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Abstract

This paper describes the effects of the interaction of cerebral fluids (arterial, capillary and

venous blood, cerebrospinal fluid) on ventricular wall displacement and periventricular pres-

sure using a mathematical multiphase poroelasticity model for the cerebral parenchyma.

The interaction of cerebral fluids is given by a set of four numerical coefficients. A multiple

linear regression with interaction is constructed that allows us to quantify the effect of these

coefficients on the average ventricular wall displacement. The prevailing influence of an

arterial-liquor component was observed. The sets of coefficients associated with such path-

ological conditions were found: normal pressure hydrocephalus, intracranial hypertension,

and replacement ventriculomegaly under a prolonged hypoperfusion.

Introduction

There are a large number of pathological conditions of the central nervous system (CNS) char-

acterized by the impaired movement of intracerebral fluids. Infectious diseases, craniocerebral

injuries, cerebral circulatory disorders, and neurodegenerative diseases can lead to an imbal-

ance in cerebral hemo- and cerebrospinal fluid dynamics and structural changes in brain tis-

sue. One such condition is hydrocephalus, which is characterized by enlargement of the

cerebral ventricles [1]. Its diagnostics is based on clinical findings and neuroimaging results

(CT, MRI). An obstructive form is usually distinguished when hydrocephalus develops due to

impaired cerebrospinal fluid (CSF) movement and is itself an active process [2]. The non-

obstructive form of hydrocephalus is characterized by the absence of obstruction for CSF

movement and is most often associated with excessive CSF formation (in a tumor lesion of the

vascular plexuses), impaired resorption (absorption) of CSF (e.g., after infectious disease or

TBI), or is idiopathic. This category includes normal pressure hydrocephalus [3], characterized

by ventricular dilatation without development of a hypertensive syndrome and accompanied

by the Hakim-Adams triad and all other variants of communicating hydrocephalus without a

known cause. In this group of diseases, the mechanism of hydrocephalus development is not

fully understood; moreover, there is still no consensus on reliable diagnostic criteria to suppose
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its progression. It should be noted that ventricular enlargement may be associated with other

pathological processes and do not always cause the existing neurological deficit.

Imaging techniques are now intensively developing and allow us to study more complicated

multi-component structures [4, 5]. Using imaging techniques, we can detect ventricular

changes and formed structural changes in the brain parenchyma. Using clinical examination

methods, we can determine neurological abnormalities. But we cannot always reliably deter-

mine the degree of abnormalities in intracranial CSF dynamics, the prognosis for a disease,

and the mechanisms of ventricular deformation. The mathematical modeling of pathological

processes helps to complete the clinical picture.

The use of lumped-parameter or compartment mathematical models, where the cranial

contents consist of interconnected compartments that exchange fluid, allows us to study the

effects of model parameters on fluid flow in the brain. Such models provide information about

intracranial pressure and the interaction of CSF and blood flow with the brain parenchyma.

The mathematical model of CSF pressure-volume compensation provides a theoretical basis

for the differential diagnostics of hydrocephalus [6]. In [7], a mathematical model of ventricu-

lar volume regulation based on fluid mechanical principles was established. It was shown that

in normal pressure hydrocephalus, when the CSF flow between the cerebrospinal and cortical

subarachnoid spaces is restricted and the brain becomes more compressible, the volume of the

ventricles increases with a minimal increase in intracranial pressure. A more complex multi-

compartmental model was proposed in [8]. This compartmental model predicts intracranial

pressure gradients, blood and CSF flows under both normal conditions and communicating

hydrocephalus. The analysis of intracranial pressure and its components to study CSF dynam-

ics both in normal conditions and in various pathologies was discussed in [9]. A new model of

water transport through the parenchyma from the microvasculature under the Starling force is

proposed in [10]. The model predicts the effect of the osmolarity of the intercellular space,

blood and CSF on cerebral water flow and establishes a link between osmotic imbalance and

such pathological conditions as hydrocephalus and edema.

In [11], the cerebrovascular system was modeled as a set of resistors and capacitors to study

Chiari malformation. The results of this work are also important for understanding the mecha-

nism of spinal cord cyst formation. Another neurological disease caused by the formation of

one or more macroscopic fluid-filled cavities in the spinal cord is syringomyelia [12, 13].

Using the compartmental approach, the model of a closed spinal cord system was created to

study fluid transport in this pathology [12]. In [14], a model of the electrical circuit of the spi-

nal cord CSF dynamics was created based on computational fluid mechanics techniques to

study syringomyelia associated with Chiari malformation. The authors hypothesized that the

loss of damping capacity of the cisterna magna and the resulting increase in pressure in the

wall of the central channel lead to the formation of syrinx in patients with Chiari anomaly. A

mathematical model of global arteriovenous circulation in the human body combined with a

refined description of CSF dynamics in the craniospinal cavity is presented in [15]. The main

innovation of this study is the connection of blood flow with CSF dynamics in the craniospinal

cavity following the ideas presented in [8]. The resulting mathematical model was validated on

real MRI data and applied to study transverse sinus stenosis and its association with idiopathic

intracranial hypertension.

