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Memetic algorithms with an appropriate trade-off between the exploration and exploitation can obtain very good results in
continuous optimization. In this paper, we present an improved memetic differential evolution algorithm for solving global
optimization problems. The proposed approach, called memetic DE (MDE), hybridizes differential evolution (DE) with a local
search (LS) operator and periodic reinitialization to balance the exploration and exploitation. A new contraction criterion, which
is based on the improved maximum distance in objective space, is proposed to decide when the local search starts. The proposed
algorithm is compared with six well-known evolutionary algorithms on twenty-one benchmark functions, and the experimental
results are analyzed with two kinds of nonparametric statistical tests. Moreover, sensitivity analyses for parameters in MDE are
also made. Experimental results have demonstrated the competitive performance of the proposed method with respect to the six
compared algorithms.

1. Introduction

In 1989, the name of “memetic algorithms” (MAs) [1] was
introduced for the first time. In the last two decades,
MAs gradually became one of the recent growing areas of
research in evolutionary computation.They combine various
evolutionary algorithms (EAs) with different LS methods to
balance exploration and exploitation. Existing examples of
memetic algorithms are NM-BRO [2], MA-LSCh-CMA [3],
LBBO [4], IMMA [5], and MPSO [6]. In the framework of
MAs, LS operators are used to execute further exploitation for
the individuals generated by common EA operations, which
is helpful to enhance the EA’s capacity of solving complicated
problems.

Differential evolution was first proposed by Storn and
Price [7] in 1995 to solve global numerical optimization
problems over continuous search spaces. It shares some
similarities with other EAs. For example, DE works with a
population of solutions, called vectors; it uses recombination
and mutation operators to generate new vectors and, finally,
it has a replacement process to discard the less fit vectors.
DE represents solutions with real coding. Some of the

differences with respect to other EAs are as follows: DE uses
a special mutation operator based on the linear combination
of three individuals and uses a uniform crossover operator.
It has several attractive features. DE is relatively simple to
implement and was demonstrated to be very effective on a
large number of cases. In the past few decades, DE has been
successfully used in many real-world applications, such as
space trajectory design [8–10], hydrothermal optimization
[11], underwater glider path planning [12], and vehicle routing
problem [13].

Despite its successful applications to different classes
of problems in different fields, DE was demonstrated to
converge to a fixed point, a level set [10], or a hyperplane not
containing the global optimum [14]. Furthermore, in some
cases it was shown to have slow local convergence.

In order to overcome these shortcomings, some authors
have proposed a hybridization of DE with some local search
heuristics. dos Santos Coelho and Mariani [15] proposed
a version of memetic DE which combines DE with the
generator of chaos sequences and sequential quadratic pro-
gramming technique (DEC-SQP). In thismemetic algorithm,
DE with chaos sequences is the global optimizer and SQP
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is applied to the best individual to find the local minimum.
Noman and Iba [16] proposed an adaptive hill-climbing
crossover-based local search operation for enhancing the
performance of standard differential evolution (DEahcSPX).
Muelas et al. [17] developed MDE-DC which combines
DE with multiple trajectory search algorithm (MTS). Neri
and Tirronen [18] proposed the scale factor local search
differential evolution (SFLSDE). In SFLSDE, golden section
search and unidimensional hill-climb local search are applied
to detect an optimal value of the scale factor and gener-
ate a higher quality offspring. Wang et al. [19] proposed
an adaptive MA framework called DE-LS. In DE-LS, self-
adaptive differential evolution (SaDE) [20] is the global
searchmethod, while covariancematrix adaptation evolution
strategy (CMA-ES) [21] and self-adaptive mixed distribution
based univariate EDA (MUEDA) [22] are employed as
the local search methods. Vasile et al. [10] proposed an
inflationary differential evolution algorithm (IDEA), which
hybridizes DE with the restarting procedure of Monotonic
BasinHopping (MBH), to solve space trajectory optimization
problems. Minisci and Vasile [9] and Di Carlo et al. [8]
proposed an adaptive version of inflationary differential
evolution algorithm (AIDEA) and a multipopulation version
ofAIDEA (MP-AIDEA)which automatically adapt the values
of four control parameters. Locatelli et al. [23] proposed a
memetic differential evolution for disk-packing and sphere-
packing problems. In this algorithm, two kinds of local
searches (MINOS and SNOPT) are used to detect local
minima. Asafuddoula et al. [24] proposed an adaptive hybrid
DE algorithm (AH-DEa) which has three features.The first is
its use of adaptive crossover rates from a given set of discrete
values. The second is an adaptive crossover strategy at differ-
ent stages of the evolution. The last is the inclusion of a local
search strategy to further improve the best solution. Qin et
al. [25] proposed an advanced SaDE, which incorporates two
different local search chains (Lamarckian and Baldwinian)
into SaDE to enhance exploitation capability. Trivedi et al.
[26] hybridized DE and GA to solve the unit commitment
scheduling problems, in which GA was used to handle the
binary unit commitment variables while DE was employed
to optimize the continuous power dispatch related variables.
In the same year, Li et al. [27] proposed a new hybridization,
named DEEP, based on DE framework and the key features
of CMA-ES, which generates a trial vector by first using a
DE/rand/1/bin strategy followed by an Evolution Path (EP)
mutation of CMA-ES.

