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Abstract

Exosomes are a subtype of extracellular vesicles released from different cell types including those 

in the nervous system, and are enriched in a variety of bioactive molecules such as RNAs, proteins 

and lipids. Numerous studies have indicated that exosomes play a critical role in many 

physiological and pathological activities by facilitating intercellular communication and 

modulating cells’ responses to external environments. Particularly in the central nervous system, 

exosomes have been implicated to play a role in many neurological disorders such as abnormal 

neuronal development, neurodegenerative diseases, epilepsy, mental disorders, stroke, brain injury 

and brain cancer. Since exosomes recapitulate the characteristics of the parental cells and have the 

capacity to cross the blood-brain barrier, their cargo can serve as potential biomarkers for early 

diagnosis and clinical assessment of disease treatment. In this review, we describe the latest 

findings and current knowledge of the roles exosomes play in various neurological disorders and 

brain cancer, as well as their application as promising biomarkers. The potential use of exosomes 

to deliver therapeutic molecules to treat diseases of the central nervous system is also discussed.
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INTRODUCTION

Extracellular vesicles (EV) were first described in 1967 as “platelet dusts” in plasma[1]. 

Currently, EVs are divided into three main categories based on the origination and size: 

exosome derived from endosomes, ranging from 40 to 100nm in diameter; microvesicle/

shedding particles from plasma membrane, which are larger than 100nm in diameter; 

apoptotic bodies from plasma membrane, which are 1-5 μm in diameter[2,3]. In this review, 

while most of the literature cited has used the term exosome, the degree of characterization 

of the exosomes in the various papers varied; most have met the guidelines such as size by 

NTA, exosomal markers and electron microscopy or zeta view, reported for exosomes in 

MISEV2014[4], and others with insufficient characterization to confirm specific identity as 

exosomes are referred to as extracellular vesicles.

Exosomes, initially described as vesicles released from various types of cultured cells[5], are 

microvesicles derived from endosomal membranes. Microvesicles were first described by 

Dr. C. Turbide in 1987 in his study of maturation of sheep reticulocyte. Vesicles obtained 

after 100,000x g centrifugation were found to contain some characteristic activity of the 

reticulocyte[6]. These vesicles were then further defined as being originated from 

endosomes, with a diameter from 30 to 100nm[7]. As a subtype of extracellular vesicles with 

a bilayer membrane that bud from cell membrane and/or are secreted, exosomes are 

heterogeneous and influenced by the physiological and pathological conditions of the 

originating cells. Exosomes are distributed broadly in human secretions and act as 

intercellular messengers via transferring or exchanging DNA, RNA, and proteins between 

cells[8,9].

Recently, emerging studies have revealed that exosomes have more complicated facets. They 

are not just secreted as cellular wastes or by-products, but contain a variety of cargos such as 

proteins, lipids, and nucleic acids, and exert their function by delivering cargoes to target 

cells and modulating the bioactivity of recipient cells. Therefore, exosomes serve as a new 

mode of intercellular communication and play a critical role in biological systems, and 

pathogenesis of diseases, including those of the central nervous system. In addition, the 

ability of exosomes to cross the blood-brain barrier makes them ideal therapeutic delivery 

vehicles and potential biomarkers for neurological disorders[10].

Exosome structure and content

Exosomes are released from a variety of cell types, and can be found in physiological fluids 

such as blood[11], cerebrospinal fluid[12], saliva[13],urine[14] and breast milk[15]. Exosomes 

consist of a wide range of molecules such as proteins, lipids and nucleic acids [Figure 1], 

and reflect the pathophysiology and physiological features of parental cells.

Current studies have shown that exosome membranes are enriched in sphingomyelin, 

phosphatidylserine, cholesterol, and ceramides. Exosomes contain a variety of proteins such 

as tetraspanins (CD9, CD63, CD81), endosomal origin proteins (ALIX, TSG 101), heat-

shock proteins (HSP70, HSP90), enzymes(GAPDH, nitric oxide synthase, catalase), 

receptor (EGFR), major histocompatibility complex I-II, adhesion proteins, integrins, 

cytoskeleton proteins (actin, gelsolin, myosin, tubulin) and cytosolic proteins[16,17]. 
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Irrespective of the origin, certain proteins such as TSG101, HSP70, CD81 and C63 are 

exclusively involved in the biogenesis of exosomes, and thus generally used as exosome 

markers. However, since the purity of the exosomes isolated has not been fully assessed in 

some studies, it is possible that skeletal proteins e.g., actin, myosin and tubulin reported to 

be present in exosomes may be contaminants of the exosome-enriched fraction. In addition, 

lipid components within exosomes can be incorporated into recipient cells and mediate 

complex biological effects[2]. Moreover, RNA sequencing showed that mRNA and 

microRNA are also abundant in exosomes from human plasma, in addition to other species 

of RNA such as ribosomal RNA, small nuclear RNA, transfer RNA[2,18] and long RNA[19] 

that maintain critical biological functions.

Exosome biogenesis, secretion, and uptake

Exosome biogenesis is a complicated process that involves a variety of signaling cascades. 

Exosomes are formed by multi-vesicular bodies (MVBs) which are late endosomes. The 

membrane of MVB buds inward to form intraluminal vesicles (ILVs) with components 

derived from either endocytic pathway or secretory (ER/Golgi) pathway, into the endosomal 

lumen[20] [Figure 2]. Following accumulation of vesicles, MVBs will be either transported 

to lysosomes for degradation[21] or fused with plasma membrane to release ILVs into 

extracellular space as exosomes[22]. However, how the cargo is sorted to ILVs and how 

formation and release of exosomes are regulated by internal and external factors are still not 

fully understood.

Recent studies indicate that both endosomal sorting complex transport (ESCRT)-dependent 

and ESCRT-independent pathways are involved in the formation and secretion of 

exosomes[2,23]. ESCRT consists of four major protein complexes, including ESCRT0, 

ESCRT-I, ESCRT-II, ESCRTIII and associated AAA ATPase Vps4 Complex. In an analysis 

with RNA interference screen targeting 23 components of ESCRT and associated proteins, it 

was found that seven ESCRT proteins contributed to the release of exosomes[24]: 

Knockdown of ESCRT-0 proteins Hrs and TSG101, ESCRT-I protein STAM1 decreased the 

secretion of exosomes; in contrast, knockdown of ESCRT-III proteins CHMP4C, VPS4B, 

VTA1 and ALIX increased the secretion of exosomes. Further studies revealed that 

ESCRT-0 sequestered ubiquitinated proteins into specific domains of endosomal membrane, 

and then combined with ESCRT-III after crosslinking with ESCRT-I and ESCRT-II complex. 

ESCRT-III finally promotes intraluminal vesicle formation via facilitating the budding 

process and separation from the MVB membrane[25]. Interestingly, syndecan heparan 

sulphate proteoglycans and their cytoplasmic adaptor, syntenin, have been shown to regulate 

exosome formation via modulating ALIX through LYPX(n)L motifs to facilitate the 

intraluminal budding of endosomal membranes[26]. These results suggest ESCRT is critical 

for cargo sorting, multivesicular body formation, and the budding process[27].