As can be seen from the above review of models, the information provided by such models

is useful for the diagnostics and treatment of intracranial fluid dynamics disorders. However,

models with concentrated parameters or divided into compartments do not allow taking into

account spatial variations, such as velocity and pressure of fluid in a compartment.

The computational fluid dynamics (CFD) approach can be used to describe the hydrody-

namics of cerebral and spinal CSF under normal and pathological conditions. CFD modeling
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uses a three-dimensional patient-specific geometry that allows us to compare directly simula-

tion results with in-vivo data. In [16], the authors used CFD to investigate the pathogenesis of

syringomyelia combined with Chiari malformation. It is shown that abnormal CSF velocities

and pressure values are associated with abnormal CNS anatomy. Another study was aimed at

determining how Chiari malformation and syringomyelia alter the pressure in the spinal sub-

arachnoid space [17]. Using MRI data for geometry construction and CSF flow information, it

was shown that in Chiari malformation, peak pressure may occur earlier and be significantly

higher than that in the control group, while in patients with syringomyelia the pressure profiles

are similar to those of the control group.

CFD modeling allows predicting pressure and CSF flow rate in the ventricular system and

both in the spinal and cerebral subarachnoid space in healthy subjects and patients with acute

or chronic hydrocephalus. Thus, in [18], the gradients of intracranial pressure and CSF veloc-

ity were determined throughout the craniospinal system of healthy subjects and patients with

communicating hydrocephalus. The mathematical model described in this paper also captures

the transition from normal intracranial dynamics to acute communicating hydrocephalus. In

contrast to [18], in which the simulation was performed in a two-dimensional approximation,

in [19], the authors investigated the relationship between vascular pulsations, flow, and pres-

sure waves of CSF in the CNS using a three-dimensional modeling of CFD. The simulation

results were in agreement with the clinical values. In [20], using three-dimensional FSI model-

ling, it was shown that ventricular volume and maximum CSF pressure are important hydro-

dynamic indicators in patients with non-communicating hydrocephalus and that the type of

non-communicating hydrocephalus does not significantly affect the change in these two indi-

cators. But it is worth noting that the CFD approach is quite time-consuming (especially FSI

modeling) and does not allow describing a parenchymal component.

It is worth pointing out that modeling CSF flow through brain tissue is crucial for better

understanding of various CNS diseases. Poroelastic models are considered as one of the

options for modeling the brain parenchyma. This approach is used to simulate the interaction

of CSF with the brain parenchyma and to test different hypotheses of the occurrence and

development of CNS diseases. Thus, in an early work [21], it was shown that large differences

in intracranial pressure between ventricles and subarachnoid space are responsible for the

hydrocephalus development. The combination of the poroelastic parenchymal model with the

CSF hydrodynamic model in the case of idealized geometry was considered in [22]. The result-

ing mathematical model allows us to study the onset, development and treatment of hydro-

cephalus. In [23], the authors focused on studying the effects of variable permeability as a

function of strain. The work is focused on the reasonable of using mathematical models that

account for strain-dependent permeability for more complex geometric configurations rele-

vant to models of the clinical condition of hydrocephalus. The work [24] is dedicated to the

study of acute hydrocephalus caused by stenosis of the cerebral aqueduct using a combination

of poroelastic parenchyma model and a three-dimensional CFD model of the aqueduct.

The intensive study of the “cerebrospinal fluid-cerebral blood flow” connection made us

realize to consider the intracranial hemo- and CSF dynamics and their influence on changes in

cerebral ventricular configuration under physiological and pathological conditions. For exam-

ple, a spherically symmetric poroelastic model of the brain with multiple fluids (CSF, arterial

and venous blood) was developed to determine the spatial and temporal distribution of CSF

pressure and brain tissue displacement during an infusion test [25, 26]. The approach

described in [27] allowed us to study fluid transport between the blood circulation, CSF and

brain parenchyma, as well as to consider hypotheses about the onset and progression of acute

and chronic hydrocephalus. In [28] authors investigate the mechanical properties of the aging

brain using an improved multi-fluid poroelasticity model [27]. In [29], this mathematical
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model includes the concept of the glymphatic system and is applied to study cerebral perfusion

and neurovascular block in a three-dimensional anatomically accurate brain geometry.

Thus, the study of mathematical models of the interaction of cerebral fluids and the rela-

tionship between this interaction with ventricular wall deformation and intracranial pressure

allows us to gain deeper understanding of pathological processes and to choose the patient

management tactics more consciously.

Materials and methods

The poroelastic multifluid filtration model is used for mathematical modeling of cerebral

hemo- and CSF dynamics [27–30]. The brain parenchyma is modeled by a porous matrix.

Fluid phases are present at each point of the pore space and interact with each other. The

model considers four phases: arterial blood (values with index a), capillary blood (values with

index c), venous blood (values with index v), and cerebrospinal fluid (values with index e). The

fluid exchange between the phases is shown in Fig 1. Each fluid phase has its own pressure.

The model describes the distribution and mutual influence of the pressures in the fluid phases

and the displacement of brain parenchyma under the influence of these pressures. Since the

subject of the study is conditions developing in adulthood and having chronicity, a stationary

mathematical model is considered.

