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In this paper, an analytical criterion is proposed to investigate the synchronization between two Hindmarsh-Rose neurons with
linear and nonlinear coupling functions based on the Laplace transform method. Different from previous works, the
synchronization error system is expressed in its integral form, which is more convenient to analyze. The synchronization
problem of two HR coupled neurons is ultimately converted into the stability problem of roots to a nonlinear algebraic
equation. Then, an analytical criterion for synchronization between the two HR neurons can be given by using the Routh-
Hurwitz criterion. Numerical simulations show that the synchronization criterion derived in this paper is valid, regardless of the
periodic spikes or burst-spike chaotic behavior of the two HR neurons. Furthermore, the analytical results have almost the same
accuracy as the conditional Lyapunov method. In addition, the calculation quantities always are small no matter the linear and
nonlinear coupling functions, which show that the approach presented in this paper is easy to be developed to study
synchronization between a large number of HR neurons.

1. Introduction

The study of neurons plays a very important role in many
applications in neural science, brain science, and so on. The
famous Hodgkin-Huxley (HH) equation, proposed by Hodg-
kin and Huxley in 1952, [1, 2] usually was used to construct
neural systems or exhibit the neural dynamic behavior. Since
then, other neuronal models, such as the FizHugh-Nagumo
(FHN) model [3], the Hindmarsh-Rose (HR) model [4], the
Chay model [5], and the Morris-Lecar model [6], also have
been published. The HRmodel was constructed from voltage
clamp data to provide a simple description of the patterned
activity observed in molluscan neurons. Although the HR
model is not based on physiology wholly, it can exhibit some
features observed in neuronal bursting. The HR model has
been investigated from bifurcation analysis to the firing
mechanism [7].

Synchronization processes are ubiquitous in nature. Syn-
chronization of coupled networks has been studied with

increasing interest over the last few decades due to its numer-
ous potential applications [8–11]. One way to gain a deeper
understanding of synchronization in complex networks is
to investigate the stability of the completely synchronized
state of the population of identical oscillators [12, 13], which
has been extensively investigated based on Lyapunov’s direct
method [14, 15]. One of the most popular and widely used
methods to determine stability of the synchronized state is
using the Lyapunov exponents as average measurements of
expansion or shrinkage of small displacements along syn-
chronized trajectory, which is called the conditional Lyapu-
nov exponent method [16–18].

Pecora and Carroll [19] proposed the master stability
function (MSF) method to discuss the local stability of the
synchronization manifold. This method provides an objec-
tive criterion to characterize the stability of the global syn-
chronized state, independent of particularities of oscillators.
Relevant insights about the structure-dynamics relationship
have been obtained using this technique. Chen [20] and Li
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et al. [21] obtained conditions for synchronization using the
matrix measure approach. Their criteria do not depend on
solutions of the synchronous state and have fewer limitations
on network connections. He [22] presented a new approach
for chaotic synchronization of HR neural networks with a
special nonlinear coupling function. Synchronization can be
achieved without the requirement to calculate the maximum
Lyapunov exponents when the coupling strengths are taken
as reference values. Lu and Chen [23] used a variation
method near the projection on the synchronization manifold
to analyze synchronization of linearly coupled ordinary dif-
ferential equations. The uncoupled dynamical behavior at
each node is general and can be chaotic or otherwise; the cou-
pling configuration is also general, with the coupling matrix
not assumed to be symmetric or irreducible.

The above methods greatly further one’s understanding
of synchronization in complex networks. However, the
results obtained by these methods are limited. Conditions
for synchronization obtained by using the Lyapunov func-
tion method are often too conservative. It is also difficult to
find a proper Lyapunov function. For most cases, calculating
the conditional Lyapunov exponents is a cumbersome proce-
dure. It should also be noted that the negativity of the condi-
tional Lyapunov exponents is only a necessary condition for
the stability of the synchronized state. Thus, additional con-
ditions should be added to ensure synchronization in a nec-
essary and sufficient way [24]. The MSF method [19]
proposed by Pecora and Carroll requires that the Laplacian
matrices are diagonal or block diagonal. Nishikawa and Mot-
ter [25] developed an extension of the master stability frame-
work to study local synchronization in any symmetric and
asymmetric network with any output function. The method
has some variations, but generally the stability analysis is
embarrassed by the need to calculate the conditional Lyapu-
nov exponents. Using the matrix measure approach requires
calculating the Lyapunov exponents of the map to achieve a
sufficient condition for synchronization. The new method
proposed by He [22] is only valid for a special nonlinear cou-
pling function and coupling strengths. The local stability
condition presented in [23] for synchronization is related to
the synchronization trajectory. Since the synchronization
trajectory is unknown in advance, the criterion is hard to be
used in applications. To sum up, in addition to Lyapunov’s
direct method, nearly all synchronization criteria require
the computation of Lyapunov exponents, eigenvalues of the
coupling matrix, or the synchronization trajectory, which is
inconvenient and ineffective. Therefore, more convenient
and effective approaches to determine synchronization need
to be developed.