Conversely, a large amount of evidence indicates that exosomes can also be formed and 

released in an ESCRT-independent manner. Studies showed that when four major ESCRT 

complexes were simultaneously silenced, ILVs were still observed in MVBs, suggesting 

existence of a ESCRT-independent mechanism[28]. In addition, other proteins and lipids are 

also involved in the regulation of exosome biogenesis and secretion. Tetraspanins, 
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transmembrane proteins that are highly distributed in exosomes, contributed to the ESCRT-

independent exosome release[29]: overexpression of tetraspanins CD9 and CD82 increased 

catenin in exosomes released from HEK293 cells[30]; tetraspanin Tspan8 promoted 

recruitment of specific proteins and mRNA into exosomes, such as CD106 and CD49d that 

are critical for exosome-endothelial cell binding and internalization[31]; Tetraspanin CD63 

has also been reported to be involved in exosome biogenesis as evidenced by decreased 

small vesicle secretion after (CRISPR)/Cas9 knockout of the CD63 gene in HEK293 

cells[32]; finally, tetraspanin-enriched microdomains and tetraspanin CD81 are important for 

sorting specific receptors and components toward exosomes[33]. Furthermore, ceramides 

have been shown to enhance domain-induced budding due to its activity to promote negative 

curvature of endosomal membrane[34]. Rab guanosine triphosphatases (GTPases) such as 

Rab27a/b[35], and Rab35 and GTPase-activating proteins TBC1D10A-C have also been 

reported to contribute to the process of exosome secretion pathway[36].

Interestingly, cellular homeostasis also can affect exosome secretion. For example, increased 

intracellular Ca3+ induced more exosome secretion in K562 cells, a hematopoietic cell 

line[37]. Environmental pH has also been shown to influence exosome secretion[38]. In 

addition, cellular stress such as irradiation[39,40], cisplatin treatment[41], exposure to 

hypoxia[42] and ER stress[43] can all increase exosome release. Increased release of waste 

via exosomes might be a natural response to stress, but also could be an approach for cells to 

communicate with each other under pathological conditions. Particularly, many 

neurodegenerative disorders are associated with lysosomal or autophagy dysfunctions and 

aggregations of pathological proteins; exosomes could play a critical role in such 

neuropathogenesis[23].

As a critical mediator for intercellular communication, exosomes are taken up by recipient 

cells via three major methods: receptor-ligand interaction, fusion with plasma membrane, 

and endocytosis by phagocytosis[17] [Figure 2]. For receptor-ligand uptake, the molecular 

mechanism remains elusive. Current studies revealed that Tim1- or Tim4-expressing Ba/F3 

B cells could bind exosomes via phosphatidylserine, suggesting Tim4 and Tim1 are possible 

phosphatidylserine receptors for exosomes[44]. Another study implied that intercellular 

adhesion molecule 1 (ICAM-1) is critical for mature exosomes to prime naive T cells[45]. 

Fusion with plasma membrane was supported by studies showing exosomes can be taken up 

by melanoma cells through membrane fusion[17]. Interestingly, K562 or MT4 cells-derived 

exosomes were internalized more efficiently by phagocytes than non-phagocytic cells, 

implying that phagocytosis may play a unique role in exosome-cell interactions and 

uptake[46].

Strikingly, numerous studies have indicated that exosomes are critical for communication 

between different neural cell types. Microglia could specifically internalize oligodendrocyte-

derived exosomes by macropinocytosis, and most of these microglia were MHC class II 

negative and did not activate immunological responses[47]. Neurons have been shown to be 

able to internalize oligodendrocyte-derived exosomes by endocytosis[48]. In addition, 

crosstalk between neuron and glia also occurs through exosomes. Exosomes from stressed 

astrocytes that were exposed to oxygen and glucose deprivation could produce 

neuroprotective effects against oxidative stress in neurons and this effect was dependent on 
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Prion protein[49]. It has been demonstrated that exosomes are internalized via several 

mechanisms and the uptake depends on the type of recipient cells. For example, exosomes 

derived from neuroblastoma bound to neurons and glial cells, but were preferentially 

endocytosed by glial cells; exosomes derived from cortical neurons were exclusively bound 

and endocytosed by neurons[50]. Indeed, a lot more studies are needed to understand the 

specificity and molecular mechanism of exosome uptake among different neuronal and glial 

cell types.

Exosome-mediated intercellular communication in the nervous system

In 1980, exosomes were still believed to be a means of disposing cell debris[51]. However, 

emerging studies have indicated that exosomes also play multiple roles in biological 

activities such as cell-to-cell communication, which was traditionally considered to be 

mediated by gap junction, receptor/ligand, or electrical and chemical signals[52,53]. Studies 

showed that exosome release was increased from cortical neurons by treatment with GABA 

receptor antagonist, bicucullin; however, this increase was blocked by either AMPA receptor 

antagonist, CNQX, or NMDA receptor antagonist, MK-801, suggesting exosome release 

was regulated by glutamatergic synaptic activity[54].

Oligodendrocytes secrete exosomes into extracellular space that can inhibit morphological 

differentiation in oligodendrocytes and myelin formation, and this effect could be blocked 

with inhibitors of actomyosin contractility. Interestingly, conditioned neuronal medium 

dramatically reduced secretion of exosomes from oligodendrocytes, suggesting interaction 

between neurons and oligodendrocytes during myelin biogenesis[55]. Other studies have 

shown that microglia could internalize exosomes released from oligodendroglia by 

macropinocytosis, which was then transferred to late endosomes and lysosomes[47]. 

Conversely, studies have revealed that neurotransmitters could stimulate the release of 

exosomes from oligodendroglial, which subsequently could be internalized and utilized by 

neurons[48]. Mice with absence of proteolipid protein and 2′,3′-cyclic nucleotide 3′-

phosphodiesterase, which are enriched in oligodendroglial exosomes, exhibited axonal 

degeneration[56]. In addition, it was shown that Hsp/Hsc70 exiting from oligodendroglia 

could be taken up by squid giant axon[57], and this process is likely mediated by 

exosomes[58].

Neurons also regulate intercellular communication and maintain homeostasis such as 

neurogenesis and synaptic activity via exosomes. Studies using electron microscopy showed 

that exosomes were secreted from somato-dendritic compartments of mature cortical 

neurons, confirming neurons secrete exosomes[54]. Exosomes released from primary cortical 

neurons contained several functional proteins that could regulate synaptic activity, and the 

release of exosomes was controlled by depolarization[59]. Cystatin C was detected in 

exosomes released from mouse primary neurons and played a critical role in 

neuroprotection[60]. In addition, studies in Drosophila neuromuscular junction demonstrated 

that release of exosomal synaptotagmin 4 from presynaptic terminals was crucial for 

synaptic growth[61]. Co-incubation of mouse microglial cell line with PC12 cells enhanced 

the elimination of degenerating neurites in PC12, and treatment with PC12-derived 

exosomes significantly increased the pruning activity of microglia[62]. In addition, exosomes 
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secreted from primary cortical neurons were internalized into astrocytes and upregulated 

GLT1 proteins[63].