Four subject-specific geometries of sagittal slices of the brain obtained from MRI data are

included in this paper. The data for the first case was obtained in [31]. For the remaining three

cases, real data was taken from volunteers without pathology examined at the ITC SB RAS by

using Philips Ingenia tomograph of 3T field strength, Fig 2. This study was conducted in

accordance with the Declaration of Helsinki, and approval was granted by the local committee

on medical ethics of the International Tomography Center Siberian Branch of the Russian

Academy of Sciences. All the volunteers gave their informed consent (in written form). In

addition, the studies were supervised by the local ethical committee (ITC SB of RAS). A 3D

T1-TFE sequence with a cubic voxel of size 0.55 [mm] was used to define the geometry of sagit-

tal slice. The resulting geometry of the computational domain for the four volunteers is shown

in Fig 3. Based on these clinical data, the mathematical modeling is performed in a two-dimen-

sional approximation. It is worth noting that modeling brain processes using two-dimensional

slices is a widely used approach [31–35]. The choice of the sagittal slice is due to the fact that it

passes through the anatomical structures under study and lies in the symmetry plane that min-

imizes possible differences between two- and three-dimensional deformations (for three-

dimensional deformations, this slice remains approximately plane).

Fig 1. Brain fluid transport scheme. Scheme of blood and CSF transport in the brain parenchyma.

https://doi.org/10.1371/journal.pone.0264395.g001

PLOS ONE Influence of interaction of cerebral fluids on ventricular deformation: A mathematical approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0264395 February 28, 2022 4 / 23

https://doi.org/10.1371/journal.pone.0264395.g001
https://doi.org/10.1371/journal.pone.0264395


This approach allows us to investigate how the interaction of fluid phases affects the dis-

placement of the brain parenchyma and intracranial pressure. It allows us to expand our

understanding of the possible mechanisms of hydrocephalus development and some other

pathological conditions.

Mathematical model

The following notation is introduced below. The boundary of the brain ventricles, which is the

inner boundary of the computational domain, is denoted by ΓV. The outer boundary of the

computational domain is denoted as ΓS and corresponds to the skull. The brain parenchyma is

referred to O, Fig 2. According to clinical studies, there is a difference between the mechanical

properties of white matter and gray matter. However, to date, there are no relevant experimen-

tal data to quantify these differences. Therefore, the brain parenchyma is modeled as a homo-

geneous material [27, 36, 37]. The CSF movement in the subarachnoid space is taken into

consideration by introducing averaged values. The intraventricular CSF flow and the CSF flow

through the brain aqueduct are not considered directly, but their integral effect is taken into

account. Therefore, the mathematical model includes one vector and four scalar equations

[27]. The values used in the mathematical model are given in the Table 1.

The equilibrium vector equation for brain parenchyma is [38]

mDuþ ðmþ lÞrðdiv uÞ � ðaarpa þ acrpc þ aerpe þ avrpvÞ ¼ 0: ð1Þ

Fig 2. MRI data. Brain MRI saggital scan from one of the volunteer.

https://doi.org/10.1371/journal.pone.0264395.g002
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Using the mass conservation law and Darcy’s law for pore fluids, we obtain equations for pres-

sure values

�
ka
ma
Dpa � gacðpc � paÞ ¼ 0; ð2Þ

�
kv
mv
Dpv þ gcvðpv � pcÞ þ gevðpv � peÞ ¼ 0; ð3Þ

�
ke
me
Dpe þ gceðpe � pcÞ � gevðpv � peÞ ¼ 0; ð4Þ

Fig 3. Geometry of the computational domain. Geometries of the computational domain for four volunteers.

https://doi.org/10.1371/journal.pone.0264395.g003
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�
kc
mc
Dpc þ gacðpc � paÞ � gceðpe � pcÞ � gcvðpv � pcÞ ¼ 0; ð5Þ

Here u is brain parenchyma displacement, λ and μ are elastic moduli, pi is the i-th pore

fluid pressure, αi are Biot’s coefficients, ki are permeability coefficients, μi is pore fluid viscos-

ity, i = a, c, v, e. The terms of the form Syx = γyx(px − py) describe the fluid transport from the

network x to the network y due to a hydrostatic pressure gradient. Here γyx are parameters

specifying interactions and flows of pore fluids between basins. Below, we will refer to γyx as

interaction parameters.

The system of equations Eqs (1)–(5) is complemented by boundary conditions for displace-

ment and four pore pressure values. At the cerebral ventricular boundary ΓV the following

conditions are set.

1. Stresses are assumed to be continuous:

2mεðuÞ � nþ l�ðuÞn ¼
X

i¼a;c;e;v

ðai � 1Þpin ð6Þ

ε(u) is a strain tensor; �(u) = trε(u) = ε(u)ii = div u; n is an external unit normal vector.

2. There is no flow for the arterial and venous networks:

rpan ¼ rpvn ¼ 0; ð7Þ

3. CSF is secreted at constant rate Qp in the brain ventricles. The conservation condition of

fluid mass in the ventricular system takes into account the CSF volume produced by the vascu-

lar plexuses, the CSF volume that seeps through the ventricular wall, and the CSF outflow

Table 1. Values used in the model Eqs (1)–(13).

