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Receptors for the Fc region of IgG (FcyR)' are expressed in a number of
hematopoietic cell types and play important roles in several immunological
processes such as phagocytosis of opsonized particulate antigens (1), clearance of
immune complexes (2, 3), antibody-dependent cellular cytotoxicity (4, 5), sig-
nalling the production of inflammatory mediators (6), and regulation of Ig
synthesis (7, 8) .

Receptors for human IgG have been partially characterized as at least three
distinct molecular species (9), which are expressed on different but overlapping
subsets of hematopoietic cells . These FcyR classes have been termed FcyRI,
FcyRII, and FcyRlo (10), and have been distinguished on the basis of size,
affinity for subclasses of human (11-13) and mouse (14-16) IgG, distribution of
expression on various cell types, in vitro functionality such as mediation of anti-
T3 T lymphocyte proliferation (16, 17), and recognition by mAbs (16, 18-21) .
FcyRI is a 70-kD receptor expressed on human monocytes that exhibits a
relatively high affinity for monomeric IgG (108-109/M, reference 12). FcyRII is
a 40-kD species present on monocytes, B cells, neutrophils, platelets, and eosin-
ophils that has a much lower affinity for ligand than FcyRI, preferring aggre-
gated IgG (14, 16). FcyRlo is detected as a broad band of 50-70 kD on NK
cells, neutrophils, eosinophils, T cells, and macrophages (13, 19, 22) ; this receptor
apparently also binds only aggregated ligand .
A thorough understanding of the structure and biologic function of human

FcyR requires analysis and manipulation of genes that encode these molecules.
In this report, we describe the identification and expression of cDNA clones
encoding one class (FcyRII) of human FcyR, and have determined that this
receptor is the human homologue of the mouse macrophage/lymphocyte
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' Abbreviations used in this paper:

	

FcyR, Fc receptor for IgG; N-CAM, neural cell adhesion
molecule ; poly-IgR, epithelial transport receptor for polymeric IgA and IgM.
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Fc[y2b/yl]R (23, 24) . The human FcyR cDNA clones have a novel structure
consisting of segments homologous to both the a and ß mouse FcyR cDNAs (25,
26). While the two receptors are up to 61% homologous in their extracellular
and membrane-spanning domains, they have completely unrelated cytoplasmic
domains, a surprising observation for molecules that presumably mediate similar
functions in human and mouse cells .

Materials and Methods
Cell Lines and Antibodies.

	

U937 and HL-60 cells were provided by Dr. M . Siegel,
Schering Corporation, Bloomfield, NJ . Daudi cells were provided by Dr . J. Banchereau,
UNICET, Lyon, France . 166A2 cells were obtained from Dr . K. Ishizaka, The Johns
Hopkins University, Baltimore, MD. Ltk- cells were obtained from Dr. F. Lee, DNAX
Research Institute. Culture supernatants containing mAbs 32 and IV.3 were kindly
provided by Dr . C. Anderson, The Ohio State University, Columbus, OH. Leu-11 b was
purchased from Becton Dickinson & Co. (Mountain View, CA), and mouse y2bK (MOPC
195) from Litton Bionetics (Kensington, MD).
cDNA Clone Isolation and Characterization .

	

AcDNA library was constructed using the
pcD vector system described by Okayama and Berg (27), from poly(A)+ RNA isolated
from the human monocyte line U937, by a method similar to that of Chirgwin et al . (28) .
-10' clones were screened with a '2P-labeled cDNA insert from pFcRI l encoding a
mouse FcyR (Fig . 1, reference 25) as follows: competent Escherichia coli strain MC 1061
cells were transformed with 1 ng ofamplified pcD-U937 library DNAand plated on Luria
broth plates containing ampicillin . For screening, colonies were transferred to circular
Gene-Screen membranes, denatured, and neutralized according to protocols supplied by
New England Nuclear (Boston, MA). Filters containing plasmid DNAs were prewashed
in several changes of 3X SSC, 0.1% SDS at 60°C for 24 h. Prewashed filters were
prehybridized in a solution containing 6X SSC, 1% SDS, 5X Denhardt's solution, 0.1
sodium pyrophosphate, 200 wg/ml denatured salmon sperm DNA, and 200 Ag/ml dena-
tured pcD plasmid DNA for 24 h at 37°C . Filters were hybridized under the same
conditions containing the s2P-labeled 5' 800-bp restriction fragment of the mouse 02
cDNA (pFcRI l ; Fig. 1) at a concentration of ^-5 ng/ml. After hybridization, filters were
washed twice in 6X SSC at room temperature, followed by two washes in 2X SSC, 1
SDS at 42°C, and were exposed on Kodak XAR-Xomat film .
Three U937-pcD cDNA clones that crosshybridized to the mouse cDNA were purified

and restriction maps were determined . Restriction fragments of one of these clones,
designated 16.2, were subcloned into the m13mp10 and m13mp18 vectors and sequenced
by the dideoxy method . Plasmid sequencing was performed using triple cesium-banded
DNA and a modified procedure described by Hattori and Sakaki (29) .

Transfection ofMouse Ltk- Cells .