Microglia can also have crosstalk with neurons and modulate neuronal activity through 

exosomes. Synapsin I has been observed in the exosomes released from glial cells and found 

to promote neurite outgrowth in hippocampal neurons and survival of cortical neurons[64]. 

Also a group of miRNA, including miR-146a-5p, has been detected in the extracellular 

vesicles released from microglia, which regulates the expression of important synaptic 

proteins[65].

All the evidence suggests that exosomes contribute to intercellular communication via 

internalization by target cells, activating downstream signaling cascades, or releasing 

components into the extracellular space. However, the precise understanding of the 

molecular mechanism underlying this process continues to evolve. Since most experiments 

were performed in vitro, further studies in animal models will open up new perspectives for 

understanding the function of exosomes in communication in the central nervous system[48].

Role of exosomes in neurodevelopment

Recent studies have shown that exosomes play an integral role in normal neurodevelopment 

such as neural plasticity, and contribute to the pathological changes in neurodevelopmental 

diseases[66]. For instance, embryonic cerebrospinal fluid-derived exosomes improved neural 

stem cell amplification through targeting the rapamycin complex 1 pathway[67]. Exosomes 

also seem to act as a regulator in the niche of mesenchymal stem cell and a modifier of 

proliferation and differentiation of neural stem cells[68]. Exosomes originated from neural 

progenitor cells have been shown to promote neuronal differentiation and facilitate 

neurogenesis through miR-21a[69]. Exosomes from human induced pluripotent stem cell 

(hiPSC)-derived neurons increased proliferation in human primary neural cultures in vitro. 
In parallel with in vitro studies, injection of exosomes purified from DIV9 rodent primary 

neural cultures into the lateral ventricles of P4 mouse brains increased neurogenesis in the 

dentate gyrus of hippocampus[70]. On the other hand, studies have shown that exosomes are 

not only involved in neurogenesis, but also regulate synaptogenesis and neural circuit 

development. For example, treatment with normal control exosomes could reduce damages 

in neuronal proliferation, differentiation, synaptogenesis, and synchronized firing in methyl-

CpG-binding protein 2 (MECP2)-knockdown human primary neural cultures, which is a key 

gene contributing to abnormal neurodevelopment in Rett syndrome. Further proteomic 

analysis revealed that normal (control) exosomes may contain critical factors that are crucial 

for neuronal maturation and synaptogenesis which are absent in MECP2LF exosomes, 

suggesting the involvement of exosomes in neuronal development. Interestingly, exosomes 

have been reported to produce therapeutic effects in neurodevelopment disorders in vivo. 
Intranasal treatment with exosomes derived from mesenchymal stem cells enhanced 

behavioral autistic-like phenotype such as social vocalization and reduced repetitive 

behaviors in Shank3B Knockout autism mouse model[71]. Recently, extracellular vesicles 

have been used to encapsulate CRISPR/Cas9 genome editing machinery for delivery to cells. 

This could be a potentially new approach for delivering Cas9/sgRNA for treating a variety of 

genetic diseases, including those impacting the nervous system[72,73].
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Function of exosomes in neurodegenerative disorders

As a critical mediator for cell communication, exosomes have been reported to augment the 

progression of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s 

disease, Prion disease, Amyotrophic lateral sclerosis and Huntington’s disease, via delivery 

of proteins or molecules associated with the pathology of such diseases [Table 1].

Role of exosomes in Alzheimer’s disease

Alzheimer’s disease (AD) is one of the most devastating neurodegenerative disorders that 

cause dementia and decreased cognitive function. It currently affects more than 5 million 

people in the United States and is expected to rise to about 13.8 million by 2050[74,75]. 

Accumulation of amyloid β-peptide (Aβ) plaque extracellularly and formation of 

neurofibrillary tangles from hyperphosphorylated tau intracellularly are pathological 

hallmarks of AD that generally precede the clinical symptoms[76]. Recent studies have 

revealed that exosomes play very complex roles in AD[76–79]. Both Aβ peptide and tau are 

released from exosomes and have been implicated in the propagation of aggregates of these 

proteins. A recent proteomic and bioinformatics study of exosomal proteins in human iPSC 

neurons expressing mutant Tau (mTau) revealed many differences with normal exosomes 

such as the presence of a PP2A phosphatase inhibitor. Their data suggest that mTau 

exosomes may be able to regulate propagation of phosphorylated tau in vivo and contribute 

to the neuropathology[80].

It has been reported that neuron-derived exosomes have the ability to confer conformational 

changes to extracellular Aβ, converting these molecules into non-toxic fibrils which promote 

uptake by microglia[81]. Secretion of these neuronal exosomes appears to be regulated by 

neutral sphingomyelinase 2 and sphingomyelin synthase 2 (SMS2). SMS2 siRNA enhanced 

exosome secretion and Aβ uptake into microglia and decreased extracellular Aβ[81]. Studies 

in vivo have shown that neuroblastoma-derived exosomes injected into mouse brain trapped 

Aβ and facilitated the internalization of Aβ into microglia. Continuous injection of these 

exosomes into amyloid-β precursor protein transgenic mice significantly reduced Aβ and 

Aβ-mediated synaptotoxicity in the hippocampus. Further studies revealed that 

glycosphingolipids that are highly distributed on these exosome membranes are critical for 

the Aβ binding[82]. Another line of study showed that N2a cell-derived exosomes could 

rescue Aβ-mediated disruption of synaptic plasticity via trapping Aβ with cellular prion 

protein[83,84]. Glycosphingolipids on these exosome are important for binding and 

sequestering Aβ[85]. All these studies suggest that exosomes may play an important role in 

the nervous system. Additionally, studies have suggested that exosomes contain a variety of 

components that produce neuroprotective effects such as neprilysin[86] and insulin-degrading 

enzyme that are important for Aβ degradation[87].

Other studies have provided controversial results which suggest that exosomes might play 

complicated roles in the development of AD. For example, in APPxPS1 transgenic AD 

mouse model, intracellular Aβ was found to be colocalized with raft marker flotillin-1, 

suggesting that Aβ accumulated within multivesicular bodies[88]. A minute fraction of Aβ 
was subsequently released into extracellular space in association with exosomes[89]. 

Similarly, other studies have shown that amyloid precursor protein (APP), APP-C-terminal 
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fragments, and amyloid intracellular domain were all secreted from exosomes in 

differentiated neuroblastoma and primary neuronal culture cells[90]. In HEK-293-derived 

exosomes, Holo-APP, Presenilin and APP C-terminal fragments were all detected, and 

secretion of total APP C-terminal fragments was higher in exosomes derived from retromer 

deficient cells[91]. In addition, intraperitoneal injection of GW4869, a neutral 

sphingomyelinase 2 inhibitor, significantly decreased brain ceramide, exosome secretion 

from brain and serum exosome levels, as well as Aβ1-42 plaques in 5XFAD mice[92]. In 

contrast, feeding female mice with ceramide showed a higher load of plaque burden and 

exosome secretion[93],suggesting an association with exosome levels and Aβ accumulation 

in plaques. Furthermore, APP, BACE1, PSEN1, PSEN2 and Adam10, and many proteases 

that have the capacity to splice APP, have also been reported to be released from 

exosomes[94]. Thus, exosomes represent a novel pathway for APP processing and secretion, 

and amyloid deposition in AD brain. Interestingly, current research revealed that while 

during early stage of AD, activation of microglia produced protective effect by increasing 

phagocytosis and Aβ clearance[95–97]; during late stage of AD, microglia increased the 

release of exosomes or EV that contained soluble toxic Aβ and facilitated the progression of 

AD[97,98].