In this paper, we use the Laplace transform to investigate
the synchronization conditions for two HR neurons with lin-
ear and nonlinear coupling functions. Different from other
studies, the synchronization error system derived from the
original coupled neural system is converted into sets of Vol-
terra integral equations based on the convolution theorem in
the Laplace transform. The synchronization problem of two
HR coupled neurons is ultimately converted into the stability
problem of roots to a nonlinear algebraic equation. Then, an
analytical criterion for synchronization in the two HR neu-

rons can be given by using the Routh-Hurwitz criterion.
Numerical simulations show that the synchronization crite-
rion derived in this paper is valid, regardless of the periodic
spikes or burst-spike chaotic behavior of the two HR neu-
rons. Additionally, the analytical results have almost the
same accuracy as the conditional Lyapunov method. The rest
of the paper is organized as follows. In Section 2, the syn-
chronization conditions for two HR neurons with a linear
coupling function are discussed by using the Laplace trans-
form. In Section 3, the case of a nonlinear coupling function
is investigated. In Section 4, numerical simulations are car-
ried out to verify the effectiveness of the analytical criterion
derived in Sections 2 and 3. Conclusions are drawn in Sec-
tion 5.

2. Two HR Neurons with a Linear
Coupling Function

A HR neuron is described by the following equation of
motion:

_x = y − ax3 + bx2 − z + I,
_y = c − dx2 − y,
_z = rs0 x − x0ð Þ − rz,

ð1Þ

where x represents the membrane potential, y is a recovery
variable associated with fast current, z is a slowly changing
adaptation current. a, b, c, d, s0, r, and x0 are parameters,
and I is the external current input. Consider two coupled
HR neurons with a linear coupling function:

_x1 = y1 − ax31 + bx21 − z1 + I + β x1 − x2ð Þ,
_y1 = c − dx21 − y1,
_z1 = rs0 x1 − x0ð Þ − rz1,
_x2 = y2 − ax32 + bx22 − z2 + I + β x2 − x1ð Þ,
_y2 = c − dx22 − y2,
_z2 = rs0 x2 − x0ð Þ − rz2,

ð2Þ

where β is the coupling strength. If ∣x1 − x2 ∣→ 0, ∣y1 − y2 ∣
→ 0, and ∣z1 − z2 ∣→ 0 for t→∞, synchronization between
two HR neurons is achieved. Assume that ðx01, y01, z01Þ
is the equilibrium point of system (1). For simplicity,
substituting

u1 = x1 − x01,
u2 = y1 − y01,
u3 = z1 − z01,
v1 = x2 − x01,
v2 = y2 − y01,
v3 = z2 − z01,

ð3Þ
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into equation (2), one has

_u1 = ϕ1u1 + ϕ2u
2
1 − au31 + u2 − u3 + β u1 − v1ð Þ,

_u2 = ϕ3u1 − du21 − u2,
_u3 = r s0u1 − u3ð Þ,
_v1 = ϕ1v1 + ϕ2v

2
1 − av31 + v2 − v3 + β v1 − u1ð Þ,

_v2 = ϕ3v1 − dv21 − v2,
_v3 = r s0v1 − v3ð Þ,

ð4Þ

where ϕ1 = −3ax201 + 2bx01, ϕ2 = −3ax01 + b, and ϕ3 = −2d
x01. By letting

e1 =
u1 − v1

2 ,

e2 =
u2 − v2

2 ,

e3 =
u3 − v3

2 ,

e4 =
u1 + v1

2 ,

e5 =
u2 + v2

2 ,

e6 =
u3 + v3

2 ,

ð5Þ

system (4) can be written as

_e1 = 2β + ϕ1ð Þe1 + e2 − e3 + F1,
_e2 = ϕ3e1 − e2 + F2,
_e3 = r s0e1 − e3ð Þ,
_e4 = ϕ1e4 + e5 − e6 + F3,
_e5 = ϕ3e4 − e5 + F4,
_e6 = r s0e4 − e6ð Þ,

