briefer 
 instances of VF than WT controls. Thus, endogenous t-PA 
is likely to contribute to arrhythmias linked to myocardial 
 ischemia and infarction.

The administration of rt-PA for thrombolysis in acute 
myocardial infarction and stroke is still considered an impor-
tant treatment option. Despite its benefi cial eff ects on cere-
bral infarct size, rt-PA is believed to induce neurotoxic 
eff ects. In fact, rt-PA infusion has been shown to dramatically 
increase cerebral infarct size in t-PA–defi cient mice, whereas 
infarct size was signifi cantly smaller in untreated t-PA−/− 
mice than in WT controls (62). Supporting possible adverse 
cardiac eff ects of t-PA, we found that hearts from t-PA−/− 
mice were protected against reperfusion arrhythmias, a phe-
nomenon probably associated with the reduced NE spillover. 
Moreover, we found that in therapeutically relevant concen-
trations, rt-PA increased NE release from cardiac synapto-
somes and human neuroblastoma cells in culture as a function 
of its concentration.

In conclusion, we have obtained novel evidence that the 
endogenous plasminogen activator system plays an impor-
tant role in promoting sympathetic transmitter release in the 
heart. This action is independent of plasmin formation. 
Most importantly, hearts from t-PA–null mice released 
much less NE and had fewer arrhythmias when subjected to 
ischemia/reperfusion than their WT controls. Thus, the 
plasminogen activator system, which is characterized by the 
activity level of t-PA, is involved in the excessive release of 
NE and associated arrhythmias in myocardial ischemia and 
reperfusion. Targeting this eff ect of t-PA may have valuable 
therapeutic potential not only in myocardial ischemia but 
also in other hyperadrenergic conditions such as heart fail-
ure and hypertension.

MATERIALS AND METHODS
Guinea pig and mouse vas deferens. 250–400-g male guinea pigs and 

4–5-mo-old mice were anesthetized with CO2 and exsanguinated (approved 

by the Weill Medical College’s Institutional Animal Care and Use Committee). 

Vasa deferentia (prostatic portion of guinea pigs and midsegment of 

mice) were suspended in a 20-ml bath containing Krebs-Henseleit (KH) 

 solution at 37°C aerated with 95% O2 + 5% CO2. Mice defi cient in PAI-1, 

plasminogen, or t-PA (63, 64) were provided by S. Strickland. The back-

ground of all mice was C57BL/6. Vasa were equilibrated for 60 min (resting 

tension of 1 g for guinea pigs and 250 mg for mice). EFS was applied for 

15 s every 5 min (pulses of 1 ms at 4–64 Hz; supramaximal voltage). The fi rst 

contractile phase (PPADS sensitive; purinergic) and second phase (prazosin 

sensitive; adrenergic) were expressed as percentages of the response to K+ 

(40 and 80 mM for guinea pigs and mice, respectively). Responses were sta-

ble to at least three to four consecutive stimulations. When used, drugs were 

preincubated for 15 min.

Guinea pig heart synaptosomes. Male guinea pigs were killed as indi-

cated above. Hearts were isolated and perfused at constant pressure (40 cm 

H2O) with oxygenated Ringer’s solution at 37°C for 20 min. Hearts were 

minced in ice-cold 0.32 M sucrose containing 1 mM EGTA. Synaptosomes 

(pinched-off  sympathetic nerve endings) were isolated as previously de-

scribed (31) and incubated with various drugs at 37°C in the absence or 

presence of 0.1–10 μg/ml rt-PA. After centrifugation at 20,000 g for 20 min 

at 4°C, NE and protein contents were determined in the supernatant and 

pellet, respectively (31).

Expression of PAI-1 in Pichia pastoris. rPAI-1 was prepared by yeast 

transfection according to the manufacturer (Invitrogen). PAI-1 was purifi ed 

from culture supernatants by nickel-agarose chromatography; enzyme purity 

was determined by SDS/PAGE.

Measurement of PAI-1 activity. Purifi ed rPAI-1 was diluted in 50 mM 

Tris-imidazole buff er (300 mM NaCl, pH 8.4) and incubated with 5 μl 

rt-PA (0.1 mg/ml) for 15 min at room temperature, and the kinetics of 

 substrate cleavage (2 mM pefachrome tPA; Pentapharm) were monitored 

spectrophotometrically at 405 nm in 96-well microtiter plates for 5 min.

Cross-reactivity between human reagents and guinea pig proteins. 