Due to the unique characteristics of exosomes in that they recapitulate the features of the 

originating cells and are able to cross the blood brain barrier, their contents can serve as 

potential biomarkers for diagnosis and monitoring treatment and progression of AD. 

Tau[99,100], and phosphorylated Tau have been detected in exosomes isolated from AD 

patients[101], and can potentially serve as biomarkers for early diagnosis of AD, although 

further investigation is required to establish this connection. Furthermore, recent research 

has shown that serum-derived neuronal exosomes might be a potential biomarker for 

diagnosis and clinical monitoring of AD[102,103]. The use of exosomes as a delivery system 

for therapeutic drugs has also been extensively studied. Intranasal administration of exosome 

encapsulated drug led to rapid distribution of drugs into the brain[104], indicating the 

possibility that exosomes can cross the blood brain barrier bi-directionally. Indeed, a large 

number of studies have shown that injection of exosomes as a drug delivery system could 

reduce Aβ and other relevant pathological changes[97].

Role of exosome in Parkinson’s disease

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders affecting 

millions of people worldwide. The pathological hallmark of PD is the presence of Lewy 

bodies which contain misfolded α-synuclein (α-syn) that tends to aggregate, resulting in 

progressive loss of dopaminergic neurons in substantia nigra and striatum[105].

Studies showed that Lewy bodies are initially found in the peripheral tissues, and then 

gradually spread to the brain stem, and eventually to cerebral cortex, suggesting PD 

progressed into the central nervous system from peripheral tissues, similar to prion-like 

disease[106]. Interestingly, studies revealed that exosomes play a critical role in the 

propagating and progression of PD[107]. First, exosomes have been found to be a carrier that 

can deliver pathological proteins: both newly synthesized and aggregated forms of α-syn 

could be released through unconventional, endoplasmic reticulum/Golgi-independent 
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exocytosis. Intravesicular α-syn has a greater tendency to aggregate than the cytosolic 

protein. This secretion was enhanced by proteasomal and mitochondrial dysfunction 

associated with PD[108]. Further studies revealed that synaptic vesicles that contain α-syn 

could be sorted into early endosomes through Golgi or clathrin-mediated endocytosis[109], 

and then transported into MVBs and fused with membrane to secrete the exosomes[110]. 

Alternatively, α-syn could also be sorted into the recycling endosome system and 

exocytosed as secretory granules[111]. Exosomes derived from α-synuclein producing cells, 

are released in a calcium-dependent manner. Studies have also shown that exosomes 

contribute to the formation of aggregation of α-syn: monitoring the aggregation kinetics 

with thioflavin T fluorescence revealed that exosomes facilitated the process by providing a 

catalytic environment for nucleation[112]. Quantification of cerebrospinal fluid (CSF) 

exosome numbers and α-syn content from PD patients revealed a correlation with the 

severity of cognitive impairment. Interestingly, incubation of exosomes derived from CSF of 

patients with PD and Lewy body dementia induced oligomerization of soluble α-synuclein 

in recipient cells in a dose-dependent manner. One hypothesis is that a pathogenic species of 

α-syn in these exosomes could induce oligomerization of soluble α-syn in the recipient cells 

to confer disease pathology[113]. It has also been suggested that exosome-mediated release 

of toxic forms of oligomeric α-syn, which is more easily taken up by recipient cells than 

free α-syn may be a mechanism for clearing toxic α-syn oligomers when autophagy is 

insufficient[114].

Moreover, recent studies revealed that exosomes originated from the central nervous system 

could cross the blood brain barrier and carry the pathologic proteins into the blood[115]. 

Therefore, the cargo of serum/plasma-derived exosomes from patients with PD has been 

under extensive study as containing promising biomarkers in PD pathogenesis and clinical 

progression[116–119].

It is noteworthy that exosomes are currently exploited as a drug delivery vehicle for treating 

PD. Several studies have demonstrated significant neuroprotective effects using exosome-

based delivery system in in vitro and in vivo models of PD[120–122]. For example, intranasal 

administration of catalase-loaded exosomes effectively protected dopamine neurons in the 

substantia nigra pars compacta against oxidative stress in PD mouse brain[122]; and 

intravenous treatment with dopamine-loaded serum-derived exosomes also produced 

significant effects in PD mouse models[122]. However, the use of exosome delivery of 

therapeutics to treat PD remains challenging.

Role of exosomes in Prion disease

Prion disease is a fatal neurodegenerative disease in humans and animals, caused by 

infectious abnormal microscopic protein particles known as prions. Prion disease is 

primarily characterized by assemblies of misfolded beta-sheet prion proteins in the brain and 

a rapid decline in cognition and cerebral and cerebellar functions[123]. Although the 

mechanism of prion transmission still remains unclear, studies have shown that misfolded 

prion proteins are associated with exosomes, and these exosomes could spread the 

disease[124]. Furthermore, studies showed that infection of N2a neuroblastoma cells with 

prions associated with scrapie could induce the release of prion proteins into the medium, 
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predominantly via exosomes[125]. Knockdown of HRS/Vps27, a subunit of ESCRT-0 or 

TSG101-ESCRT-I subunit in Mov 127S cells significantly reduced accumulation or release 

of infective prion, suggesting that ESCRT-dependent and independent transmission 

mechanisms are both involved in the regulation of exosome-mediated release of prion 

proteins[126]. Stimulation of exosome release with monensin increased prion infectivity; by 

contrast, inhibition of exosome release with GW4869 decreased prion spreading[127]. 

Studies have also revealed that exosomes derived from neurons infected by prion could 

infect normal neurons and initiate prion propagation. In addition, these exosomes could 

induce prion disease when inoculated into mice. Interestingly, these prion proteins were 

found to have undergone N-terminal modification and selection of specific glycoforms for 

incorporation into exosomes[128]. In line with these findings, it was also reported that 

exosomes derived from infected mice could spread prion disease[129]. Recent studies also 

revealed that some specific miRNAs such as miR-146a, miR-29b found within exosomes 

from prion-infected cells may play important roles at various stages of spreading of prion 

disease[130]. All the data support that exosome potentially contributes to the rapid 

colonization in the development of prion disease.

Role of exosomes in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in humans, which is 

characterized by progressive muscle atrophy due to the loss of motor neurons. 

Approximately 10% of ALS patients are familial, and the rest of 90% are sporadic. Both 

environment and genetic factors such as mutation of superoxide dismutase-1 (SOD1) and 

nuclear TAR DNA-binding protein 43 (TDP-43) have been shown to be involved in the 

pathogenesis of ALS[131]. A common pathologic feature of ALS is the aggregation of 

misfolded cytoplasmic proteins, for instance, TDP-43, ubiquilin 2 and SOD1[132]. TDP-43 is 

an RNA/DNA binding protein that regulates RNA transcription and DNA repair. 