Symbol Name Model units Analysis units

u Brain tissue displacement m mm

pa, pv, pe, pc Pore pressure fluids Pa mmHg

E Young’s modulus Pa Pa

ν Poison’s ratio – –

αa, αv, αe, αc Biot coefficients – –

ka, kv, ke, kc Permeability m2 m2

μa, μv, μe, μc Dynamic viscosity N�s
m2

N�s
m2

γac, γcv, γev,
γce

Parameters specifying interactions and flows of pore fluids between

basins

m2

N�s
m2

N�s

Qp Constant rate of CSF secretion in the brain ventricles m3

s
m3

s

Q0 CSF outflow into the venous network m3

s
m3

s

d Diameter of the brain aqueduct m mm

L Length of the brain aqueduct m mm

κcv Flow resistance from the capillary into the ventricles via the vascular

plexus

m5 �s
kg

m5 �s
kg

R Resistance due to the presence of arachnoid granulations 1

m3
1

m3

https://doi.org/10.1371/journal.pone.0264395.t001
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through the brain aqueduct

Qp ¼
pd4

128mL
pejGV � pejGSð Þ �

I

GV

�
ke
me
rpe

� �

� ndS ð8Þ

d, L are diameter and length of the brain aqueduct.

4. The CSF formation from blood leads to a drop in capillary network pressure:

kcvrpcn ¼ Qp; ð9Þ

where κcv is flow resistance from the capillary network into the ventricles via the vascular

plexus.

At the skull boundary ΓS, the following assumptions are accepted.

1. Since this paper considers the adult brain, the skull is considered rigid. Thus, the dis-

placements of the skull boundary are equal to zero:

u ¼ 0: ð10Þ

2. No capillary flow is at the skull boundary:

rpcn ¼ 0; ð11Þ

3. Arterial and venous pressure values are set:

pa ¼ part; pv ¼ pven: ð12Þ

4. CSF absorption into the venous network leads to an increase in pressure:

pe ¼ pv þ meRQ0; ð13Þ

where R is resistance due to the presence of arachnoid granulations; Q0 is CSF outflow into the

venous network, μe is CSF viscosity.

The values of the parameters characterizing the pore fluids and the porous matrix are given

in Table 2 according to the literature data [22, 24].

Given Young’s modulus E and Poisson’s ratio ν, the elastic moduli λ and μ are calculated

using the well-known formulas:

l ¼
nE

ð1þ nÞð1 � 2nÞ
ð14Þ

m ¼
E

2ð1þ nÞ
ð15Þ

Table 2. Parameters used in the model Eqs (1)–(13).

Parameter Value Parameter Value

E 584 Pa [39] pven 650 Pa

ν 0,35 Qp, Q0 5; 8 � 10� 9 m3

s

ka,c,v 10−10 m2 d 4 mm

ke 1,4 � 10−14 m2 L 70 mm

μa,c,v 2; 67 � 10� 3 N�s
m2

R 8; 5 � 1013 1

m3

μe 8; 9 � 10� 4 N�s
m2

κcv 6 � 10� 4 m5 �s
kg [24, 40]

part 8000 Pa αa,e,c,v 0,99

https://doi.org/10.1371/journal.pone.0264395.t002
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To solve Eqs (1)–(5) numerically with boundary conditions of Eqs (6)–(13), the finite ele-

ment method was used. The calculations were performed in the open package FreeFem++

[41]. The weak formulation of the problem is given in S1 Appendix.

Within the framework of the considered model, the celebral hemo- and CSF dynamics is

defined by the values of parameters γxy describing the interaction and mutual cross-flows of

fluid phases. Further in the paper, the effect of γxy parameters on ventricular wall displacement

and pressure distribution on it is investigated using the numerical solution of the system Eqs

(1)–(13). For this purpose, each of the interaction parameters γxy was independently provided

by 15 values from the range: 10� 16 m2

N�s : 10� 8 m2

N�s. The formulation of a weak problem was solved

numerically for all 154 = 50625 parameter sets γac, γcv, γce, γev. It should be noted that these

parameter values may cover the entire physiologically acceptable range of periventricular pres-

sure [42].

Statistical analysis

Based on the results of the numerical calculations, a statistical analysis was performed using

the free software environment for statistical computing and graphics R [43], R version is 4.0.3.

The goal of the statistical analysis was to investigate the influence of the interaction of cere-

bral fluids on the mean displacement of the ventricular wall. In selecting a model, we preferred

high interpretability over predictive power. For this purpose, a fairly simple statistical model

was chosen that had both high interpretability and described the data well. Therefore, to study

the effects of the values of the interaction parameters γxy on the mean displacement �u of the

ventricular wall, a multiple linear regression with interaction (MLR model) was constructed

for each of the four volunteers. To construct the regression, the γxy values were logarithmically

pre-transformed.

The logarithmic transformation was applied to normalized data and is described as

c�� ¼ log bþ
g�� � min g��

max g�� � min g��

� �

; ð16Þ

where the choice of parameter b is described below. The data obtained was filtered out: only

those sets γxy for which used to construct the regression, where the capillary pressure value on

the ventricular wall ranged from 5 mmHg (666.61 Pa) up to 40 mmHg (5332.88 Pa) [42].