	

Mouse Ltk- cells to be transfected with human FcyRII
clones were cultured in DME containing 2 MM L-glutamine, 10% FCS, 10 U/ml penicillin,
and 10 Ecg/ml streptomycin . Confluent cells were trypsmized ^-16-18 h before transfection
and were seeded at a density of 1-2 X 10' cells/well in eight-chambered slides (Miles
Scientific Div., Naperville, IL). Cells were washed once with DME containing 0.025 M
Tris, pH 7.4 (Tris-DME), immediately before transfection . The transfection solution
contained 0 .2 ml Tris-DME, 5 jug/ml plasmid DNA, and 400 kg/ml DEAE-dextran
(Pharmacia Fine Chemicals, Piscataway, NJ). Cells were incubated with the transfection
solution for 4 h, washed once with Tris-DME and incubated for 60 h at 37°C, 5% C02
in culture medium . In some experiments, cells were incubated for 3 h in DME containing
2% FCS and 100 AM chloroquine and washed before the 60-h incubation in culture
medium . Mock transfections were performed exactly as described above, except plasmid
DNA encoding human FcyRII was omitted from the transfection solution .
Immunofuorescent Staining of Transfected Mouse Ltk - Cells.

	

Growth medium was re-
moved and transfected cells were washed with HBSS containing 10% FCS and 10 mM
Hepes. All staining was performed on ice to prevent endocytosis of receptors. Human
IgG was isolated from serum by ammonium sulfate precipitation, DEAE-cellulose chro-
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matography, and gel filtration on AcA 44, and was heat aggregated as follows : IgG (1 .7
mg/ml) was heated at 55 °C for 20 min and centrifuged at 2,000 g for 10 min to remove
large aggregates . The supernatant was used at a concentration of 50-100 wg/ml to assess
expression of surface receptors for IgG by transfected cells . Human myeloma IgA (Cappell
Laboratories, Malvern, PA) containing both monomeric and dimeric IgA was used as an
isotype control . The second-stage reagents in the procedure were FITC-labeled F(ab')2
fragments of goat anti-human IgG and IgA (Tago Inc ., Burlingame, CA) or goat anti-
mouse IgM (Zymed Laboratories, San Francisco, CA) .

Transiently transfected cells were also examined for ability to bind anti-FcYR mAbs .
Culture supernatants of hybridomas producing IV .3 (anti-FcyRII), 32 (anti-FcYRI), and
3G8 (anti-Fc7Rlo) were centrifuged at 12,000 rpm for 10 min before staining . Leu-1 lb
was used at 10 ug/ml . Second-stage reagent was FITC-labeled F(ab') 2 fragments of goat
anti-mouse IgG and IgM (Jackson Immunoresearch Laboratories, Avondale, PA) .

All staining reagents were diluted in HBSS + 10% FCS + 10 mM Hepes buffer . Stained
cells were mounted in a solution containing 2% N-propyl-gallate in 90% glycerol/10%
PBS, pH 8.45 .
RNA andDNA Blot Analysis .

	

Human placental genomic DNA was isolated as described
(30) . For RNA blot analysis, 4,ug/lane of poly(A)+ RNA was subjected to electrophoresis
in a formaldehyde/1% agarose gel . The RNA was transferred to a Gene-Screen Plus
membrane, baked at 80 °C for 2 h, and prehybridized in 50% formamide, 1 .0 M NaCl,
5X Denhardt's solution, 1 % SDS, and 100,ug/ml denatured salmon sperm DNA for 6 h
at 42° C . For genomic DNA blot analysis, genomic DNA was digested to completion with
the indicated restriction endonuclease and 5 Ag of each digest was electrophoresed on a
1 % agarose gel . DNA was transferred to Gene Screen Plus, dried, and prehybridized as
described above . Both filters were hybridized to a s2P-labeled Xho I fragment encoding
the entire human FcyRII cDNA in a solution containing 50% formamide, 1 M NaCl, 1 %
SDS, IX Denhardt's solution, and 100 wg/ml denatured salmon sperm DNA at 42°C .
Filters were washed twice in 2X SSC, 1% SDS at 65 ° C for 30 min, then washed in 0 .2X
SSC, 0.1 % SDS for 30 min at 30'C, and exposed for 18-100 h on Kodak XAR film with
an intensifying screen at 90'C .

Generation ofAntipeptide Antibodies by In Vitro Immunization .

	

Peptides were synthesized
on an Applied Biosystems, Inc ., (Foster City, CA) 430A peptide synthesizer, cleaved with
hydrogen fluoride, and purified by preparative HPLC on a Waters Delta Prep system .
Peptide identity was confirmed by amino acid analysis . Single cell suspensions from naive
BALB/c mouse spleens were immunized in vitro (Vaux, D . J . T ., and I . Mellman,
unpublished observations) . Briefly, spleen cells were resuspended at 2 X 10' cells/ml in
medium consisting of aMEM with 1 mM sodium pyruvate, 2 mM glutamine, 50 JUM 2-
ME, and 20% heat-inactivated FCS . Lyophilized peptides were resuspended in an equal
volume of the above medium, which had been conditioned by mixed mouse thymocytes
and sterilized by filtration, Antigen and cells were mixed and cultured at 37 °C, 5% C02
in 75-cm2 flasks for 5 d (18 ug/ml antigen) . Nonadherent cells were collected, erythrocytes
removed, and the remaining spleen cells fused with the SP-2 myeloma at spleen/myeloma
ratio of 2:1 using 47% PEG 1500 (J . T. Baker Chemical Co., Phillipsburg, NJ) with 7.5%
DMSO. The fused cells were plated in medium containing hypoxanthine and azaserine
on a feeder layer of BALB/c mouse peritoneal exudate cells . Wells were fed on days 2, 4,
and 6, and screening commenced on day 7 .