Hyperphosphorylated and ubiquitinated TDP-43 has been reported to contribute to the 

development of ALS[133]. Strikingly, recent studies have revealed that aggregated TDP-43 or 

SOD1 proteins could be transported by exosomes to recipient cells to induce 

neurotoxicity[134,135]. In clinical studies, TDP-43 levels have been reported to be much 

higher in exosomes derived from frozen post-mortem temporal cortices of patients with 

sporadic ALS, compared with controls[136]. A clinical 3- and 6-month follow up study also 

showed exosomal TDP-43 levels were much higher in ALS patients compared with the 

control group[137]. In vitro, TDP-43 is secreted via exosomes in Neuro2a cells, and 

inhibition of exosome secretion exacerbates the aggregation of TDP-43. In addition, 

inhibition of exosome secretion also worsens the phenotype of TDP-43A315T transgenic 

mice[136]. Other studies showed that exosome-induced cytokine secretion is compromised in 

CD14++ monocytes from ALS patients, and this abnormality is modulated by exosomal 

TDP-43, suggesting that exosomal TDP-43 contributes to the impaired neuroinflammatory 

reaction in ALS pathogenesis[134].

With distinct advantages, exosomes can also be used as therapeutic delivery carriers. 

Exosomes isolated from adipose-derived stem cells have been shown to restore 

mitochondrial complex I activity, efficiency of electron transfer system and membrane 
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potential in an in vitro model of ALS, NSC-34 cell line overexpressing human mutated 

SOD1, suggesting a potential therapy for ALS using such exosomes[138].

Role of exosomes in Huntington’s disease

Huntington’s disease (HD) is a progressive autosomal dominant neurodegenerative disease 

that is characterized by cognitive impairment and involuntary choreiform movements. 

Pathologically, it is caused by CAG expansion in exon 1 in Huntingtin gene that leads to 

production of mutant huntingtin (mHtt). Emerging research has revealed that the mutated 

products, polyglutamine protein could lead to severe neuronal toxicity, and CAG repeat 

length is positively associated with clinical symptoms[139]. To date, studies have implied that 

exosomes are involved in the pathogenesis and propagation of Huntington disease[140]. 

When SH-SY5Y cells were cultured with conditioned medium from HEK cells that 

overexpress GFP, GFP-mHtt-Q19 or GFP-mHtt-Q103, the exogenous mHtt proteins were 

detectable within SH-SY5Y cells after 5 days of exposure. In addition, after co-culturing 

mouse neural stem cells with exosomes derived from fibroblast from HD patient carrying the 

143 CAG repeat (HD143F) for 4 days, mHtt aggregates were detected within the neurons, 

suggesting mHtt could propagate from cell to cell through internalizing exosomes that 

contain pathological proteins. Furthermore, intraventricular injection of exosomes isolated 

from HD143F, resulted in the Huntington-like phenotype in mice, and mHtt was detected in 

the striatum[141]. In another study, both in vivo and in vitro data suggest that extracellular 

vesicles can transfer toxic trinucleotide repeat RNAs between cells and trigger the 

manifestation of HD-related behaviors and pathology in mice; however, activity of exosomes 

or cell-type specificity was not fully evaluated[142]. These findings support the hypothesis 

that exosomes contribute to the HD progression by transferring toxic proteins or RNAs from 

one cell to another. Data have revealed that certain types of circulating microRNAs were up 

or down regulated in patients with HD, but exosome-derived microRNAs as biomarkers are 

still under investigation[143,144]. Moreover, recent studies showed that injection of exosome-

delivered miR-124 into R6/2 transgenic HD mice reduced the RE-1 Silencing Transcription 

Factor, which is involved in the development of HD[145]. In addition, infusion of 

hydrophobically modified Htt-hsiRNA-loaded exosomes into mouse striatum resulted in 

significant bilateral silencing of about 35% of Huntingtin mRNA[146]. Thus, the potential 

use of exosomes as a route for delivering various siRNAs to the brain to suppress expression 

of mHtt or other relevant regulatory proteins offers another approach to treating HD.

Role of exosomes in epilepsy

Epilepsy is a neurological disorder that is characterized by abnormal electrical discharge of 

brain neurons[147]. Status epilepticus can lead to neuron damage and gliosis[148]. Emerging 

studies have suggested that microvesicles such as exosomes could be released following 

brain injury or stimulation and serve as a biomarker for epilepsy. For example, status 

epilepticus induced by intra-amygdala kainic acid led to upregulation of both ESCRT-

dependent and -independent signaling pathways and thus increased exosome release in mice. 

This effect lasted for a long time and the enhanced secretion of exosomes was still detectable 

2 weeks after status epilepticus[149]. In addition, studies from both animals and human have 

implied that certain types of exosomal miRNA are highly associated with epilepsy. In a rat 

model of chronic temporal lobe epilepsy, miR-346 and miR-331-3p were found to be 
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decreased in extracellular vesicles of the forebrain[150]. Besides, a clinical study involving 

40 patients with mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) 

showed that two exosomal miRNAs were upregulated, while 48 miRNAs were 

downregulated. Among these candidates, exosomal miRNA-8071 was reported to have the 

sensitivity of 83.33% and the specificity of 96.67% for diagnosis of mTLE-HS[151]. In 

another study, exosomal circulating miRNAs, such as miR194-2-5p, miR15a-5p, 

miR-132-3p, and miR-145-5p, have been reported to be potential biomarkers in patients with 

focal cortical dysplasia and refractory epilepsy[152]. Interestingly, intranasal administration 

of A1-exosomes derived from human bone marrow-derived MSCs rescued neuron loss, 

inflammation and neurogenesis, as well as alleviated compromised memory and cognitive 

capacity in mice which typically occur after status epilepticus[153]. These studies 

demonstrate that epilepsy could alter exosome release and its miRNA content, which could 

be a potential biomarker for clinical diagnosis. Further studies in exosomes will be needed to 

identify the distinct types of epilepsy subtype to determine the specific miRNA 

pathophysiological significance for epileptogenesis.

Role of exosomes in multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system[154]. Currently, the etiology of MS remains elusive, and the diagnosis mainly 

relies on clinical symptoms. Thus, earlier diagnosis and effective clinical intervention are 

very important for improving patient outcomes. Recent studies have found that exosomal 

contents such as myelin oligodendrocyte glycoprotein[155], sphingomyelinase (SMase)[156], 

and a variety of microRNA[157–160] are potential diagnostic biomarkers for MS. In addition, 

Schwann cell-derived exosomes contain a variety of neuroprotective proteins and anti-

inflammatory factors[161] that play critical roles in MS via regulating myelin membrane 

biogenesis and providing trophic factors required for myelin maintenance[162]. For instance, 

exosomes which contain myelin and protective proteins against stress, were released from 

oligodendrocytes into the extracellular space in a calcium dependent manner[163]; Schwann 

cell-derived exosomes can improve axonal regeneration after axotomy[164], and increase 

nerve activity[165]. Exosomes from adipose-derived mesenchymal stem cells, bone marrow-

derived mesenchymal stem cells, and umbilical cord stem cells have shown potential 

therapeutic effects in protecting oligodendrocyte and promoting neurite outgrowth and nerve 

regeneration[166–168].