ð6Þ

where

F1 = −a 3e1e24 + e31
� �

+ 2ϕ2e1e4,
F2 = −2de1e4,
F3 = −a 3e21e4 + e34

� �
+ ϕ2 e21 + e24

� �
,

F4 = −d e21 + e24
� �

:

ð7Þ

If e1,2,3 → 0 for t→∞, the two HR neurons will
achieve synchronization. Consider the Laplace transform
defined as follows:

êi = L ei½ � =
ð+∞
0

eie
−stdt,

ei = L−1 êi½ � = 1
2πi

ðσ+i∞
σ−i∞

êi sð Þestds, i = 1,⋯, 6:
ð8Þ

Taking the Laplace transforms of both sides of equa-
tion (6) and arranging them yield

s − 2β − ϕ1ð Þê1 − ê2 + ê3 = e10 + F̂1,
−ϕ3ê1 + s + 1ð Þê2 = e20 + F̂2,
−rs0ê1 + s + rð Þê3 = e30,
s + ϕ1ð Þê4 − ê5 + ê6 = e40 + F̂3,
−ϕ3e4 + s + 1ð Þê5 = e50 + F̂4,
−rs0ê4 + s + rð Þê6 = e60,

ð9Þ

where ei0, i = 1,⋯, 6, are given initial values of system (6),
and

F̂ j =
ð+∞
0

Fj tð Þ
� �

e−stdt,  j = 1, 2, 3, 4: ð10Þ

Since only e1,2,3 need to be considered, solving the first
three equations in system (9) leads to

ê1 =
g2
g1

+ s2 + r + 1ð Þs + r
� �

F̂1
g1

+ s + rð ÞF̂2
g1

,

ê2 =
g3
g1

+ r + sð Þϕ3 F̂1
g1

+ s2 + r − 2β − ϕ1ð Þs + r s0 − 2β − ϕ1ð Þ� �
F̂2

g1
,

ê3 =
g4
g1

+ rs0 s + 1ð ÞF̂1
g1

+ rs0 F̂2
g1

, ð11Þ

where

g1 = s3 − 2β − r + ϕ1 − 1ð Þs2 − 2 r + 1ð Þβ + r ϕ1 − 1 − s0ð Þ½
+ ϕ1 + ϕ3�s − r 2β − s0 + ϕ1 + ϕ3ð Þ,

g2 = e10s
2 + e10 r + 1ð Þ + e20 − e30½ �s + r e10 + e20ð Þ − e30,

g3 = e20s
2 + ϕ3e10 + r − 2β − ϕ1ð Þe20½ �s + e10rϕ3

+ r s0 − 2β − ϕ1ð Þe20 − ϕ3e30,

g4 = e30s
2 + rs0e10 + 1 − 2β − ϕ1ð Þe30½ �s + rs0 e10 + e20ð Þ

− 2β + ϕ1 + ϕ3ð Þe30:
ð12Þ

From the convolution theorem, taking the inverse
Laplace transform on both hands of equations in equation
(11), one has

3Neural Plasticity



e1 =Φ1 +
ðt
0
Φ2 t − τð ÞF1 τð Þ +Φ3 t − τð ÞF2 τð Þ½ �dτ,

e2 =Φ4 +
ðt
0
Φ5 t − τð ÞF1 τð Þ +Φ6 t − τð ÞF2 τð Þ½ �dτ,

e3 =Φ7 +
ðt
0
Φ8 t − τð ÞF1 τð Þ +Φ9 t − τð ÞF2 τð Þ½ �dτ,

ð13Þ

where ΦiðtÞ, i = 1, 2,⋯, 9, denote the following inverse
Laplace transforms, respectively,