Positive wells were identified by solid-phase ELISA . U937 cell lysates (10' cells/ml in
PBS containing I% NP-40, 2 mM EDTA, and 0 .22 U/ml aprotinin) were centrifuged at
1,800 g for 10 min to remove nuclei and were incubated overnight at 4'C in Immunolon
plates at 30 ,al/well . Wells were washed twice in PBS and blocked with PBS containing
8% goat serum for 2 h at 4 ° C . Candidate mAb supernatants were incubated in the coated
wells for 1 h at 4'C and the plates were washed five times with PBS before a second
PBS/8% goat serum blocking step . The second-stage reagent was goat anti-mouse
IgG/IgM conjugated to alkaline phosphatase (Zymed Laboratories), 1 :500 in PBS/8%
goat serum . After a 1-h incubation, plates were washed five times with PBS, once with 50
mM sodium glycinate, pH 9.8, and developed with a Nitroblue tetrazolium/5-bromo-4-
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CONA clone 162 (human)

	

FIGURE 1 .
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chloro-3-indolyl phosphate substrate at pH 9.8 . Positive wells were expanded and the cells
cloned twice in soft agar . Binding in the first screen was confirmed by indirect immuno-
fluorescence and FACS analysis using live U937 cells . All mAbs were of the IgM subclass
and showed no reactivity above background on HeLa or HepG2 human cell lines .

Preparation of Polyclonal Antipeptide Antisera.

	

Polyclonal antipeptide antisera were
raised in rabbits using a popliteal lymph node immunization protocol (31). Aqueous
solutions of unconjugated peptides (2 mg/ml) were emulsified in an equal volume of CFA
and a total of 200 tag of peptide was injected into the popliteal lymph nodes of unprimed
rabbits. At 4 wk rabbits were boosted subcutaneously with 200 tlg of peptide in IFA . 1
wk later an intravenous boost of 200 Ag unconjugated peptide was given and blood was
collected 10 d after the final boost.

Fluorescence Analysis ofU937 and Daudi Cells.

	

Both cell lines were maintained in RPM1
1640 supplemented with 10% FCS, L-glutamine, penicillin-streptomycin, and 50 AM 2-
ME (Daudi onl . Cells from logarithmically growing cultures were washed twice in HBSS
containing 10 ;o' FCS and 10 mM Hepes buffer, and resuspended at 106 cells/ml in
HBSS/FCS/Hepes before staining. All staining was performed on ice in glass tubes using
106 cells for each sample . Supernatant-containing IV.3 was used at a final dilution of 1 :80
in HBSS/FCS/Hepes. The isotype control for IV.3 was MOPC 195 ( ,y2brc) at 10 Ag/ml .
All washes were done with HBSS/FCS/Hepes . Second-stage reagents were as described
above . Cells were analyzed using a FACS II or FACS IV (Becton Dickinson & Co.,
Mountain View, CA).

Results
Human FcyR cDNA Clones Homologous to a Mouse Fc[y2b(y]JR cDNA .

	

The
human monocyte cell line U937 expresses at least two of the classes of human
FcyR (FcyRI and FcyRII; reference 16) . We constructed a cDNA library from
U937 poly(A)+ RNA in the mammalian cell expression vector pcD (27) . ^-105
clones were screened using a 32P-labeled 800-bp restriction fragment from the
5' end of a mouse FcyR cDNA clone (Fig . 1, reference 25) as a probe under
conditions of reduced stringency . Three independent cDNA clones hybridizing
to the probe were identified (16 .1, 16 .2, 17.1) . All of the clones had cDNA
inserts of ~1 .6 kbp that exhibited identical restriction map patterns (Fig . 1) . The
complete DNA sequence of one of these clones (16.2) was determined (Fig . 2),
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FIGURE 3.

	

Homology between human FcyR (residues 8-173) and human CSF-1 receptor
(34; residues 22-195) . Overall homology is 42/165 amino acids, or -25% .

and a putative amino acid sequence was deduced. The cDNA clone encodes a
protein of 324 amino acids (36 kD) with a structure very similar to that described
for the mouse Fc[,y2b/y l ]R . The NH2-terminus contains a hydrophobic signal
sequence of up to 30 amino acids, with three possible AUG initiation codons .
This region is followed by a predicted extracellular domain of ^ " 180 amino acids,
which, as described for the mouse protein (25, 26), contains two tandem homol-
ogy units exhibiting significant sequence homology to members of the Ig gene
superfamily . The repeating units are defined by pairs of cysteine residues that
are surrounded by sequences characteristic of Ig variable regions (32) . However,
like the mouse FcyR and neural cell adhesion molecule (N-CAM) sequences (25),
the number of amino acids between each pair of cysteine residues is too small to
account for the typical variable region folding pattern.
A comparison of the translated human sequence (Fig . 2) to the National

Biomedical Research Foundation protein sequence data base using the program
IFIND (Intelligenetics, Inc., Mountain View, CA) revealed a number of signifi-
cant homologies to Ig-like molecules, including the epithelial cell receptor for
polymeric IgA/IgM (poly-IgR; reference 33), the receptor for platelet-derived
growth factor, neural cell adhesion molecule (N-CAM), and several proteins
encoded by various mouse MHC and human HLA loci .