The focus of this paper is to optimally combine DE global
search operators with Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm to improve local search in continuous
optimization. A new contraction criterion, which is based on
themaximumdistances in objective space anddecision space,
is proposed. When the contraction criterion is satisfied,
BFGS starts from the best solution at the current generation.
Furthermore, a restart mechanism is employed. If the best
solution is not improved during the course of the local search,
the population is reinitialized to increase the chance to find
the global optimum.

Thepaper is organized as follows: DE is briefly introduced
in Section 2. The proposed DE algorithm with local search

and reinitialization is presented in Section 3.Thedesign of the
experiments, the results, and the corresponding discussions
are included in Section 4. The last section, Section 5, is
devoted to conclusions and the future work.

2. A Short Introduction to
Differential Evolution

DE is a population-based stochastic parallel optimization
method. Each vector (or individual) of the population at 𝑡
generation is called the target vector, and it will generate one
offspring called the trial vector. For example, the 𝑖th vector
of the population 𝑥𝑖 will generate one trial vector 𝑢𝑖. Trial
vectors are generated by adding weighted difference vectors
to the target vector.This process is referred to as themutation
operator where the target vector is mutated. A crossover
step is then applied to produce an offspring which is only
accepted if it improves on the fitness of the parent individual.
Many variants of standardDE have been proposed, which use
different learning strategies and/or recombination operations
in the reproduction stage. A general DE variant may be
recorded as DE/a/b/c, where “a” denotes the mutation strat-
egy, “b” specifies the number of difference vectors used, and
“c” specifies the crossover scheme which may be binomial or
exponential. The DE/rand/1/exp is described in Algorithm 1.

3. Proposed Algorithm

In this section, we describe four major operations of the
proposedMDEalgorithm in detail, including contraction cri-
terion, BFGS search, reinitialization scheme, and boundary
constraint handling.Thedetailed description ofMDE is given
in Algorithm 2.

3.1. Contraction Criterion. In order to design an effective and
efficient hybrid algorithm for global optimization, we need to
take advantage of both the exploration capabilities of EA and
the exploitation capabilities of LS and combine them in awell-
balanced manner. To incorporate BFGS into DE successfully,
a triggering condition, called contraction criterion, is needed
to decide when the local search has to start. There are several
kinds of methods to define a contraction criterion. Qin and
Suganthan [20] applies local search method after a fixed
number of generations (every 200 generations). Sun et al. [5]
starts the LS if the promising solution is not updated in t-
consecutive generations. Simon et al. [4] use the minimum
fitness in the objective space as the contraction criterion; Di
Carlo et al. [8–10] perform LS when the maximum distance
in decision space is below a given threshold.