Φ1 tð Þ = L−1
g2
g1

� �
,

Φ2 tð Þ = L−1
s2 + r + 1ð Þs + r

g1

� �
,

Φ3 tð Þ = L−1
s + r
g1

� �
,

Φ4 tð Þ = L−1
g3
g1

� �
,

Φ5 tð Þ = L−1
r + sð Þϕ3
g1

� �
,

Φ6 tð Þ = L−1
s2 + r − 2β − ϕ1ð Þs + r s0 − 2β − ϕ1ð Þ� �

g1

� �
,

Φ7 tð Þ = L−1
g4
g1

� �
,

Φ8 tð Þ = L−1
rs0 s + 1ð Þ

g1

� �
,

Φ9 tð Þ = L−1
rs0
g1

� �
:

ð14Þ

The kernels in ΦiðtÞ, i = 1, 2,⋯, 9, are true fractions
which can be partitioned into the partial fraction expan-
sions; therefore,

Φ1,⋯,9 =

L−1
ξ1

s − s1
+ ξ2
s − s2

+ ξ3
s − s3

� �
= 〠

3

i=1
ξie

sit , s1 ≠ s2 ≠ s3,

L−1
ξ1

s − s1ð Þ2 + ξ2
s − s1

+ ξ3
s − s3

" #
= ξ1t + ξ2ð Þes1t + ξ3e

s3t , s1 = s2 ≠ s3,

L−1
ξ1

s − s1ð Þ3 + ξ2
s − s1ð Þ2 + ξ3

s − s1

" #
= ξ1

2 t2 + ξ2t + ξ3

� 	
es1t , s1 = s2 = s3,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

where ξi are undetermined constants and s = si, i = 1, 2, 3,
are the roots to the equation g1ðsÞ = 0 (g1ðsÞ is defined
in equation (11)). If all the real parts of roots of g1ðsÞ =
0 are negative, Φ1,⋯,9ðtÞ→ 0 when the time approaches
to infinity. In this case, equation (13) becomes

e1 =
ðt
0
Φ2 t − τð ÞF1 τð Þ +Φ3 t − τð ÞF2 τð Þ½ �dτ

=
ðt
0
Φ2 t − τð Þ −a 3e4 τð Þ2 + e1 τð Þ2� �

+ 2ϕ2e4 τð Þ� ��
− 2dΦ3 t − τð Þe4 τð Þ�e1 τð Þdτ,

e2 =
ðt
0
Φ5 t − τð ÞF1 τð Þ +Φ6 t − τð ÞF2 τð Þ½ �dτ

=
ðt
0
Φ5 t − τð Þ −a 3e4 τð Þ2 + e1 τð Þ2� �

+ 2ϕ2e4 τð Þ� ��
− 2dΦ6 t − τð Þe4 τð Þ�e1 τð Þdτ,

e3 =
ðt
0
Φ8 t − τð ÞF1 τð Þ +Φ9 t − τð ÞF2 τð Þ½ �dτ

=
ðt
0
Φ8 t − τð Þ −a 3e4 τð Þ2 + e1 τð Þ2� �

+ 2ϕ2e4 τð Þ� ��
− 2dΦ9 t − τð Þe4 τð Þ�e1 τð Þdτ:

ð16Þ

From the successive approximation method introduced
in references [26, 27], e1,2,3 → 0 in equation (16) with time
approaching to infinity if all the roots of g1ðsÞ = 0 have
negative real parts. g1ðsÞ has the form of

g1 sð Þ = s3 + p1s
2 + p2s + p3: ð17Þ

According to the Routh-Hurwitz criterion, 3 Hurwitz
matrices using the coefficients pi, i = 1, 2, 3, of g1ðsÞ are
given by

H1 = p1½ �,

H2 =
p1 1
0 p2

" #
,

H3 =
p1 1 0
p3 p2 p1

0 0 p3

2
664

3
775:

ð18Þ

All of the roots of the polynomial g1ðsÞ are negative or
have negative real parts if and only if the determinants of
all Hurwitz matrices are positive:

det Hj > 0, j = 1, 2, 3: ð19Þ

Since

det H1 = p1 > 0,
det H2 = p1p2 > 0,
det H3 = p1p2 − p3ð Þp3 > 0,

ð20Þ

the necessary and sufficient condition that all the roots of
g1ðsÞ = 0 have negative real parts can be written as
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2β − r + ϕ1 − 1 < 0,
2 r + 1ð Þβ + r ϕ1 − 1 − s0ð Þ + ϕ1 + ϕ3 < 0,

r 2β − s0 + ϕ1 + ϕ3ð Þ < 0,
2β − r + ϕ1 − 1ð Þ 2 r + 1ð Þβ + r ϕ1 − 1 − s0ð Þ + ϕ1 + ϕ3½ �
+ r 2β − s0 + ϕ1 + ϕ3ð Þ > 0,

ð21Þ

where ϕ1,3 are defined in equation (4). Equation (21) just
is the synchronization condition for the two coupled HR
neurons in system (2).