Function of exosomes in stroke

Stroke has been increasing during past few decades and has become one of the major life-

threatening medical conditions around the world. Thus, early diagnosis and effective 

monitoring of recovery phases are critical for the management of stroke patients. Compared 

with most biomarkers obtained from blood and body fluids, exosomes have an advantage 

due to their high heterogeneity[7] which reflects the pathophysiological conditions of the 

cells from which they originate, and thus their cargo are potential biomarkers for diagnosis 

and clinical evaluation. Studies have shown that exosomes can cross the blood brain barrier 

and enter peripheral blood and cerebral spinal fluid after stroke[169]. In addition, exosomes 

orchestrate a complicated process after stroke involving nerve regeneration, angiogenesis, 

neurogenesis, remodeling of immune response, neuronal plasticity and axon dendrite 
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outgrowth[170]. Studies have shown that endothelial cell-derived exosomes can promote the 

differentiation of neural progenitor cells into oligodendrocytes for myelination; neuron and 

neuronal progenitor cell-derived exosomes can regulate peripheral immune response; 

pericyte-derived exosomes can facilitate neurogenesis; circulating endothelial progenitor 

cell-derived exosomes can facilitate angiogenesis by interacting with cerebral endothelial 

cells[7]. Further studies revealed that mesenchymal stromal cell-derived exosome enhanced 

neurite branch and length in rat cultured neurons after middle artery occlusion[171]. 

Exosomal miR-126 and miR-124 were also reported to be involved in the angiogenesis[9,172] 

in rats and neurogenesis in mice after stroke[173]. However, exosomes also produce some 

adverse effects in peripheral organs after stroke, such as increasing pro-inflammatory 

cytokines and activating T and B lymphocytes, thus effecting heart[174], kidney[175], and 

digestive intestine system[7].

Extensive studies have shown that stroke could induce a variety of changes in the contents of 

exosomes released from central nervous system. For example, next generation sequencing 

analysis showed that human neural stem cell-derived miroRNAs were altered by hypoxic 

condition[176]. Data from both human and animal models suggested that certain types of 

exosomal cargoes were altered: In animal models, plasma-derived exosomal rno-

miR-122-5p was significantly downregulated and rno-miR-300-3p upregulated in ischemic 

rats[177]. In clinical studies, proteome analysis of microvesicles from plasma of patients with 

lacunar infarction revealed that brain-related proteins such as myelin basic protein, focal 

adhesion and coagulation related proteins were upregulated, and albumin was downregulated 

in patients with adverse outcomes compared with matched controls[178]. Analysis of plasma 

EV from patients with manifest vascular disease showed elevated protein cystatin C and 

CD14 levels correlated with white matter lesions and progression of brain atrophy[179]. In 

patients with acute ischemic stroke, the serum exosome levels of miR-9 and miR-124 were 

both elevated compared with healthy controls, and positively correlated with National 

institute of Health Stroke Scale scores (NIHSS), infarct volumes and IL-6 levels[180]. 

Plasma-derived exosome miR-422a and miR-125b-2-3p were both decreased during the 

subacute phase of ischemic stroke, with miR-422a increased in the acute phase in 

comparison with controls[181]. In addition, exosomal miRNA such as miR-223, miR-21-5p 

and miRNA-30a-5p were also reported to be highly related with occurrence and severity of 

stroke in several clinical studies[182,183]. These results suggest that designing a multiplex 

platform to assay for multiple biomarker molecules in exosomes known to be associated 

with stroke might be a promising approach for diagnosis and clinical progress evaluation of 

stroke patients, especially with the advancement of exosome isolation and purification 

techniques.

Role of exosomes in traumatic brain injury

Traumatic brain injury (TBI) often leads to injury-induced death and disability around the 

world[184]. After TBI, brain parenchymal damage and hemorrhage and compromised blood-

brain barrier, as well as associated inflammation, oxidative stress and cell death contribute to 

the TBI-induced pathological alterations and dysfunction. As a critical player in cell 

communication, exosomes have been proposed to be able to carry specific biomarkers 

during traumatic brain injury and can serve in early diagnosis of concussion and monitoring 
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of clinical progress[185]. Recent studies implied that certain components such as miR-124-3p 

in microglial exosomes were upregulated significantly after TBI and exerted anti-

inflammatory function and promoted neurite outgrowth[186]. In another study in veterans 

with mild traumatic brain injury, elevated exosome-derived neurofilament light chain was 

observed, even years after injury[187]. Studies of serum-derived neuronal exosomes from 

patients with acute TBI and chronic TBI showed that proteins associated with neuronal 

functions were significantly increased in acute TBI, while neuropathological proteins were 

up-regulated in both acute and chronic TBI. These results suggest that cargo in serum-

derived neuronal exosomes could act as potential biomarkers for clinical diagnosis[188]. 

Additionally, the capacity of exosomes to cross the blood-brain barrier offer a potentially 

effective therapeutic approach in treatment of patients with TBI[189].

Roles of exosomes in neuropsychiatric disorders

Neuropsychiatric disorders such as major depression and schizophrenia are associated with 

certain changes of brain structures and neurotransmitters. Although the molecular 

mechanism is not fully understood, emerging studies suggest that miRNAs enriched in 

exosomes may be key factors in the development of neuropsychiatric disorders[190–194]. 

Acting as a complicated mediator of cell communications, alterations of exosomal 

components have been identified in patients with neuropsychiatric disorders[10]. One 

analysis of exosomal miRNAs from frozen postmortem prefrontal cortices of patients 

revealed that miR-497 was significantly elevated in schizophrenia, and miR-29c increased in 

bipolar disorders in comparison with control[195]. Genome-wide analysis of miRNAs from 

serum exosomes, with subsequent bioinformatic predictions and validations, has also 

indicated miRNA dysregulation in schizophrenic patients[196]. Of all the miRNAs, hsa-

miR-206 was the most upregulated in these patients. Hsa-miR-206 has been reported to 

interact with BDNF mRNA directly, leading to the decreased expression of this gene and 

compromised cognitive function in mice[197]. In another study, in patients with depression, 

12 miRNAs that regulate the neurotrophin pathway were found to be increased, and 20 

miRNAs that control apoptosis, cell growth, immune and hypoxia activity were 

downregulated[198]. A recent study has revealed that exosomal miR-139-5p is significantly 

increased in patients with major depressive disorder in comparison with controls, suggesting 

it might be a potential biomarker for this disorder[199].

To date, studies in the role of exosomes in neuropsychiatric disorders are very limited. These 

findings have opened up challenging possibilities of uncovering the function of exosomes 

and molecules associated with them in mental disorders.

Exosomes in brain tumors

Glioblastoma multiforme (GBM) is the most aggressive and common primary tumor of the 

adult brain, with median survival of less than 15 months from diagnosis[200]. Regardless of 

patients receiving rigorous standard of care, such as surgical resection alongside 

chemotherapy and/or radiotherapy, this rare astrocytoma has very poor prognosis[201,202]. 