In MDE, we propose a new contraction criterion which
combines two criteria: (a) 𝜌1 is the improved maximum
distance in objective space and (b) 𝜌2 is the maximum
distance in decision space.The idea of 𝜌1 is derived from [28]

𝜌1 = [
[
𝑀

∑
𝑖=1

(𝑓𝑖 (𝑥) − 𝑓avg (𝑥))2
(𝑀 − 1) ]

]

1/2

, (1)

where 𝜌1 is a measure of the diversity of the population in
objective space.
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(1) Generate the initial population 𝑃, define 𝑥𝑖 as the 𝑖th individual in 𝑃,𝑀 is the population size,
NFEs is the number of function evaluations in each run, Max_GEN is the maximum generation,
Max_NFEs is the number of max function evaluation,𝐷 is the number of decision variable,
𝐹 is the mutation factor, CR is crossover rate.
(2) NFEs = 0
(3) Evaluate the fitness 𝑓(𝑥𝑖) for the each individual in 𝑃.
(4) NFEs = NFEs +𝑀
(5) while 𝑡 ≤ Max_GEN and NFES ≤ Max_NFEs do
(6) for 𝑖 = 1 to𝑀 do
(7) Select 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3 and 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖
(8) 𝑗 = randint(1, 𝐷)
(9) 𝐿 = 0
(10) 𝑢𝑖 = 𝑥𝑖
(11) repeat
(12) 𝑢𝑖,𝑗 = 𝑥𝑟1,𝑗 + 𝐹 ∗ (𝑥𝑟2,𝑗 − 𝑥𝑟3,𝑗)
(13) 𝑗 = (𝑗 + 1)%𝐷
(14) 𝐿 = 𝐿 + 1
(15) until ((randreal[0, 1) > CR) or (𝐿 > 𝐷))
(16) Evaluate the trial vector 𝑢𝑖
(17) NFEs = NFEs + 1
(18) if 𝑢𝑖 is better than 𝑥𝑖 then
(19) 𝑥𝑖 = 𝑢𝑖
(20) end if
(21) end for
(22) 𝑡 = 𝑡 + 1
(23) end while

Algorithm 1: DE with rand/1/exp.

The distance in decision space is defined as

𝜌2 = max (𝑥𝑖 − 𝑥𝑗
) , ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑃, (2)

where ‖ ⋅ ‖ is the Euclidean distance. 𝜌2 is a measure of the
diversity of the population in decision space.

3.2. BFGS Search. InMDE, the local search utilizes the better
solutions obtained by the global search to update the popula-
tion of MDE and thus enhances MDE’s exploitation ability to
find the best solution. In MDE, we use the BFGS algorithm
as the local search method. BFGS is one of the quasi-Newton
methods which do not need the precise Hessian matrix and
is able to approximate it based on the individual successive
gradients. BFGS is considered as the most effective and
popular quasi-Newton method and has been proven to have
good performance even for nonsmooth optimizations. The
details can be found in [29].

3.3. Reinitialization Scheme. If the best solution has not been
improved after local search, a reinitialization of the whole
population is used to give the algorithms more opportunities
to find the global optimum. Simon et al. [4] proposed a partial
reinitialization of the population. Every 20 generations, the
algorithm selects the best 𝑀 individuals from a temporary
population of 2𝑀 + 2 individuals as the reinitialization pool.
Sun et al. [5] chose the individuals, which have the largest
distances from the local optima, froma temporary population
to form the next population. Zamuda et al. [30] proposed
a population size reduction method as the reinitialization