This range will be further referred to physiologically permissible. Outside this range, irre-

versible changes usually leading to a fatal outcome occur.

In order to choose the regression model used later to describe the mean ventricular wall dis-

placement, (210 − 1) linear models with all possible combinations of the following regressors

were considered:

cac; cce; cev; ccv; cac � cce; cac � cev; cac � ccv; cce � ccv; ccv � cev; cce � cev: ð17Þ

These regressors allow us to consider the influence of cross-flow between the fluid phases and

the interactions between these cross-flows on the mean displacement of the ventricular wall.

For each of the models, the transformation of Eq 16 was optimized in two ways: by finding

a value b that yields the maximum value of R2
adj: and that gives the minimum value of the

Akaike AIC information criterion. The optimization was performed using the iterative

L-BFGS-B method. This uses a limited-memory modification of the BFGS quasi-Newton

method [44]. At each iteration, a linear regression was fitted and the corresponding value of

R2
adj: or AIC was calculated. In the optimization, b 2 [0, 10] was assumed. It should be noted

that for all models the optimal values of b found are not on the boundary of this segment.
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The resulting models were ordered in descending order R2
adj:. For convenience, the 25 mod-

els with the highest value of the coefficient of determination are given below for each volun-

teer. The same models have the lowest values of the Akaike information criterion. The

corresponding optimal values of the coefficient b obtained by two methods for these 25 models

differ by less than 0.1%. The S1–S4 Files shows the results of this algorithm for all 1023 models,

ordered by decreasing R2
adj:. This table also contains the optimal values b obtained by maximiz-

ing R2
adj:, denoted as bopt.

Based on the above data, let us choose a model that is both simple enough and describes the

data well. As can be seen in Fig 4, the optimal values bopt for the first eight models with the

highest coefficients of determination R2
adj: differ in the third decimal place. Therefore, it would

be correct to compare these eight models for each of the volunteers. Fig 5 shows the values of

the Akaike information criterion. From these two figures, we can see that the first four models

best represent the dependency under consideration and are qualitatively close to the same. The

simplest of these four models is model 4, which will be futher used as a base model. This model

is the same for all volunteers, and in contrast to the full model by the absence of the regressors

ccv � cev; cce � cev: ð18Þ

Fig 6 shows the values of the regression coefficients. The coefficients for the regressors miss-

ing in model No. 4 are an order of magnitude smaller than the other regression coefficients.

Fig 4. Values of bopt and R2
adj:. Values of bopt and R2

adj: of the first 25 models for four volunteers.

https://doi.org/10.1371/journal.pone.0264395.g004
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Thus, the excluded regressors make a relatively small contribution to the mean ventricular

wall displacement and can be considered unessential.

For each volunteer, the mean ventricular wall displacement has an approximately normal

distribution and equals: 2.99 (1.01) for Volunteer 1, 2.34 (0.68) for Volunteer 2, 2.56 (0.78) for

Volunteer 3 and 2.58 (0.69) for Volunteer 4. Values are expressed as mean (SD).

For the chosen base model, all regression coefficients b̂ are statistically significant

(p< 0.001) for all volunteers. The values of the coefficients, their standard errors and confi-

dence intervals, the values of the dfbeta analysis are given in Table 3. Here dfbeta� is the maxi-

mum of the absolute dfbeta analysis values.

The estimated explanatory power of regression model �u for volunteer 1 is 93.0%, F(8,

30250) = 51177.6, p< 0.001. Further, the explanatory power of regression model �u for volun-

teer 2 is 92.5%, F(8, 30437) = 47210.16, p< 0.001. The explanatory power of regression model

�u for volunteer 3 is 93.0%, F(8, 30453) = 50850.9, p< 0.001. In addition, the explanatory

power of regression model �u for volunteer 4 is 91.3%, F(8, 30329) = 39791.9, p< 0.001.

The additional characteristics of the base regression model for four volunteers can be found

in Table 4. This table provides information about the sample size for each volunteer, the value

of bopt, and the value of the maximum correlation coefficient between regressors—corrmax. The

resulting regression model was validated using 10-fold cross-validation with RMSE cost func-

tion (CV value in the table) and the value of adjusted R2.

To verify the assumptions of the regression analysis for each of the volunteers, the depen-

dence of the residuals on the predicted values and the histogram of the residuals are shown in

S5 File. The figures show that the regression assumptions are satisfied.

Fig 5. Values of the Akaike information criterion. Values of the Akaike information criterion of the first 25 models for four volunteers.

https://doi.org/10.1371/journal.pone.0264395.g005
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Results

Analysis of calculation results

The computational results allow us to identify and analyze the patterns of influence of the

interaction parameters on the pressures and mean displacement of the ventricular wall. From

the results of numerical calculations and the constructed regression model, we find that the

values of pressure and ventricular wall displacement depend on the interaction parameters in

a logarithmic manner. Therefore, we introduce logarithmic interaction parameters gxy = lgγxy
for further analysis. Also, in analyzing the results, units are used that are common in medical

practice and more convenient for interpretation (column “Analysis units”, Table 1).