Using the ALIGN program (34) in conjunction with an Ig family sequence
data base (kindly made available by A. F. Williams, MRC Laboratory, Oxford,
United Kingdom), a particularly strong homology was found between both Ig-
like domains of the human FcyR and amino acids 22-195 of the human CSF-1
receptor/cfms proto-oncogene (35), a plasma membrane protein also typical of
cells of the mononuclear phagocyte lineage. The best match yielded a highly
significant alignment score of 7 .32 SD units (32, 34 ; Fig. 3) .
The extracellular domain is followed by a long and markedly hydrophobic

stretch that probably represents the receptor's membrane-spanning segment. By
analogy to the more extensively studied mouse FcyR, we presume that this
transmembrane domain is about 29 amino acids long (overlined, Fig. 2) . We
note that this region is preceded by 13 amino acids (nucleotides 617-655) that
are not markedly hydrophilic.
The extracellular domain contains two potential sites for N-linked glycosylation

(boxed, Fig. 2) that are conserved between the mouse and human FcyR se-

hFcR (8) VLKLEPPWINVLQEDSVTLTCQGARSPESD---SIQW--FHNGNLIPTHTQ
I I I

hCSFR (22)
I I I I I I I I I I I I

VIEPSVPELVVKPGATVTLRCVGNGSVEWDGPPSPHWTLYSDGSSSILSTN

hrcR (54) PSYRFKANNNDSGEYTCQTGQTSLSDP----VYLT-VLSEWLVLQTPHLEF

hCSFR (72)
I I I I I I I I I I

NA-TFQ---- NTGTYRCTEPGDPLGGSAAIHLYVKDPARPWNVLAQEVVVF

hFcR (100) QEGETIMLRCHSWKDKPLVKVTRRQNGKSQKFSR----- LDP--TFSIPQA
I I I

hCSFR (117)
I I I I I I

EDQDA-LLPCL-LTDPVLEAGVSLVRVRGRPLMRHTNYSFSPWHGFTIHRA

hFcR (144) NHSHSGDYHCTGNIGYTLFSSKPVTITVQV

hCSFR (165)
I I I I I I I I

KFIQSQDYQCSALMGGRKVMSISIRLKVQK
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quences. Two additional sites identified in the mouse Fc-yR (24-26) are not
conserved in the human protein as a consequence of three amino acid substitu-
tions (broken boxes; Fig. 2) . The presumed cytoplasmic domain contains one
potential site for N-linked glycosylation (nucleotides 764-772, Fig. 2), although
it is unlikely to be used . The cytoplasmic domain is unusually long (76 amino
acids), and no significant homology of this region to cytoplasmic domains of
other receptors was detected .
Human FcyR cDNA Clones Represent a Novel FcyR mRNA Structure .

	

Three
distinct mouse Fc[y2b/y l ]R cDNA clones have been described (26), designated
a, #1, and #2 . These cDNAs share identical or nearly (95%) identical sequences
in their extracellular domains, but show marked differences elsewhere . Both
FcyR# cDNAs are identical except for a 46 amino acid in-frame insertion in the
predicted cytoplasmic tail of FcyR#l . In contrast, the Fc7Ra cDNA contains a
unique set of sequences comprising the 5'- and 3'-untranslated regions, signal
sequence, transmembrane domain, and cytoplasmic domain .
We compared the deduced amino acid sequence of the human FcyR with the

available mouse Fc-yR sequences (Fig . 4, a and b) . Overall homology between
the human and mouse extracellular domains is 61 % at the amino acid sequence
level (75% nucleotide sequence homology) . However, the signal sequence of
human Fc-yR shares substantial homology (60%) only with mouse Fc7Ra; only
23% homology exists between the human and FcyR# signal sequences (Fig . 4b).
Conversely, the putative transmembrane domain shares ^-50% amino acid ho-
mology with the corresponding region of the mouse FcyR# cDNA clones, but
has virtually no similarity to Fc7Ra. The 76 amino acid cytoplasmic domain of
the human protein is unrelated to any of the mouse cDNAs. The amino acid
sequence comparisons summarized in Table I show that the sequence of the
human Fc-yR cDNA consists of segments closely related to both the murine a
and # cDNAs, as well as a unique cytoplasmic domain.