scheme. In MDE, we apply a simple reinitialization scheme
described in Algorithm 3. If the result of the local search
does not improve the best individual in the population, a
reinitialization of the population is triggered. A counter 𝐶
keeps track of the number of restarts. For 𝐶 < 𝐶max, where𝐶max is user-defined,𝑀 individuals are generated randomly
in the search space, drawing samples from a uniform distri-
bution. For 𝐶 ≥ 𝐶max, 2𝑀/3 individuals in the population
are initialized randomly in the search space, while the rest
are initialized by a normal distribution which takes the best
individual as the center and (𝑈𝑖 − 𝐿 𝑖)/50 as the standard
deviation. Algorithm 3 summarises the reinitialization pro-
cedure.The function randreal draws samples from a uniform
distribution while function Gaussian draws samples from
a normal distribution and [𝐿 𝑖, 𝑈𝑖] are the lower and upper
boundaries on 𝑥𝑖.
3.4. BoundaryConstraintHandling. Aftermutation and cross-
over, each generated trial vector 𝑢𝑖 undergoes boundary
constraint check. If some variables of 𝑢𝑖 are out of the
boundary, a repair method is applied as follows:

𝑥𝑖 = randreal (𝐿 𝑖, 𝑈𝑖) , if 𝑥𝑖 < 𝐿 𝑖 or 𝑥𝑖 > 𝑈𝑖, (3)
where randreal (𝐿 𝑖, 𝑈𝑖) can generate a random real number
from [𝐿 𝑖, 𝑈𝑖].
4. Experimental Results

In order to verify the performance of MDE, we select the
21 nonnoisy benchmark functions from CEC2005 special
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(1) Generate the initial population 𝑃, define 𝑥𝑖 as the 𝑖th vector in 𝑃,
𝑥best is the best vector in the current generation,
𝑥min is the global best vector in the generation.𝑀 is the population size,
NFEs is the number of function evaluations in each run, Max_GEN is the maximum generation,
Max_NFEs is the number of max function evaluation,
𝐷 is the number of decision variable, 𝐹 is the mutation factor, CR is crossover rate,
𝜌1 and 𝜌2 are the contraction criterion, Flag is the restart mark.
(2) NFEs = 0
(3) Evaluate the fitness 𝑓(𝑥𝑖) for the each individual in 𝑃.

NFEs = NFEs +𝑀.
(4) Flag = 0, count = 0
(5) while 𝑡 ≤ Max_GEN and NFES ≤ Max_NFEs do
(6) Global search using DE
(7) for 𝑖 = 1 to𝑀 do
(8) CR ∈ 𝑁(0.8, 0.1), 𝐹 ∈ 𝑁(0.5, 0.1)
(9) Select 𝑥𝑟1, 𝑥𝑟2, 𝑥𝑟3 and 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖
(10) 𝑢𝑖 = 𝑥𝑖
(11) if NFES < 0.2 ×Max_NFEs then
(12) Using DE/rand/1/bin to generate 𝑢𝑖
(13) else
(14) Using DE/rand/1/exp to generate 𝑢𝑖
(15) end if
(16) Evaluate the trial vector 𝑢𝑖. NFEs = NFEs + 1
(17) if 𝑢𝑖 is better than 𝑥𝑖 then
(18) 𝑥𝑖 = 𝑢𝑖
(19) end if
(20) end for
(21) if 𝑓(𝑥best) < 𝑓(𝑥min) then
(22) Replace 𝑥min with 𝑥best.
(23) end if
(24) Local search using BFGS
(25) Calculate the contraction criterion as described in Section 3.1
(26) if (𝜌1 < 𝜌1,max or 𝜌2 < 𝜌2,max) then
(27) Pick up the 𝑥best as the initial point of the local search.
(28) Apply BFGS (𝑥best) to find the resultant new local optimum 𝑥local as described in Section 3.2.
(29) if 𝑓(𝑥local) < 𝑓(𝑥best) then
(30) Replace 𝑥best with 𝑥local.
(31) NFEs = NFEs + 1
(32) Flag = 0
(33) else
(34) Flag = 1
(35) end if
(36) if 𝑓(𝑥best) < 𝑓(𝑥min) then
(37) Replace 𝑥min with 𝑥best.
(38) end if
(39) Restart mechanism
(40) if Flag == 1 then
(41) Run the re-initialization to create a new population 𝑃 as described in Section 3.3.
(42) Reinitialize 𝑥best.
(43) end if
(44) 𝑡 = 𝑡 + 1
(45) end if
(46) end while