Among the heterogenous cell populations that form the GBM tumor mass are the cancer 

stem cells, which contribute to therapy resistance, tumor growth and recurrence[203–206]. 

Recent reports have[207] suggested that EVs including exosomes mediate critical bilateral 
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communication between the tumor cells and their microenvironment to sustain the growth of 

malignant GBM. A longitudinal time-lapse imaging study showed that glioma cells have 

crosstalk with non-glioma cells such as glial cells, neurons and vascular cells through EVs, 

to alter the tumor microenvironment and promote glioma growth in vivo[208]. GBM derived 

EVs are known to facilitate angiogenesis, tumor progression and invasion, drug resistance 

and immune regulation[209–212] [Figure 3]. Moreover, various GBM exosomal cargoes are 

involved in mediating these processes [Table 2].

Hypoxia within the GBM microenvironment promotes neo-angiogenesis, as a means to 

supply oxygen and nutrients to the rapidly growing tumor cells. VEGF-A carrying EVs 

secreted by glioma stem cells (GSC), stimulates endothelial cells to proliferate, migrate and 

form tubular structures, promoting vasculature[213]. In addition, GSC exosomes can transfer 

miRNAs such as miR-21 and miR-26a to endothelial cells, to upregulate VEGF expression 

and support GBM angiogenesis[214,215]. Studies using clinical samples have shown that 

microvesicles derived from CSF of GBM patients upregulate proliferation of cultured 

endothelial cells through AKT/beta-catenin pathway[216]. Oncogenic EGFRvIII and tissue 

transglutaminase are reportedly other protein factors transferred through EVs, which are 

known to induce mitogenic and/or angiogenic signaling in recipient cells[217,218]. 

Interestingly, exosome-mediated delivery of long non-coding RNAs such as lncCCAT-2 and 

lncPOU3F3 can also enhance vascularization of GBM[219,220]. On the contrary, miR-1 

enriched glioma EVs have been implicated in suppressing angiogenesis and tumor 

growth[221]. Increased growth and aggressiveness of advanced stages of GBM is associated 

with the phenotypic transition from proneural to mesenchymal subtype. GSC EVs contribute 

towards this process, by way of transferring mRNAs, miRNAs and other regulatory RNAs, 

and transcription factors, which can possibly reprogram the recipient cells, alter their 

epigenetic signatures and render the GBM microenvironment more permissive to malignant 

transformation[211,222,223]. EV-mediated crosstalk in GBM involves the interaction between 

a chemokine receptor CCRs on recipient cells and the glycans on the EV surface, with the 

CCL1 ligand acting as a bridging molecule[224]. RNA-seq and DNA methylation analyses 

showed that pro-angiogenic miRNA such as miR-9-5p transferred via GSC EVs can 

reprogram human brain endothelial cells in vitro to induce angiogenesis, by distinct 

pathways compared to those activated by vascular growth factors[225]. Similar molecular 

profiling studies conducted earlier using GSC EVs had revealed that the molecular subtypes 

and functional state of GSCs determine the tumor regulatory effect of EVs[226,227].

GBM cells interact with the surrounding astrocytes to modulate tumor growth and survival. 

In a study using patient tumor derived cell lines, it was shown that GBM EVs can transform 

normal human astrocytes to a pro-tumorigenic phenotype, exhibiting increased production of 

growth factors, chemokines and cytokines, to support in vitro growth of GBM cells[207]. 

GBM EVs regulate tumor signaling pathways such as p53 and c-MYC in astrocytes to 

induce a senescence associated secretory phenotype, to favor tumor progression[228]. 

Moreover, EVs derived from GBM cells were shown to induce podosome formation, ECM 

degradation and increased migration of astrocytes[207,228]. Astrocytes cultured with GBM 

EVs show enhanced secretion of immunosuppressive cytokines such as CSF2 and 

interleukins 4, 10 and 13, thus providing a tumor supportive microenvironment. EVs 

secreted by irradiated GBM cells have enhanced presence of CD147, which in turn 
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stimulates increased MMP9 release from recipient astrocytes, suggesting the contribution of 

astrocyte signaling in promoting GBM invasiveness, particularly in response to ionizing 

radiation[229]. A recent study reported that GSC EVs induce metabolic reprogramming of 

pre-transformed astrocytes to enhance proliferation, self-renewal and tumor growth in a 

mouse allograft model[230].

Immune suppression fosters aggressive transformation of brain tumor. The molecular cargo 

transferred by GBM EVs can influence the status of tumor-associated macrophages or 

myeloid cells (TAMs)[231]. GBM EVs induce the in vitro differentiation of peripheral blood 

derived monocytes to anti-inflammatory M2-macrophages, which exhibit enhanced 

phagocytosis and secretion of IL-6 and VEGF, to support immune evasion of glioma[232]. 

Peripheral blood analyses of GBM patients signified the role of tumor-derived exosomes in 

promoting an immune evasive Th2 bias, and their ability to induce CD163 (a macrophage 

marker) expression on normal astrocytes[233]. EVs carrying miR-21 released by GBM cells 

were shown to target the expression of Btg2, an anti-proliferative protein in recipient 

microglia, subsequently reprogramming these cells to support tumor progression[231,234]. 

STAT3 pathway proteins present within GSC EVs including exosomes, also mediate 

immune suppressive changes of monocytes including their phenotype change to M2-

macrophages, cytoskeletal reorganization, and upregulation of PD-L1 ligand, which binds to 

PD1 to inhibit T-Cell activation[235–237].

Studies addressing the mechanism of resistance to Temozolomide (TMZ), an alkylating 

agent used as the standard of care for glioma, have uncovered the possible influence of EVs 

in the process. Using a microfluidic chip-based analysis, it was found that sera-derived EVs 

from GBM patients (small cohort study) are enriched in mRNA levels of MGMT (O6-

methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase), 

primary DNA repair enzymes involved in inducing chemoresistance[210]. miR-9 is 

upregulated in exosomes released from TMZ resistant glioma cell lines and is implicated in 

increasing MDR1 (multidrug resistance mutation 1) expression and repressing Patched 

(PTCH1), Sonic Hedgehog receptor to confer chemoresistance[238]. Transfer of anti-miR-9 

through MSC exosomes to GBM cells was shown to impart chemosensitivity and reverse 

multidrug transporter expression[239]. Analysis of clinical samples has revealed that 

Pacritinib, a STAT3 inhibitor can potentially overcome TMZ resistance by reducing miR-21 

enriched exosomes secreted by GBM-associated macrophages[240].

EV cargo can be potential biomarkers for GBM diagnosis and progression. EGFRvIII is 

found in high levels within GBM EVs, and hence can be used as a potential biomarker[211]. 