The Human Fc-yR cDNA Clone Hybridizes to Two Distinct mRNA Species in Human
FcyR-expressing Cell Lines . Poly(A)+ RNA from several human cell lines was
subjected to electrophoresis on a formaldehyde-agarose gel and examined by
RNA blot hybridization with the human Fc-yR cDNA insert as a probe. The
cDNA insert was isolated from pcD as an Xho I fragment (27) . Fig. 5 a shows
that, in addition to a 1 .6-kb mRNA corresponding in size to clone 16.2, a 2 .5-
kb species was also detected in the U937 and HL60 cell lines. The same pattern
was detected in RNA isolated from human peripheral blood mononuclear cells
(data not shown) . No corresponding 2 .5-kb mRNA was detected by crosshybri-
dization to P388D1 (mouse macrophage) RNA, although the 1 .6-kb species is
seen (25, 26). RNA from an FcyR- B-lymphoblastoid cell line (RPMI8866,
reference 36) and a human T cell hybridoma (166A2, reference 37) did not
hybridize to the Fc7R probe. The 1 .6-kb species and a trace ofthe 2.5-kb mRNA
are also expressed by the FcyR-bearing B-lymphoblastoid cell line Daudi (Fig .
5a; reference 36). The relative intensities of the 1 .6-kb bands in U937 and
Daudi RNAs suggest that this mRNA is more abundant in Daudi cells than in
U937 .
The Fc-yR cDNA was also used as a probe of restriction digests of human

placental DNA. The probe hybridizes to several both weak and intense bands



a
human 16 .2 H2N- MTME TQMSQNVCPR NLWLLQPLTV LLLLASADSQ

*w* " ri rrrrrr "" r
mouse p2

	

H2N-

	

ME SNWRVHVRSR TLCHMLLWRA VLNLA*--AG

+1
AAAPPKAVLK LEPPWINVLQ EDSVTLTCQG AFSPESDSIQ

THDLPKAVVK LEPPWIQVLK EDTVTLTCEG THNPGNSSTQ
+1

WFHNGNLIPT HTQPSYRFKA NNNDSGEYTC QTCQTSLSDP
" r ww rtr i "

	

*»

	

r

	

*» "
WFHNGRSIRS QVQASYTFKA TVNDSGEYRC QMEQTRLSDP

VHLTVLSEWL VLQTPHLEFQ EGETIMLRCH SWKDKPLVKV

VDLGVISDWL LLQTPQLVFL EGETITLRCH SWRNKLLNRI

TFFQNGKSQK FSRLDPTFSI PQANHSHSGD YHCTGNIGYT

SFFHNEKSVR YHHYSSNFSI PKANHSHSCO YYCKGSLGRT

LFSSKPVTIT VQVPSMGSSS PMGIIVAVVI ATAVAAIVAA

LHQSKPVTIT VQGPKSSRSL PVLTIVAAVT GIAVAAIVII

VVALIYCRKK RISANSTDPV KAAQREPPGR QMIAIRK . . .
* " i *r

	

" * " r " r ** " "" r "" W w*w*r "
LVSLVYLKKK QVPDNPPDLE EAAKTEAENT ITYSLLK . . .

b
human 16 .2 H2N-

	

MTME TQMSWNVCPR NLWLLQPLTV

mouse a

	

H2N-

	

MTLD TQMRQNAHSG SQWLLPPLTI

+1
LEPPWINVLQ . . .
" » »
LDPPWIQVLK . . .

+1

man and Mouse FcyR

STUART ET AL .

LLLLASADSQ
» » »

LLLFAFADRQ

TM

52
52

FIGURE 4.

	

Homology of hu-
man and mouse Fcy receptor
proteins . (a) The predicted
amino acid sequences of the
human FcyRII and mouse
FcyR#2 have been aligned .
The start of the extracellular
domains of the human and
mouse proteins is indicated
(+ 1)above the firstaminoacid
in the sequence of this do-
main . The transmembrane
domains have been under-
lined. Asterisks indicate differ-
ences between the aligned se-
quences. The homology be-
tween the putative human and
mouse p2 proteins begins in
the extracellular domain and
extends through the trans-
membrane domain . The cyto-
plasmic portion of this human
receptor exhibits little homol-
ogy to that ofmouse FcyRs2 .
(b) The predicted signal se-
quences ofthe human FcyRII
and mouse FcyRa are homol-
ogous. Little homology
(<15%) is observed between
the transmembrane or cyto-
plasmic regions of the putative
human FcyR and mouse
FcyRa proteins . The begin-
ning of the mouse extracellu-
lar domain and corresponding
region of the mature human
FcyR sequence are indicated
(+1) . Homology between the
human FcyR and mouse
FcyRa amino acid sequences
in the extracellular domain is
comparable to that observed
between the human FcyR and
mouse FcyRfl proteins .

C

Homology searches were conducted for sets of protein sequences (human
vs . mouse a, human vs. mouse #I, and human vs. mouse ,82) and results
were tabulated . Slashes indicate where there was no significant homology
(<15%) between structural domains of the putative human and mouse
proteins . Domains of FcyR have been abbreviated as follows: S, signal
sequence; E, extracellular ; TM, transmembrane ; C, cytoplasmic domain .

1675

Amino Acid Sequence
TABLE

Homology
I

of H

Domain of protein S E

16 .2:mouse-FcyRa 60 ND
16.2:mouse-FcyR#l 23 61
16 .2:mouse-FcyR,82 23 61
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FIGURE 5.