Algorithm 2: Pseudocode of MDE.

session on real-parameter optimization (excluding noisy
functions 𝐹4, 𝐹17, 𝐹24, and 𝐹25) since MDE has no ability
to handle functions with noisy landscapes. The details about

these functions can be found in [31]. We compare MDE
with six peer algorithms, including CLPSO [32], GL-25 [33],
CMA-ES [21], LBBO [4], SFLSDE [18], and L-SHADE [34].
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(1) std = (𝑈𝑖 − 𝐿 𝑖)/50.0
(2) if 𝐶 < 𝐶max then
(3) Generate 𝑃 randomly.
(4) else
(5) for 𝑖 = 1 to 2/3 ∗𝑀 do
(6) 𝑥𝑖 = randreal (𝐿 𝑖, 𝑈𝑖)
(7) end for
(8) for 𝑖 = 2/3 ∗𝑀 to𝑀 do
(9) 𝑥𝑖 = Gaussian (𝑥best, std)
(10) end for
(11) end if

Algorithm 3: Pseudocode of reinitialization scheme.

4.1. Experimental Setup. For each algorithm on each bench-
mark problem, we conduct 25 independent runs and limit
each run to 10000 ∗ 𝐷 max function evaluations, where 𝐷
is the problem dimension (𝐷 = 10, 𝐷 = 30, and 𝐷 = 50).
The performance of the algorithms is evaluated in terms of
function error value [31], defined as 𝑓(𝑥) − 𝑓(𝑥∗), where 𝑥∗
is the global optimum of the test function. The mean and the
standard deviation of the function error values are recorded.
The parameters of MDE are set as 𝑀 = 30, 𝜌1,max = 2.0,
𝜌2,max = 2.0, 𝐶max = 3, 𝐶𝑅 ∈ 𝑁(0.8, 0.1), and 𝐹 ∈ 𝑁(0.5, 0.1);
the mutation and crossover strategies are the same as those in
[24]. For the other six algorithms, we use the same parameter
settings in their original papers.

4.2. Performance Criteria. To effectively analyze the results,
two nonparametric statistical tests, as similarly done in [35,
36], are used in the experiments. (i) Wilcoxon’s signed-rank
test at 𝛼 = 0.05 is performed to test the statistical significance
of the experimental results between two algorithms on both
single-problem and multiproblem. (ii) Friedman’s test is
employed to obtain the average rankings of all the compared
algorithms. Wilcoxon’s signed-rank test on single-problem
is calculated by Matlab, while Wilcoxon’s signed-rank test
on multiproblem and Friedman test are calculated by the
software of KEEL [37].

4.3. Comparison between the Other Six Algorithms and MDE.
Table 1 shows the results ofMDE and the other six algorithms
on the 10-dimensional benchmarks. It can be seen that MDE
performs significantly better than CLPSO, GL-25, CMA-ES,
LBBO, SFLSDE, and L-SHADE on 15, 16, 17, 7, 8, and 8 test
functions. And CLPSO, GL-25, CMA-ES, LBBO, SFLSDE,
and L-SHADE win on 4, 4, 3, 5, 8, and 8 test functions,
respectively. MDE obtains similar results with the other six
algorithms in 2, 1, 1, 9, 5, and 5 cases. Additionally, the
results of the multiple-problem statistical analysis are shown
in Table 4. It can be seen that MDE can obtain higher 𝑅+
values than𝑅− values in all cases, where𝑅+ is the sumof ranks
for the functions onwhichMDEoutperformed the compared
algorithm, and 𝑅− is the sum of ranks for the opposite [36].
According to Wilcoxon’s test at 𝛼 = 0.05 and 𝛼 = 0.1,
there are significant differences in three cases (MDE versus
CLPSO, MDE versus GL-25, and MDE versus CMA-ES),
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test for all functions at𝐷 = 30.