Analysis of fluid phase pressures. Arterial, venous, and CSF pressure values remain

approximately constant at the ventricular boundary within the range of changes in the interac-

tion parameters and equal: pa = 60.15 mmHg (8019.3183 Pa), pv = 4.88 mmHg (650.61136 Pa),

pe = 8.18 mmHg (1090.57396 Pa) The variation in these pressure values does not exceed 0.025

mmHg. (3.33305 Pa) The pressure values correspond to the physiological norm [42]. Thus, in

within the framework of the model, the interaction of the cerebral fluid media with each other

does not affect arterial, venous, and CSF pressure values. This results from the fact that this

model does not take into account the mechanisms of cerebral autoregulation.

The capillary pressure depends on the values of the interaction parameters, and for a fixed

set of parameter values the variation of this pressure at the ventricular wall does not exceed

Fig 6. Regression models coefficients. Regression coefficients of the first 25 models for four volunteers.

https://doi.org/10.1371/journal.pone.0264395.g006
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0.0001 mmHg (0.0133322 Pa). When the interaction parameters are changed, the capillary

pressure completely covers the physiological range. Further analysis of the calculation results

is given on the example of the second volunteer, for whom the plots are the most visual. For

the other volunteers, the qualitative conclusions are similar, and the corresponding illustra-

tions are given in the S6 File.

The behavior of capillary pressure pc depending on the interaction parameters can be inter-

preted in the context of physiology. A change in the logarithmic parameter of the CSF-venous

interaction gev has almost no effect on the capillary pressure. The influence of the other param-

eters is shown in Fig 7. Here, capillary pressure level lines are shown in 1mmHg steps: the fill

color corresponds to the pressure value, magenta corresponds to pc> 40mmHg, cyan − pc< 5

Table 3. MLR model result for four volunteers.

MLR model for volunteer 1 MLR model for volunteer 2

b̂ SE CI dfbeta � b̂ SE CI dfbeta�

Intercept -2.313 0.030 [-2.372, -2.253] 0.0192 Intercept -0.725 0.019 [-0.762, -0.689] 0.0116

ψac -4.226 0.019 [-4.262, -4.19] 0.0111 ψac -2.585 0.012 [-2.609, -2.562] 0.0071

ψce -4.670 0.015 [-4.699, -4.641] 0.0065 ψce -2.963 0.009 [-2.981, -2.945] 0.0037

ψev 1.091 0.014 [1.064, 1.118] 0.0052 ψev 0.623 0.009 [0.604, 0.641] 0.0038

ψcv 1.526 0.013 [1.50, 1.552] 0.005 ψcv 0.747 0.009 [0.730, 0.765] 0.0034

ψac�ψce -3.009 0.009 [-3.028, -2.991] 0.0036 ψac�ψce -2.042 0.006 [-2.054, -2.030] 0.0021

ψac�ψev 0.185 0.008 [0.168, 0.201] 0.0031 ψac�ψev 0.098 0.006 [0.086, 0.110] 0.0024

ψac�ψcv 0.510 0.008 [0.495, 0.525] 0.0027 ψac�ψcv 0.215 0.006 [0.204, 0.226] 0.002

ψce�ψcv 0.471 0.004 [0.462, 0.480] 0.0005 ψce�ψcv 0.343 0.0030 [0.337, 0.350] 0.0004

MLR model for volunteer 3 MLR model for volunteer 4

b̂ SE CI dfbeta� b̂ SE CI dfbeta�

Intercept -0.936 0.021 [-0.976, -0.895] 0.013 Intercept -0.935 0.022 [-0.978, -0.891] 0.0133

ψac -2.968 0.013 [-2.994, -2.942] 0.0079 ψac -2.816 0.014 [-2.843, -2.789] 0.0078

ψce -3.387 0.010 [-3.408, -3.367] 0.0042 ψce -3.196 0.011 [-3.217, -3.176] 0.0041

ψev 0.7300 0.011 [0.709, 0.751] 0.0043 ψev 0.6710 0.011 [0.650, 0.692] 0.0041

ψcv 0.8990 0.010 [0.879, 0.918] 0.0039 ψcv 0.8350 0.010 [0.816, 0.854] 0.0034

ψac�ψce -2.338 0.007 [-2.351, -2.324] 0.0024 ψac�ψce -2.101 0.007 [-2.114, -2.087] 0.0023

ψac�ψev 0.1210 0.007 [0.108, 0.134] 0.0027 ψac�ψev 0.0960 0.006 [0.083, 0.109] 0.0025

ψac�ψcv 0.2730 0.006 [0.261, 0.286] 0.0022 ψac�ψcv 0.2350 0.006 [0.224, 0.247] 0.0019

ψce�ψcv 0.3880 0.004 [0.381, 0.396] 0.0004 ψce�ψcv 0.3530 0.004 [0.346, 0.359] 0.0004

Model coefficients (b̂), standard error estimates (SE), confidence intervals (CI), and values from dfbeta analysis (dfbeta�) of the MLR model for four volunteers.

https://doi.org/10.1371/journal.pone.0264395.t003

Table 4. Additional characteristics of the base regression model for four volunteers.

n bopt corrmax CV R2
adj:

Volunteer 1 30259 0.1689 0.44 0.266 0.931

Volunteer 2 30446 0.1877 0.46 0.185 0.925

Volunteer 3 30462 0.1886 0.47 0.206 0.930

Volunteer 4 30338 0.1729 0.42 0.205 0.913

Sample size (n), optimal b corresponding to the model (bopt), value of maximum correlation coefficient between regressors (corrmax), 10-fold cross-validation error (CV)

and adjusted R2.

https://doi.org/10.1371/journal.pone.0264395.t004
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mmHg. The dashed lines limit the capillary pressure range to 15mmHg(1999.83 Pa)< pc< 30

mmHg(3999.66 Pa), which corresponds to the capillary pressure range for a healthy body. At

the left of Fig 7 we see that at small values of the logarithmic capillary-venous interaction

parameter gcv, the simultaneous increase or decrease of the arterial-capillary gac and capillary-

CSF gce parameters has almost no effect on pressure. This seems to be physiological, because in

such a case the capillary blood volume changes slightly. As gcv increases, the parameter gce has

less and less influence on the capillary pressure, because both parameters are responsible for

the capillary blood drain.

Analysis mean ventricular wall displacement. The plots of dependence of mean ventricu-

lar wall displacement on the logarithmic interaction parameters are shown in Fig 8. The plots

are based on data from the second volunteer. Similar plots for the other volunteers are qualita-

tively identical and are shown in the S6 File. In Fig 8, the lines on the surface correspond to

values of mean ventricular wall displacement in increments of 0.1mm. The bold solid lines cor-

respond to values of �u ¼ �3 mm (0.003m). This range was chosen basing on experience from

clinical studies of hydrocephalus [5, 45]. Magenta highlights the area where �u > 3 mm and

cyan illustrates the area where �u < � 3 mm (-0.003m). In the range [−3mm, 3mm], the fill

color corresponds to the value of �u. The dashed lines correspond to the values �u ¼ �2 mm,

and the dotted line shows �u ¼ 0 mm.

The plots in Fig 8 are almost symmetrical with respect to the parameters gce and gac, show-

ing their comparable effect on �u. This appears to be physiological, as an increase in either of

these parameters increases the CSF content in the parenchyma resulting in ventricular com-

pression and decrease in ventricular size.

A growth in gev increases the CSF drain from the parenchyma into the venous channel,

resulting in enlargement of the ventricles. As gcv increases, the ventricles dilate. Such a behav-

ior is consistent with the decrease in pc at the ventricular boundary.

For small values of gce and gac, there is a complex behavior of mean ventricular wall dis-

placement that is most clearly observed at small values of gev. In this area of parameters, the

surface becomes saddle-shaped. It is difficult to interpret this phenomenon, but, at the same

time the variation of the mean ventricular wall displacement at these parameter values is rela-

tively small, i.e. about one millimeter.

Analysis of regression model of mean ventricular wall displacement

The constructed regression model allows us to analyze the comparative effect of the interaction

parameters γxy on the mean ventricular wall displacement. The values of the regression

Fig 7. Dependence of pc on gxy. Capillary pressure dependence on the logarithmic interaction parameters.

https://doi.org/10.1371/journal.pone.0264395.g007
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coefficients for all four volunteers are shown in Fig 9. It should be noted that the values of the

regression coefficients for all volunteers show the same pattern.

In what follows the regression coefficients are discussed in descending order of their

contribution.

• The largest contribution to the displacement is made by the arterial—CSF component, the

influence of which is described by the coefficients at the regressors ψac, ψce and ψac�ψce. And

the regression coefficient at ψac�ψce, describing the mutual influence of the arterial-capillary

and capillary-CSF components is comparable to the influence of each of these components

separately. This leads to a strong nonlinearity of the influence of the arterial-CSF

component.

• Venous outflow is the next in degree of influence (regression coefficients at ψev and ψcv).

Fig 8. Dependence of �u on the gxy. Mean ventricular wall displacement dependence on the logarithmic interaction parameters.

https://doi.org/10.1371/journal.pone.0264395.g008
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• The mutual influence of capillary-venous outflow with the arterial-CSF component makes

even smaller contribution (regression coefficients at ψac�ψcv and ψce�ψcv).

• The smallest contribution comes from the mutual influence of arterial-capillary inflow and

CSF-venous outflow (regression coefficient at ψac�ψev).

Thus, the parenchymal arterial-CSF component is crucial for the ventricular wall

deformation.

The regression model clinical interpretation. The model reveals trends that correlate

with the pattern of pathological states. The following plots show the values of the regression

terms (ccxy ¼
cbxy � cxy, where cbxy are regression coefficients) and the corresponding value of

the mean ventricular wall displacement (�u).

Pattern 1: normal pressure hydrocephalus

When arterial-capillary inflow and capillary-venous outflow are preserved, the decrease in

capillary-CSF flow leads to an increase in ventricular size. This is due to a decrease in blood

flow to the interstitial and cerebrospinal fluids, which reduces the overall pressure on the ven-

tricular wall and allows them to expand. Such changes may describe normal pressure hydro-

cephalus, in which ventricular dilation occurs without a significant increase in intracranial

pressure Fig 10.