	

RNA and genomic DNA blot analyses of the human FcyR genes homologous to
cDNA clone 16 .2 . (a) 5 ug of poly(A) selected RNA from human lines U937 (1 and 6),
RPM18866 (2), HL-60 (3), 166A2 (4), Daudi (7), and the mouse macrophage line, P-388D1
(5) were electrophoresed in a formaldehyde-agarose gel, transferred to Gene-Screen Plus, and
probed with a nick-translated Xho I fragment encoding the entire human FcyR11 cDNA .
Positions of 28S and 18S ribosomal RNAs are indicated by arrows . (b) 5-,Ug aliquots of human
placental DNA were digested with Nco I (1), Apa 1 (2), Sst 1 (3), Bam HI (4) and Eco RI (5),
electrophoresed in a 1 % agarose gel, transferred to Gene Screen Plus, and probed with an
Xho I fragment representing the human FcyR cDNA .

(Fig. 56) in each restriction digest, ranging in size from <2 kb to >10 kb; in
none of the digests examined was only a single band observed .

The Human FcyR cDNA Clone Encodes FcTRil.

	

Mouse Ltk- cells transiently
transfected with FcyR clone 16.2 were tested for expression of both ligand-
binding activity and antigenic determinants recognized by anti-human FcyR
mAbs. As shown in Fig. 6, cells transfected with the cDNA clone express
functional Fc receptors that bind heat-aggregated human IgG (Fig . 6a). These
receptors exhibit specificity for IgG because binding of human IgA to the
transfected cells was not detected (Fig . 6 b) . Mouse Ltk- cells subjected to a mock
transfection procedure were unable to bind either IgG or IgA (Fig . 6,c and d).
Identical results were obtained with cDNA clones 16.1 and 17.1 (data not shown).

Cells transfected with the FcyR cDNA clone were next tested for reactivity
with several anti-human FcyR mAbs . No staining of transfected cells was
observed with the anti-Fc7Rlo mAbs 3G8 (19) and Leu-11b (22) (data not
shown), or the anti-FcTRI antibody 32 (Fig . 6e, reference 18). However, the
anti-FcyRII antibody IV.3 (16) specifically stained Ltk- cells transfected with
the FcyR cDNA clone (Fig . 6, fand g) . All mAbs were obtained from culture
supernatants and were thus devoid of additional mouse IgG present in ascites
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Immunofluorescence staining of mouse Ltk- cells transfected with human cDNA
clone 16.2 . Mouse Ltk- cells transiently transfected with 16.2-pcD plasmid DNAwere assessed
for their ability to bind human IgG (a) and anti-FcyRII antibody IV.3 (f) . Ltk- cells transfected
with clone 16 .2 did not bind human myeloma IgA (b), nor were they stained by anti-FcyR1
antibody 32 (e) . Only background fluorescence was observed in mock transfectants stained
with either IgG/anti-IgG (c), IgA/anti-IgA (d), or with mAb IV.3 (g) .
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FIGURE 7.

	

Flow cytometric analysis of U937 and Daudi
cells stained with antipeptide antibodies . (a) U937 cells
stained with the anti-FcyRII peptide antibody SP75.3C5
and a control antibody, F1 .2F7 . (b) Daudi cells stained as
in a.

preparations . A control experiment with IgG2b (MOPC 195) of irrelevant
specificity gave negative results (data not shown) .
The FcyR Encoded by Clone 16.2 is Expressed by a Human Monocyte Cell Line .

	

Of
the three cDNA clones encoding mouse Fc[,y2b/,y IJR, only the FcyR# cDNAs
have been expressed by transfection (26 ; Koch, T., et al ., unpublished data) .
Furthermore, it has thus far proved difficult to detect proteins corresponding to
either FcyRa or FcyR,l31 in mouse macrophage and lymphocyte cell lines (Koch,
T., and I Mellman, unpublished data) . To establish that clone 16.2 encodes an
FcyR actually expressed by human cells, we tested human monocyte (U937) and
FcyR+ B-lymphoblastoid (Daudi) cell lines for expression of FcyR related to this
cDNA clone using antipeptide antibodies .
Two synthetic peptides were prepared, an 8-mer and 10-mer (broken overlines,

Fig . 2) . These peptides corresponded to regions of the FcyRII sequence likely
to be present on the B iB-strands stabilized by the intrachain disulfides in Ig-like
domains (32, 38), and were selected with the aid of the program PEP (Intellige-
netics, Inc.) The unconjugated peptides were used first for production of mouse
mAbs using a modified procedure for in vitro immunization (Vaux, D. J . T., and
I . Mellman, manuscript in preparation) . Since this procedure yields only antibod-
ies of the IgM class, the resulting antipeptide antibodies were not likely to bind
nonspecifically to FcyR. Supernatants harvested after the initial 4-d immuniza-
tion and from several IgM-secreting hybridoma cell lines were used to stain
receptor-positive and receptor-negative cells by indirect immunofluorescence .
As shown by flow cytometry in Fig . 7, specific staining of U937 cells was observed
with any of several mAbs to the octapeptide (SP75.3C5) . No staining was
observed using an irrelevant monoclonal IgM specific for a viral glycoprotein
(F1 .2F7 ; Fig . 7a) . The anti-FcyR peptide antibodies failed to stain HeLa and
HepG2 cells, both FcyR-negative human cell lines (data not shown) . Interestingly,
the antipeptide antibodies also failed to stain Daudi cells appreciably (Fig . 7 b),
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FIGURE 8. Flow cytometric analysis of U937 and
Daudi cells stained with aggregated IgG and an anti-
FcyRII InAb. (a) U937 ; (b) Daudi. Fluorescence is on
a linear scale .