which means that in those cases MDE is significantly better
than CLPSO, GL-25, and CMA-ES. In addition, Friedman’s
test is employed to evaluate the significant differences of all
the compared algorithms. As shown in Figure 1, MDE gets
the second average ranking value, while L-SHADE gets the
first average ranking values on the 10-dimensional problems.

Table 2 shows that MDE performs significantly better
than the other six compared algorithms in the majority of
the test functions. For example, MDE wins in 12 cases, only
loses in 3 cases, and ties in 6 cases, compared with SFLSDE.
We can also find that MDE obtains much better solutions
than LBBO and CLPSO. As for L-SHADE, MDE wins in 8
cases and loses in 10 cases. According to the results of the
multiple-problem statistical analysis shown in Table 5, it can
be seen thatMDE can obtain higher 𝑅+ values than 𝑅− values
in all cases. According to Wilcoxon’s test at 𝛼 = 0.05 and
𝛼 = 0.1, there are significant differences in four cases (MDE
versus CLPSO, MDE versus GL-25, MDE versus CMA-ES,
and MDE versus SFLSDE), which means that in those cases
MDE is significantly better than CLPSO, GL-25, CMA-ES,
and SFLSDE. And from Table 5, we can find that L-SHADE
andMDE have comparable results. Moreover, Figure 2 shows
that MDE performs the first average ranking value and
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Figure 3: Average rankings of the seven algorithms by Friedman
test for all functions at𝐷 = 50.

L-SHADE obtains the second average ranking values on the
30-dimensional problems by Friedman’s test.

Table 3 shows thatMDE also performs significantly better
than five compared algorithms in the majority of the test
functions except L-SHADE. For example, MDE wins in 15
cases, only loses in 3 cases, and ties in 3 cases, compared
with LBBO. When comparing with L-SHADE, MDE wins
in 8 cases and loses in 12 cases. Table 6 shows that MDE
can perform higher 𝑅+ values than 𝑅− values in five cases.
According to Wilcoxon’s test at 𝛼 = 0.05 and 𝛼 = 0.1, there
are significant differences in two cases (MDE versus GL-25
and MDE versus LBBO), which means that in those cases
MDE is significantly better than GL-25 and LBBO. Figure 3
shows that L-SHADE obtains better average ranking values
than the other six algorithms on 50-dimensional problems by
Friedman’s test.

In general, according to the analysis above, we can con-
clude that MDE and L-SHADE have better average rankings
among the seven algorithms on 21 benchmark problems for
all of three different dimensions. The performance of MDE
is comparable to L-SHADE on 10- and 30-dimensional prob-
lems, while L-SHADE is better thanMDE on 50-dimensional
problems because of the larger initial population and linear
population size reduction.

4.4. Influence of Contraction Criterion. In the previous exper-
iments the recommended initial 𝜌1,max = 2.0 and 𝜌2,max = 2.0
are used. In order to test the influence of different initial
contraction criterion values to the enhanced performance of
MDE, in this section, MDE is tested with different initial
𝜌1,max and 𝜌2,max values. The initial values are set as 𝜌1,max ={1.0, 2.0, 3.0} and 𝜌2,max = {1.0, 2.0, 3.0}. All other parameters
are not changed as described in Section 4.1. Nine groups of
experiments with different combinations between 𝜌1,max and𝜌2,max are done. 𝜌1.0,1.0means the value of parameters 𝜌1,max =1.0 and 𝜌2,max = 1.0. The statistical results by Friedman’s test
with all initial values are shown in Table 7.