3. Two HR Neurons with Nonlinear
Coupling Functions

Consider two coupled HR neurons with a nonlinear coupling
function

_x1 = y1 − ax31 + bx21 − z1 + I + α H x1ð Þ −H x2ð Þð Þ,
_y1 = c − dx21 − y1 + α dx21 − dx22

� �
,

_z1 = rs0 x1 − x0ð Þ − rz1,
_x2 = y2 − ax32 + bx22 − z2 + I + α H x2ð Þ −H x1ð Þð Þ,
_y2 = c − dx22 − y2 + α dx22 − dx21

� �
,

_z2 = rs0 x2 − x0ð Þ − rz2,

ð22Þ

where α is the coupling strength and HðxÞ = ax3 − bx2 − x.
Substituting equation (3) into equation (22) produces

_u1 = ϕ1u1 + ϕ2u
2
1 − au31 + u2 − u3 + α a u31 − v31

� ��
− ϕ2 u21 − v21

� �
− ϕ1 + 1ð Þ u1 − v1ð Þ�,

_u2 = ϕ3u1 − du21 − u2 + α d u21 − v21
� �

− ϕ3 u1 − v1ð Þ� �
,

_u3 = r s0u1 − u3ð Þ,
_v1 = ϕ1v1 + ϕ2v

2
1 − av31 + v2 − v3 − α a u31 − v31

� �
− ϕ2 u21 − v21

� ��
− ϕ1 + 1ð Þ u1 − v1ð Þ�,

_v2 = ϕ3v1 − dv21 − v2 − α d u21 − v21
� �

− ϕ3 u1 − v1ð Þ� �
,

_v3 = r s0v1 − v3ð Þ,
ð23Þ

where ϕ1,2,3 are defined in equation (4). Substituting equation
(5) into equation (23) yields

_e1 = −2α ϕ1 + 1ð Þ + ϕ1½ �e1 + e2 − e3 + F5,
_e2 = 1 − 2αð Þϕ3e1 − e2 + F6,
_e3 = r s0e1 − e3ð Þ,
_e4 = ϕ1e4 + e5 − e6 + F3,
_e5 = ϕ3e4 − e5 + F4,
_e6 = r s0e4 − e6ð Þ,

ð24Þ

where

F3 = −a 3e21e4 + e34
� �

+ ϕ2 e21 + e24
� �

,

F4 = −d e21 + e24
� �

,

F5 = 2α − 1ð Þ ae31 + 3ae1e24 − 2ϕ2e1e4
� �

,
F6 = 2d 2α − 1ð Þe1e4:

ð25Þ

If e1,2,3 → 0, synchronization appears in equation (23).
Taking the Laplace transforms on both sides of the first three
equations in equation (24), one has

s + 2α ϕ1 + 1ð Þ − ϕ1½ �ê1 − ê2 + ê3 = e10 + F̂5,
2α − 1ð Þϕ3e1 + s + 1ð Þê2 = e20 + F̂6,

−rs0ê1 + s + rð Þê3 = e30,

ð26Þ

where ei0, i = 1, 2, 3, are given initial values of system (24),
and

F̂ j =
ð+∞
0

Fj tð Þ
� �

e−stdt,  j = 5, 6: ð27Þ

Solving equation (26) leads to

ê1 =
h2
h1

+ s2 + r + 1ð Þs + r
� �

F̂5
h1

+ s + rð ÞF̂6
h1

,

ê2 =
h3
h1

+ r + sð Þ 1 − 2αð Þϕ3 F̂5
h1

−
h4 F̂6
h1

,

ê3 =
h5
h1

+ rs0 s + 1ð ÞF̂5
h1

+ rs0 F̂6
h1

:

ð28Þ

where

h1 = s3 + 2α ϕ1 + 1ð Þ − ϕ1 + r + 1ð Þs2 + 2α − 1ð Þϕ1 r + 1ð Þ½
+ 2α r + 1 + ϕ3ð Þ + r s0 + 1ð Þ − ϕ3�s + r 2α − 1ð Þ ϕ1 + ϕ3ð Þ½
+ s0 + 2α�,

h2 = e10s
2 + e10 r + 1ð Þ + e20 − e30½ �s + r e10 + e20ð Þ − e30,

h3 = −e220s
2 + e10 2α − 1ð Þϕ3 − r + 2α ϕ1 + 1ð Þ − ϕ1ð Þe20½ �s

− e20r 2α ϕ1 + 1ð Þ − ϕ1½ � + e10r − e30ð Þ 2α − 1ð Þϕ3 − rs0e20,

h4 = s2 + 2α ϕ1 + 1ð Þ − ϕ1 + rð Þs + r 2α ϕ1 + 1ð Þ − ϕ1 + s0ð Þ,
h5 = e30s

2 + rs0e10 + 1 + 2α ϕ1 + 1ð Þ − ϕ1ð Þe30½ �s + rs0 e10 + e20ð Þ
+ 2α − 1ð Þ ϕ1 + ϕ3ð Þ + 2α½ �e30:

ð29Þ

Taking the inverse Laplace transform on both sides of the
three equations in equation (28), one yields
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e1 =Ψ1 tð Þ +
ðt
0
Ψ2 t − τð ÞF5 τð Þ +Ψ3 t − τð ÞF6 τð Þ½ �dτ,

e2 =Ψ4 tð Þ +
ðt
0
Ψ5 t − τð ÞF5 τð Þ −Ψ6 t − τð ÞF6 τð Þ½ �dτ,

e3 =Ψ7 tð Þ +
ðt
0
Ψ8 t − τð ÞF5 τð Þ +Ψ9 t − τð ÞF6 τð Þ½ �dτ,

ð30Þ

where Ψ1,⋯,9ðtÞ represent the following inverse Laplace
transforms:

Ψ1 tð Þ = L−1
h2
h1

� �
,

Ψ2 tð Þ = L−1
s2 + r + 1ð Þs + r

h1

� �
,

Ψ3 tð Þ = L−1
s + r
h1

� �
,

Ψ4 tð Þ = L−1
h3
h1

� �
,

Ψ5 tð Þ = L−1
r + sð Þ 1 − 2αð Þϕ3

h1

� �
,

Ψ6 tð Þ = L−1
h4
h1

� �
,

Ψ7 tð Þ = L−1
h5
h1

� �
,
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Figure 1: The dynamics of system (2) with r = 0:02 and I = 3:6: (a) β = −0:3 and (b) β = −0:6. Synchronization errors: (c) β = −0:3 and (d)
β = −0:6. The initial conditions are x1ð0Þ = 0:2, y1ð0Þ = 0:1, z1ð0Þ = 0:2, x2ð0Þ = 0:1, y2ð0Þ = 0:1, and z2ð0Þ = 0:1.
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Ψ8 tð Þ = L−1
rs0 s + 1ð Þ

h1

� �
,

Ψ9 tð Þ = L−1
rs0
h1

� �
: ð31Þ

Furthermore, Ψ1,⋯,9 can be expressed as the following
forms:

Ψ1,⋯,9 =

L−1
η1

s − s1
+ η2
s − s2

+ η3
s − s3

� �
= 〠

3

i=1
ηie

sit , s1 ≠ s2 ≠ s3,

L−1
η1

s − s1ð Þ2 + η2
s − s1

+ η3
s − s3

" #
= η1t + η2ð Þes1t + η3e

s3t , s1 = s2 ≠ s3,

L−1
η1

s − s1ð Þ3 + η2
s − s1ð Þ2 + η3

s − s1

" #
= η1

2 t2 + η2t + η3


 �
es1t , s1 = s2 = s3,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð32Þ

where ηi are undetermined constants and s = si, i = 1, 2, 3, are
the roots to the equation h1ðsÞ = 0 (h1ðsÞ is defined in equation
(28)). From the analysis for the case of a linear coupling func-
tion in the previous section, if Ψ1,⋯,9 → 0 when the time
approaches to infinity, e1,2,3 → 0 in equation (24) will be
achieved, which means that all roots of h1ðsÞ = 0 should have
negative real parts. Based on the Routh-Hurwitz criterion,
the synchronization condition in system (23) can be written as