although these cells express a 1 .6-kb mRNA homologous to the FcyRII probe
(Fig . 5a). Similar results were obtained using a conventional rabbit polyclonal
antiserum produced by injection of the unconjugated octapeptide directly into
the popliteal lymph nodes . The antipeptide antibody SP75.3C5 also stained Ltk-
and Chinese hamster ovary cells transfected with the FcyR11 cDNA (data not
shown) . These results demonstrate that cDNA clone 16.2 encodes a functional
FcyR expressed on the surface of the U937 monocyte cell line .
U937 and Daudi cells were also analyzed for binding to aggregated IgG and

anti-FcyRII antibody IV.3 . Fig . 8 shows that U937 was stained with both IgG
and IV.3 . Daudi cells stained to a comparable extent with IgG, but only slight
staining with IV.3 was detected, suggesting that the FcyRII expressed by these
two cell lines are related (16 ; Fig . 5a), but not identical (Figs . 7 and 8) .

Discussion
We have cloned and determined the molecular structure of a human monocyte

Fc receptor for IgG . Transfection of the cloned cDNA in mouse Ltk- cells results
in expression of a surface receptor, specific for human IgG, which is recognized
by the anti-FcyRII mAb IV.3, but not by a number of other anti-FcyR mAbs.
Moreover, antibodies against a peptide derived from the cloned sequence stain
the parent U937 cell line . We therefore conclude that clone 16.2 encodes the
human FcyRII class of FcyR expressed on monocytes . The predicted size of the
FcyRII encoded by 16.2 (36 kD with two potential sites for N-linked glycosyla-
tion) is also consistent with the observed size of FcyRII on human monocytes
and B cells : 40 kD (16) . The cloned FcyRII has ^-75% DNA sequence homology
and 61 % protein sequence homology in the extracellular domain with the mouse
Fc receptor for IgG2b and IgG1 . We therefore believe that FcyRII is the human
homologue of mouse Fc[y2b/yl]R . This relationship has been suggested previ-
ously (14, 16) based on several properties of the human and mouse receptors :
their similar sizes, their preference for binding aggregated IgG, and the ability
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of the human FcyRII to bind mouse 19G I and IgG2b, but not mouse IgG2a.
Our results demonstrate this conclusion at the molecular level.
The lack of reactivity of the cloned, expressed FcyRII with mAbs specific for

the FcyRI and FcyRlo classes of human FcyR clearly distinguishes FcyRII from
the latter two FcyR . However, it is still possible that this molecule may be
structurally related to FcyRI and FcyRlo. The human FcyRII cDNA probe does
detect a mRNA species in U937 that is larger (2.5 kb ; Fig. 5) than that
represented by 16.2 ; no corresponding 2.5-kb mRNA has been reported in
mouse cells expressing FcyR. The possibility that this larger mRNA could
represent one of the other two classes of human FcyR is under investigation .
The human B cell line Daudi has a 40-kD Fc receptor for IgG (16) and appears

to have more of the 1 .6-kb mRNA homologous to the FcyRII probe than does
U937 (Fig . 5) . However, Daudi cells were not stained by either the anti-FcyRII
antibody IV.3 or anti-FcyRII peptide antibodies (Figs . 7 and 8) . These results
are consistent with those reported by Looney et al . (16), who showed that IV.3
could precipitate FcyRII from U937 but not from Daudi cells . Our data suggest
that the IV.3 and antipeptide antibodies recognize determinants on FcyRII
which are either masked or not present when this receptor is expressed in Daudi
cells . Alternatively, the FcyRII-like molecule on Daudi cells may be encoded by
an FcyRII gene that is closely related to but distinct from that contained in clone
16 .2 . A related situation may also exist for the mouse Fc[y2b/yI]R. A rat anti-
FcyR mAb (6B7C) detects this antigen only on activated B lymphocytes and
some tumor cell lines, but not on macrophages and resting lymphocytes (Pure,
E., M . D. Widmer, J. B. Lum, I. Mellman, and J. C. Unkeless, manuscript
submitted for publication) .
The possibility of multiple gene segments related to FcyRII is also suggested

by genomic blot analysis (Fig . 5) . With any of the restriction enzymes used,
multiple large bands hybridizing to the FcyRII probe are detected . Because
humans are not an inbred species, it is difficult to interpret these observations
definitively . However, the data suggest that either the genomic FcyR gene(s)
may exhibit restriction site polymorphism, the FcyR genomic gene(s) contain
several large intervening sequences, or that the FcyR cDNA is homologous to a
small multigene family comprising several members .
Our expression and genomic blot data suggest two possible explanations for a