From Table 7, MDE owes the best average ranking value
at 𝜌2.0,2.0 than the other 8 groups on both 10-dimensional
and 30-dimensional test functions. On 50-dimensional test

functions, 𝜌1.0,1.0 is the better choice to MDE. In general,
we can conclude that it is better to set smaller contrac-
tion criterion values as the dimension of test functions in-
creases.

4.5. Influence of Parameter𝐶max. Theexperiment is to test the
influence of parameter 𝐶max in MDE. Friedman’s test results
are shown in Table 8, where the values of 𝐶max are set as
𝐶max = {3, 5, 7, 9, 11, 13, 15} in Table 8. All other parameters
are kept unchanged as described in Section 4.1. In addition,
all experiments are conducted for 25 independent runs for
each function.

It can be seen from Table 8 that MDE with 𝐶max = 3.0
gets the better average ranking value than the other six cases
at𝐷 = 10. At𝐷 = 30,𝐶max = 5.0 is the best choice and𝐶max =3.0 is the second best choice toMDE. On 50-dimensional test
functions, 𝐶max = 3.0 is the better choice parameter to MDE.
Generally speaking, the small𝐶max value such as 3 or 5 is good
to enhance the performance of the MDE algorithm.

4.6. Influence of Population Size𝑀. To analyze the influence
of the population size 𝑀, different values of 𝑀 are tested
in a set of experiments. Friedman’s test results are shown in
Table 9, where the values of𝑀 are set as {30, 60, 90, 120, 150}.
All other parameters are kept unchanged as described in
Section 4.1.

From Table 9, MDE with𝑀 = 30 ranks the first both at
𝐷 = 10 and 𝐷 = 30, while MDE with𝑀 = 90 performs the
best at 𝐷 = 50. From the results, it can be concluded that, as
the dimension increases, a properly increased population size
𝑀 can enhance the search capability of MDE.

5. Conclusion

Amemetic differential evolution, MDE, has been introduced
in this paper. MDE uses a new contraction criterion to decide
when the local search starts. In addition, MDE includes the
global and local search operators, along with reinitialization,
to improve performance.

To evaluate the performance of MDE, 21 benchmark
functions with different characteristics are chosen for test.
The results show that (i) MDE can obtain better or at least
comparable results, compared with the other six algorithms;
(ii) small contraction criterion values and 𝐶max can enhance
the performance of MDE in terms of the quality of the final
results; (iii) a large population size is good to MDE as the
dimension increases.

In this paper, some preliminary experiments have been
performed to verify its effect on the performance of MDE.
In our future work, MDE will be tested on some real-world
applications problems. Moreover, we believe that some other
local search algorithms and adaptive population size strategy
can also be used in MDE.
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Table 4: Results obtained by the Multiple-ProblemWilcoxon test for twenty-one test functions at𝐷 = 10.
MDE versus 𝑅+ 𝑅− 𝑝 value At 𝛼 = 0.05 At 𝛼 = 0.1
CLPSO 169.0 41.0 0.016042 + +
GL-25 184.0 47.0 0.016472 + +
CMA-ES 192.0 18.0 0.001088 + +
LBBO 141.0 90.0 0.366155 = =
SFLSDE 147.0 63.0 0.112595 = =
L-SHADE 136.5 73.5 0.232226 = =

Table 5: Results obtained by the Multiple-ProblemWilcoxon test for twenty-one test functions at𝐷 = 30.
MDE versus 𝑅+ 𝑅− 𝑝 value At 𝛼 = 0.05 At 𝛼 = 0.1
CLPSO 200.0 31.0 0.003004 + +
GL-25 198.5 32.5 0.003705 + +
CMA-ES 177.0 54.0 0.031164 + +
LBBO 160.5 70.5 0.113770 = =
SFLSDE 184.0 47.0 0.016008 + +
L-SHADE 116.5 114.5 0.95842 = =