2α ϕ1 + 1ð Þ − ϕ1 + r + 1 > 0,
2α − 1ð Þϕ1 r + 1ð Þ + 2α r + 1 + ϕ3ð Þ + r s0 + 1ð Þ − ϕ3 > 0,

r 2α − 1ð Þ ϕ1 + ϕ3ð Þ + s0 + 2α½ � > 0,
2α ϕ1 + 1ð Þ − ϕ1 + r + 1½ � 2α − 1ð Þϕ1 r + 1ð Þ + 2α r + 1 + ϕ3ð Þ½
+ r s0 + 1ð Þ − ϕ3� − r 2α − 1ð Þ ϕ1 + ϕ3ð Þ + s0 + 2α½ � > 0:

ð33Þ
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Figure 2: The dynamics of system (2) with r = 0:013 and I = 3:0: (a) β = −0:3 and (b) β = −0:6. Synchronization errors: (c) β = −0:3 and (d)
β = −0:6. The initial conditions are x1ð0Þ = 0:2, y1ð0Þ = 0:1, z1ð0Þ = 0:2, x2ð0Þ = 0:1, y2ð0Þ = 0:1, and z2ð0Þ = 0:1.
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4. Numerical Simulations

In this section, some numerical simulations are performed to
illustrate the correctness of the synchronization criteria
derived in previous sections. Here, a = 1:0, b = 3:0, c = 1:0, d
= 5:0, s0 = 4, and x0 = −1:60. First, the case of the linear func-
tion, which is system (2), is considered. If r = 0:02 and I = 3:6,
the two HR neurons in system (2) with β = 0 exhibit periodic
spikes. From equation (21), the synchronization condition
for system (2) is β < −0:55. To demonstrate the validity of
the coupling strength, β = −0:6 and β = −0:3 are chosen to
carry out the numerical simulations of system (2), respec-
tively. The initial conditions are taken as x1ð0Þ = 0:2, y1ð0Þ
= 0:1, z1ð0Þ = 0:2, x2ð0Þ = 0:1, y2ð0Þ = 0:1, and z2ð0Þ = 0:1.
The numerical results are presented in Figure 1, which dem-
onstrates the effectiveness of the synchronization condition
(21).

When r = 0:013 and I = 3, the two HR neurons in system
(2) with β = 0 exhibit burst-spike chaotic behavior. Accord-
ing to equation (21), the synchronization condition for sys-
tem (2) is β < −0:56. To demonstrate the validity of the
coupling strength, β = −0:6 and β = −0:3 are taken to per-
form the numerical simulations of system (2), respectively.
The initial conditions were kept the same as those in
Figure 1. The results are presented in Figure 2, which illus-
trates the correctness of the synchronization condition (21).

For the case of the nonlinear coupling function, let x0 =
−1:56, r = 0:006, I = 3:0, and other parameters keep
unchanged. According to [22], based on the conditional Lya-
punov exponent method, the synchronization condition is
approximately given as α ∈ ½0:265,0:61�. From criterion
(33), the synchronization condition is ½0:275,0:7�. Therefore,
the synchronization criterion proposed in this paper is valid.

5. Conclusion

In this paper, the synchronization between two HR neurons
with linear and nonlinear coupling functions is investigated
by using the Laplace transform and the convolution theorem.
Different from other researchers, the synchronization error
system can be expressed in its integral form, which is more
convenient to analyze. The synchronization problem is ulti-
mately converted into the stability problem of roots to a non-
linear algebraic equation. Then, an analytical criterion for
synchronization in the two HR neurons can be given by using
the Routh-Hurwitz criterion. Numerical simulations show
that the synchronization criterion derived in this paper is
effective, regardless of the periodic spikes or burst-spike
chaotic behavior of the two HR neurons. Furthermore, our
analytical results have almost the same accuracy as the condi-
tional Lyapunov method. Since the calculation quantities are
very small, the approach presented in this paper is easy to be
developed to study synchronization between a large number
of HR neurons.
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