Experiments were performed to ascertain that recombinant human proteins 

cross react with guinea pig substrates and, in particular, that rt-PA binds to 

guinea pig plasminogen and activates it. After purifi cation (i.e., by lysine-

Sepharose column separation), guinea pig plasminogen was converted to plas-

min by human rt-PA in a concentration-dependent fashion, as demonstrated 

by SDS-PAGE containing lytic casein bands. This suggested cross-reactivity 

between human and cavian elements of the plasminogen activator system.

SH-SY5Y neuroblastoma cell line. The human neuroblastoma cell line 

SH-SY5Y, which was provided by T.W. Lovenberg (Johnson and Johnson 

Pharmaceutical Research and Development, LLC, San Diego, CA), was 

maintained in a 1:1 ratio of Eagle’s MEM supplemented with 10% FBS, 50 

U/ml penicillin, and 50 μg/ml streptomycin at 37°C and 5% CO2. Cells 

were grown to confl uence in six-well plates; [3H]NE release experiments 

were performed as described previously (65). [3H]NE loading was achieved 

with Hepes-buff ered Na+ Ringer’s solution (50 nM [3H]NE) at 37°C for 

60 min. After three washings, 1 and 10 μg/ml rt-PA was added for 10 min at 

room temperature. When CNBr-F was used, rt-PA was incubated together 

with CNBr-F at room temperature for 5 min and subsequently added to the 

samples. Aliquots of the supernatant and cell lysates (after 30 min of 0.3% 

Triton X-100) were taken from each well and analyzed for [3H]NE content 

with a scintillation counter.

Perfusion of mouse hearts ex vivo. After killing, hearts of gene-inacti-

vated mice (tPA–/–, plasminogen–/–, and PAI-1–/–) were excised and cooled 

in ice-cold KH solution equilibrated with 95% O2 + 5% CO2 (66). An 18-

gauge steel cannula was inserted in the aorta, and the heart was perfused at 

constant pressure (100 cm H2O) with KH at 37°C. Coronary fl ow was mea-

sured by timed collections of the effl  uent every 5 min. Coronary NE over-

fl ow was measured by HPLC with electrochemical detection as previously 
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described (66). The detection limit was �0.05 pmol. Only hearts with an 

initial stable sinus rhythm were considered.

EFS. Mouse hearts were perfused with KH containing 1 μM atropine, 10 μM 

hydrocortisone, 0.1 μM desipramine, and 0.1 μM rauwolscine. Two stain-

less steel paddles were apposed to the heart with their stimulating surface 

parallel to the interventricular septum. ECG was recorded online. After a 

20-min stabilization, three sequential stimulations (3, 6, and 9 Hz at 5 V for 

a duration of 60 s, with pulses lasting 2 ms) using PowerLab/8SP (ADInstru-

ments) were applied every 15 min. For ischemia/reperfusion, after a 30-min 

stabilization, mouse hearts were subjected to 30-min stop-fl ow normother-

mic global ischemia followed by 30-min reperfusion. ECG was recorded 

online (1-kHz recording frequency) and analyzed with PowerLab/8SP. The 

incidence and duration of reperfusion arrhythmias were calculated according 

to the Lambeth Conventions (67).

Preparation of cardiac synaptosomes. Two hearts per mouse type were 

perfused for 20 min as indicated above. Both hearts were minced together in 

ice-cold 0.32 M sucrose. Synaptosomes were isolated as described above, depo-

larized with K+, and NE exocytosis was measured as previously described (66).

Drugs and chemicals. Adenosine 5′-triphosphate (disodium salt), NE-

HCl, and EIPA were purchased from Sigma-Aldrich. Plasminogen, t-PAstop, 

and CNBr-F were purchased from American Diagnostica, Inc., and 

α2-antiplasmin (human plasma) was purchased from Calbiochem. Re-

combinant two-chain tissue t-PA was obtained from Genentech, Inc., 

and pefachrome t-PA (Pefa-5037) was purchased from Pentapharm. 

HOE642 (cariporide) was provided by B.A. Schoelkens (Hoechst Marion 

Roussel, Frankfurt am Main, Germany). rPAI-1 was prepared by yeast 

transfection.

Statistics. Values refer to means ± SE. One-way analysis of variance fol-

lowed by a Dunnett’s posttest, one-sample Student’s t test, and unpaired 

Student’s t test were performed as indicated. P < 0.05 was considered 

signifi cant.
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