Table 6: Results obtained by the Multiple-ProblemWilcoxon test for twenty-one test functions at𝐷 = 50.
MDE versus 𝑅+ 𝑅− 𝑝 value At 𝛼 = 0.05 At 𝛼 = 0.1
CLPSO 155.5 75.5 0.157413 = =
GL-25 179.5 51.5 0.024970 + +
CMA-ES 136.0 95.0 0.465445 = =
LBBO 175.5 55.5 0.035480 + +
SFLSDE 138.0 93.0 0.424043 = =
L-SHADE 94.0 116.0 1 = =

Table 7: Average rankings of contraction criterion combinations by Friedman test at𝐷 = 10,𝐷 = 30, and𝐷 = 50.
𝐷 = 10 𝐷 = 30 𝐷 = 50

Parameters Ranking Parameters Ranking Parameters Ranking
𝜌1.0,1.0 4.5714 𝜌1.0,1.0 4.4286 𝜌1.0,1.0 4.2619
𝜌1.0,2.0 4.9286 𝜌1.0,2.0 4.881 𝜌1.0,2.0 4.4524
𝜌1.0,3.0 4.9524 𝜌1.0,3.0 4.381 𝜌1.0,3.0 5.0714
𝜌2.0,1.0 4.9762 𝜌2.0,1.0 4.9286 𝜌2.0,1.0 5
𝜌2.0,2.0 3.5714 𝜌2.0,2.0 4.2381 𝜌2.0,2.0 5.0476
𝜌2.0,3.0 6 𝜌2.0,3.0 5.6667 𝜌2.0,3.0 5.0238
𝜌3.0,1.0 5.1429 𝜌3.0,1.0 5.3571 𝜌3.0,1.0 5.2381
𝜌3.0,2.0 5.5714 𝜌3.0,2.0 5.5952 𝜌3.0,2.0 5.6905
𝜌3.0,3.0 5.2857 𝜌3.0,3.0 5.5238 𝜌3.0,3.0 5.2143

Table 8: Average rankings of 𝐶max by Friedman test at 𝐷 = 10,𝐷 = 30, and𝐷 = 50.
𝐷 = 10 𝐷 = 30 𝐷 = 50

Parameters Ranking Parameters Ranking Parameters Ranking
𝐶max = 3 3.4286 𝐶max = 3 3.5238 𝐶max = 3 3.6905
𝐶max = 5 3.5476 𝐶max = 5 3.3095 𝐶max = 5 4.2381
𝐶max = 7 3.9762 𝐶max = 7 4.0476 𝐶max = 7 3.881
𝐶max = 9 3.881 𝐶max = 9 4.3333 𝐶max = 9 3.8095
𝐶max = 11 4.5238 𝐶max = 11 4.2381 𝐶max = 11 4.5238
𝐶max = 13 3.7143 𝐶max = 13 4.1429 𝐶max = 13 4.119
𝐶max = 15 4.9286 𝐶max = 15 4.4048 𝐶max = 15 3.7381
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Table 9: Average rankings of𝑀 by Friedman test at 𝐷 = 10,𝐷 = 30, and𝐷 = 50.
𝐷 = 10 𝐷 = 30 𝐷 = 50

Parameters Ranking Parameters Ranking Parameters Ranking
𝑀 = 30 2.6429 𝑀 = 30 2.3095 𝑀 = 30 3.1905
𝑀 = 60 2.7143 𝑀 = 60 2.6429 𝑀 = 60 2.7857
𝑀 = 90 2.8333 𝑀 = 90 2.9762 𝑀 = 90 2.381
𝑀 = 120 2.9762 𝑀 = 120 3.0238 𝑀 = 120 3.0952
𝑀 = 150 3.8333 𝑀 = 150 4.0476 𝑀 = 150 3.5476
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