reported polymorphism in human monocyte FcyRII (39) . Monocytes of a large
proportion of Caucasians support proliferation of human T cells mediated by
the anti-T3 mAb Leu-4 (IgGI), while those of a majority of Asians do so only
poorly . Anderson et al . (39) have demonstrated an association of distinct isoelec-
tric focusing patterns of FcyRII with these "responder/nonresponder" pheno-
types, and suggested that human FcyRII is encoded by a single gene with two
allelic variants . This explanation may be correct if there are several large introns
in the genomicFcyRII gene, or if there is restriction site polymorphism associated
with the phenotypic polymorphism . Alternatively, the observed polymorphism
could be explained by a difference in control of cell-type specificity of expression
of individual members of an FcyRII gene family . In this light, we note again
that FcyRII expressed on a B cell line is antigenically distinct from monocyte
FcyRII (Figs . 7 and 8), and supports Leu-4-mediated T cell proliferation only
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poorly (16) . We thus speculate that nonresponder individuals might express an
FcyRII on their monocytes that is restricted to other cell types in responders.
The FcyRII cDNA clone has a signal sequence related to the mouse FcyRa

cDNA, a putative transmembrane region homologous to the mouse Fc"YRO
cDNA, and an extracellular domain closely related to both types of mouse FcyR
(25, 26) . Thus, it is apparent that in human FcyR-expressing cells, a single FcyR
protein may contain sequences related to both the a and a cDNAs of the mouse .
These findings indicate that the a- and ,B-specific gene segments are not uniquely
associated with a particular gene segment encoding the extracellular domain of
FcyR.
The FcyRII represented by clone 16.2 contains a unique, rather long cyto-

plasmic domain, which is unrelated to the mouse FcyR cytoplasmic domains or
to those of other known receptor molecules . This observed heterogeneity of
FcyR cytoplasmic domains remains unexplained . When such comparisons are
made, it is unusual for interspecies homologues of cell surface molecules to
diverge to a greater extent in their cytoplasmic domains than in their extracellular
domains . The lack of similarity among FcyR cytoplasmic domains is particularly
interesting in this case, since one can presume that the homologous FcyR should
perform very similar functions in mouse and human macrophages, respectively .
Either these functions do not require a particular primary structure for the
cytoplasmic domain, or there remain several other members of an FcyR gene
family yet to be isolated . It is possible that further study of ligand-dependent
effector functions of FcyR such as endocytosis, antibody-dependent cellular
cytotoxicity, superoxide production, and formation of bioactive lipids will clarify
this issue and suggest functional roles for the various cytoplasmic domains of
FcyR.

Like its murine counterparts, human FcyRII exhibits homology to proteins
encoded by members of the Ig gene superfamily (poly-IgA/IgM receptor, MHC
class II antigen, N-CAM). We have also found a significant homology to a portion
of the human CSF-1 receptor . The extracellular domains of both mouse and
human FcyR have a characteristic structural feature : there are only 42-44 amino
acid residues between cysteines, while Ig, poly-IgR, and MHC antigens have at
least 80 residues between cysteines that form disulfide linkages . The truncated
domains appear to lack at least two of the ,B-strands typically found in Ig-like
domains (31) . In this respect, FcyR is closely related to N-CAM; the CSF-1
receptor also exhibits truncated Ig-like domains and is likewise related to human
and mouse FcyR.
Anti-FcyRII peptide antibodies generated as described here may be very useful

reagents for the study of FcyRII expression . They are the first amino acid
sequence-specific antibodies produced against any human FcyR; that they are
of the IgM class renders further manipulation (i .e ., isolation of Fab fragments)
unecessary . The FcyRII cDNA clone and its complementary antipeptide anti-
bodies should make possible a thorough study of the expression of FcyRII on
human hematopoietic cells and of its relationship to other classes of human
FcyR.
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Summary
We have cloned and expressed a cDNA encoding a human receptor for IgG

(FcyR) from the monocyte cell line U937 . The deduced structure is a 35-kD
transmembrane protein with homology to the mouse Fc[y2b/y 1 ] receptor amino
acid sequence of -60% in the extracellular domain. The signal sequence is
homologous to the mouse FcyRa cDNA clone, while the transmembrane domain
shares homology with mouse FcyR# cDNAs. The cytoplasmic domain is appar-
ently unique. The extracellular domain shows significant homology to proteins
of the Ig gene superfamily, including the human c-fins protooncogene/CSF-1
receptor . Mouse Ltk- cells transfected with the human FcyR cDNA express a
cell-surface receptor that selectively binds human IgG and is recognized by the
anti-FcyRII mAb IV.3 . Antibodies against peptides derived from the human
FcyR sequence specifically stain U937 cells, but not an FcyRII-bearing B-
lymphoblastoid cell line (Daudi) . These results identify the human Fc'YR11 as the
homologue of mouse Fc[y2b/y 1 ]R, and provide evidence for heterogeneity of
FcyRII expressed on monocytes and B cells .
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Don Sato for help with experiments involving the cell sorter, and Dr. Jim Eliot for
assistance with peptide synthesis . We are also grateful to Dr. Clark Anderson forproviding
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Note added in proof.. Dr. Brian Seed (Massachusetts General Hospital) has also isolated
cDNAs encoding human Fcy RII (CDw32) . The sequence of his cDNA clone is identical
to 16.2 in the protein-coding region, but differs at six positions in the 3'-untranslated
region .
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