A study conducted using clinical samples from GBM patients undergoing tumor resection, 

reported that CSF derived EVs can be developed as a diagnostic tool to assess EGFRvIII 

positive GBM status accurately[241]. CSF EVs of GBM patients have also been found to be 

enriched in miR-21 compared to non-oncologic patients, suggesting the potential use of CSF 

derived EV miR-21 as another biomarker for GBM prognosis[242,243]. In addition, RNA/

proteins with growth promoting functions such as TrkB (neurotrophin tyrosine kinase 

receptor-1), Timp1 (NF-κB target gene) and CLIC1 (circulatory protein), and PTEN, a 

tumor suppressor protein, enriched within EVs are some other potential prognostic 

biomarkers for GBM[209].
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CONCLUSION AND PERSPECTIVES

Emerging research in the last decade suggests that exosomes and EVs are critical players in 

regulating physiological and pathological processes in the brain. Exosomes and EVs mediate 

intercellular communication by trafficking of biomolecules such as proteins, lipid, mRNA, 

and miRNA.

Circulating exosomes have vast potential in being developed as a source of biomarkers for 

various neurodegenerative disorders and brain tumors, and as vehicles for drug delivery. 

Neurotoxic proteins associated with AD, PD and prion disease, such as Aβ, Tau, α-

synuclein and PrP respectively are encapsulated and transferred through exosomes. 

Oncogenic proteins (EGFRVIII, TrkB, Timp1) and miRNAs (miR-21, miR-9) carried as 

exosomal cargo can reprogram recipient cells in the tumor microenvironment to favor 

glioma progression. Besides targeting these exosomal proteins for therapeutics, the 

possibility of isolating exosomes readily from the circulating biofluids represents a novel 

and effective tool for non-invasive diagnosis and monitoring the status of various 

neurological conditions and glioma progression.

Knowledge of the fundamental aspects of exosome biology (exosome biogenesis, origin, 

cargo sorting and targeting to specific recipient cells) and the downstream signal 

transduction, is key to the application of exosomes for treatment of brain disorders. 

Although data have indicated that various exosomal proteins or miRNAs are altered during 

the development of neurodegenerative or other CNS diseases, precise signaling cascade or 

involvement is not well understood. This might be due to the limitation of isolation and 

characterization techniques of exosomes that fail to specifically capture and identify 

exosomes from specific cell type of origin, such as neurons or microglia from limited 

sample volume. Therefore, more specific exosome associated biomarkers and better 

isolation and purification techniques for capturing specific sub-populations of exosomes will 

greatly advance the ability to identify biomarkers.

Research advances in areas of exosome isolation, characterization, tissue targeting and 

understanding of their specific biological functions would allow exosomes to impact clinical 

therapy of neurological diseases. Indeed, the future prospect of developing the use of 

exosomes for delivery of functional cargo such as miRNA, siRNA and mRNA/proteins into 

the brain and other regions of the nervous system, such as in axonal regeneration, opens up 

exciting new avenues for drug delivery applications.
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Figure 1. 
Structure and composition of exosome. Exosome is a lipid bilayer structure that contains 

lipids, proteins and nucleic acids. Sphingomyelin, phosphatidylserine, cholesterol and 

ceramides are highly distributed on the membrane. In addition, exosomes also contain a 

variety of proteins such as major histocompatibility complex I and II (MHCI and MHCII), 

tetraspanins (CD9,CD63,CD81), endosomal origin proteins (ALIX,Tsg101), heat shock 

proteins (HSP70,HSP90), enzymes(GAPDH, nitric oxide synthase, catalase), 

receptor(EGFR), adhesion proteins, integrins, cytoskeleton proteins (actin, gelsolin, myosin, 

tubulin) and cytosolic proteins, as well as RNA, miRNA and DNA.
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Figure 2. 
Biogenesis of exosome. The biogenesis of exosomes occurs when multivesicular bodies 

uptake intraluminal vesicles formed from either endocytic pathway or ER/Golgi secretory 

pathway. Then, MVBs either fuse with cellular membrane to release exosomes, or fuse with 

lysosomes for cargo degradation. After releasing into extracellular space, exosomes act as a 

mediator of intercellular communication through being taken up by recipient cells via 

endocytosis, fusion or receptor-ligand interaction. This process can be either paracrine or 

endocrine in manner. MVBs: Multivesicular bodies.
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Figure 3. 
Glioblastoma multiforme (GBM) is one of the most aggressive tumors of the adult brain. 

Cells that make up the GBM tumor, release extracellular vesicles (EVs), which mediate the 

transfer of vital cues between tumor cells and the surrounding microenvironment. GBM 

tumor mass is highly heterogenous comprising differentiated tumor cells and glioma stem 

cells (GSCs). GSC derived EVs are particularly important players in sustaining glioma 

growth and invasion. Depending on their cell of origin, GBM EVs deliver unique cargo such 

as proteins, nucleic acids and lipids to recipient cells, to possibly alter their gene expression 

profile and phenotypes, and in the process favor malignant transformation. Some critical 

functions attributed to GBM EVs include (1) supporting tumor growth and survival; (2) 

promoting angiogenesis by regulating gene expression in endothelial cells; (3) mediating 

immune evasive phenotype changes in tumor associated immune cells: T cells, macrophages 

and microglia; (4) inducing resistance to chemotherapy drugs/radiation therapy. GBM: 

Glioblastoma multiforme; EVs: extracellular vesicles.
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Table 1.

Exosome cargo as biomarkers in neurodegenerative disorders

Name of disease Exosome cargo Pathology Application Ref.

Alzheimer’s disease Aβ Neuronal impairment Early diagnosis Saman et al.[99],2012

Parkinson’s disease α-syn Neuronal damage Early diagnosis
Monitoring severity of cognitive 
impairment

Shi et al.[116], 2014
Stuendl et al.[113],2016
Si et al.[117],2019
Jiang et al.[118],2020
Niu et al.[119],2020

Amyotrophic lateral sclerosis TDP-43 Neuronal inflammation and 
damage

Early diagnosis Chen et al.[137],2020
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Table 2.

Function of EVs/exosomes in regulating glioma

Types of exosomal cargo Parental cell Recipient cell Function Ref.

VEGF-A GSC Endothelial cell Promote angiogenesis Treps et al.[213],2017

miR-21, miR-26a, miR-9-5p GSC Endothelial cell Promote angiogenesis Sun et al.[214],2017
Wang et al.[215], 2019
Lucero et al.[225], 2020

lncCCAT-2, lncPOU3F3 GBM cell Endothelial cell Promote angiogenesis Lang et al.[219],2017
Lang et al.[220],2017

EGFRvIII, tissue 
transglutaminase

GBM cell GBM cell Support tumor growth Al-Nedawi et al.[217],2008
Antonyak et al.[218],2011

CD147 Irradiated GBM cells Astrocytes Support tumor invasion Colangelo et al.[229],2020

STAT3 proteins GSC Monocytes Immunosuppression Gabrusiewicz et al.[235],2018
Grimaldi et al.[236],2019
Ricklefs et al.[237],2018

miR-21 GBM cells Microglia Immunosuppression, tumor 
growth

Abels et al.[234], 2019
Van der Vos et al.[231], 2016

MGMT, APNG GBM cells GBM cells Chemoresistance Shao et al.[210],2015

miR-9 GBM cells GBM cells Chemoresistance Munoz et al.[239], 2013
Munoz et al.[238],2015

miR-21 Tumor associated 
macrophages

GBM cells Chemoresistance Chuang et al.[240],2019
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