Pattern 2: intracranial hypertension

When capillary-venous outflow is disrupted and there is arterial-capillary and arterial-CSF

cross-flow, the model describes a situation with intracranial hypertension. In addition, CSF

outflow persists with impaired outflow, resulting in edema in the brain parenchyma and

increased external pressure on the ventricular wall. The ventricles are compressed under

Fig 9. Values of estimation of the regression models. Values of regression coefficients.

https://doi.org/10.1371/journal.pone.0264395.g009
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parenchymal pressure. It is worth noting that an increase in any of the parameters describing

venous outflow leads to a decrease in ventricular compression, Fig 11.

Pattern 3: replacement ventriculomegaly under a prolonged hypoperfusion

When arterial-capillary inflow is impaired, the model describes chronic ischemic changes

or brain tissue perfusion violation in which atrophic changes and ventricular replacement dila-

tions may form. The decrease in capillary-CSF cross-flow exacerbates ventricular deforma-

tions, Fig 12.

Discussion

The goal of this paper is to study the influence of the interaction of cerebral fluids on the mean

displacement of ventricular wall and the pressure of the cerebral fluids. The analysis of numeri-

cal calculations for 50625 sets of interaction parameters has revealed the nature of this influ-

ence, which has a qualitative physiological justification. For a more detailed quantitative

analysis of ventricular wall displacement, a multiple linear regression with a high coefficient of

determination (R2
adj: > 0:91) was created for each of the volunteers. This regression accounts

for the mutual influence of cross-flows between the cerebral fluids.

The regression describes the dependence of the average value for solving the partial differ-

ential equations Eqs (1)–(13) on the interaction parameters. The logarithmic dependence of

Fig 10. The regression terms for normal pressure hydrocephalus. Possible regression terms for normal pressure hydrocephalus.

https://doi.org/10.1371/journal.pone.0264395.g010
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mean ventricular wall displacement on the interaction parameters was revealed. A determin-

ing effect of the arterial-CSF component on the ventricular wall displacement was found.

The model describes the processes in a parenchyma. Since the brain tissue and microcircu-

latory vascular component prevail at the border with the outer wall of the ventricles, the pre-

dominant influence of the arterial-CSF component seems to be physiological. At the same

time, the capillary-venous interaction parameter describes the cerebral drainage and its

increase reduces the deformation of the ventricles.

The values of interaction parameters were found. The parameters can characterize such

pathological states as normal pressure hydrocephalus, intracranial hypertension and replace-

ment ventriculomegaly under a prolonged hypoperfusion, which seems clinically interesting.

Both the numerical analysis and the regression model demonstrate complex nonlinear

dependence of the mean ventricular wall displacement on the interaction parameters. Differ-

ent values of interaction parameters may correspond to both an increase and a decrease in

Fig 11. The regression terms for intracranial hypertension. Possible regression terms for intracranial hypertension.

https://doi.org/10.1371/journal.pone.0264395.g011
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ventricular size. Some aspects of this dependence cannot be easily interpreted physiologically

at the moment. Namely the saddle-shaped surface of displacement �u plots surface at small val-

ues of gce and gac, as well as the presence of a term in the regression model responsible for the

mutual influence of the arterial-capillary and CSF-venous components. These issues require

further investigation.

Due to the difficulty in obtaining experimental data, validation of the numerical model is

indeed a difficult task, since access to small vessel structures is not possible under in-vivo con-

ditions. At the same time, efforts in this direction were made in the works on which this paper

is based. In result was mainly show qualitative validation, with several limitations that need to

be addressed [27, 46].

The natural evolution of the model may be directed to the transition to non-stationary

equations, which, will allow us, in particular, to assess the process of hydrocephalus formation

and the influence of interaction parameters on this process. Moreover, the transition from a

flat geometry to a three-dimensional one is interesting. It is expected that in such a transition,

the qualitative conclusions will not change despite the change in the values of the regression

coefficients. An important stage of further work is to verify the model using data from a real

patient with hydrocephalus.

Fig 12. The regression terms for replacement ventriculomegaly on the background of prolonged hypoperfusion. Possible regression terms for replacement

ventriculomegaly under a prolonged hypoperfusion.

https://doi.org/10.1371/journal.pone.0264395.g012
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Conclusion

This paper describes the effect of the interaction of cerebral fluids (arterial, capillary and

venous blood, cerebrospinal fluid) on ventricular wall displacement and periventricular pres-

sure. For this purpose, we used a mathematical model of multiphase poroelasticity for the

brain parenchyma similar to that in [27]. The interaction of cerebral fluids is given by a set of

four numerical coefficients.

The effect of interaction parameters on mean ventricular wall displacement and periventri-

cular pressure is described qualitatively. The authors constructed a multiple linear regression

with interaction that allows us to quantify the effect of these coefficients on the mean ventricu-

lar wall displacement. A similar approach to this problem has not previously been found in the

literature. Based on the regression model analysis the prevailing influence of the capillary-CSF

component was found. The detailed analysis reveals the relationship between the interaction

coefficients and the pathological conditions. In particular, sets of interaction parameters were

found to be associated with normal pressure hydrocephalus, intracranial hypertension, and

replacement ventriculomegaly under a prolonged hypoperfusion.
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