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Abstract: Decision making is a process of utmost
importance in our daily lives, the study of which has
been receiving notable attention for decades. Neverthe-
less, the neural mechanisms underlying decision making
are still not fully understood. Computational modeling
has revealed itself as a valuable asset to address some of
the fundamental questions. Biophysically plausible mod-
els, in particular, are useful in bridging the different levels
of description that experimental studies provide, from the
neural spiking activity recorded at the cellular level to the
performance reported at the behavioral level. In this
article, we have reviewed some of the recent progress
made in the understanding of the neural mechanisms that
underlie decision making. We have performed a critical
evaluation of the available results and address, from a
computational perspective, aspects of both experimenta-
tion and modeling that so far have eluded comprehen-
sion. To guide the discussion, we have selected a central
theme which revolves around the following question: how
does the spatiotemporal structure of sensory stimuli affect
the perceptual decision-making process? This question is a
timely one as several issues that still remain unresolved
stem from this central theme. These include: (i) the role of
spatiotemporal input fluctuations in perceptual decision
making, (ii) how to extend the current results and models
derived from two-alternative choice studies to scenarios
with multiple competing evidences, and (iii) to establish
whether different types of spatiotemporal input fluctua-
tions affect decision-making outcomes in distinctive ways.
And although we have restricted our discussion mostly to
visual decisions, our main conclusions are arguably
generalizable; hence, their possible extension to other
sensory modalities is one of the points in our discussion.

Introduction

Although decision making has been approached from various

perspectives, it is generally understood as a complex process

involving the comparison of different scenarios and the evaluation

of the perceived outcomes in light of one’s objectives, as in the

paradigmatic example of choosing between different job offers.

However, the much simpler tasks, such as those involved in

perceptual decision making, have proven useful to investigate the

neural basis of decision making. Our main focus is on the recent

advances in perceptual decision making as addressed by both

neurophysiological data derived from single-cell recordings and

modeling studies. To guide this discussion, we have selected a

central theme, i.e., the assessment of how the detailed spatiotem-

poral structure of sensory stimuli affects the perceptual decision-

making process. This question allowed us to scrutinize the

advances made during the last decade in the neural basis of

decision making, while at the same time encompassing a number

of research issues that have remained open and are the subject of

active debate. These issues include: (i) to understand the role of

spatiotemporal input fluctuations in perceptual decision making,

(ii) to explore how the current results that were mainly derived

from a simple two-alternative choice may extend to scenarios with

multiple competing evidences, and (iii) to establish whether

different types of spatiotemporal input fluctuations affect deci-

sion-making outcomes in distinctive ways.

This review is organized in two parts. First, we give a brief

overview of the main neurophysiological results derived from

single-cell recordings in monkeys performing a sensory discrimi-

nation task. This is followed by a critical revision of the two main

theoretical paradigms used to explain these data, namely drift

diffusion models (DDM) and attractor neural networks (ANN).

Subsequently, recent advances in the field, such as the consider-

ation of multiple alternatives, are reviewed. The section ‘‘Spatio-

temporal Structure of Noisy Stimuli in Decision Making’’

constitutes the second part of this work. In this section, we have

attempted to pinpoint some aspects that remain unresolved under

current experimental and theoretical paradigms and to raise

questions that could push our current understanding of the neural

basis of decision making further. This will hopefully lead to new

experiments being designed and conducted.

The neurophysiology of decision making
Using different tasks and sensory modalities, various brain areas

that encode different stages of the decision-making process have
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been determined. Beyond deep differences in (among others)

stimuli, timing, and motor output, the vast majority of the tasks

were based on an n-alternative forced-choice (nAFC) paradigm. In

this paradigm the subjects are always required to commit to a

choice among n alternatives (n~2,3,:::), even in the absence of

evidence for choosing one of the alternatives at all. Vast amounts

of evidence about decision-making processes have been provided

in the last decades by studies based on single-unit recordings in

monkeys performing 2AFC tasks, either in the somatosensory or

the visual domain. Importantly, these studies combine neurophys-

iological recordings and psychophysical measurements, a type of

experimental protocol pioneered in the 1960s by Mountcastle and

colleagues [1–3].

In the vibrotactile frequency-discrimination task in the somato-

sensory domain, the subject’s fingertip is stimulated with a vibrator

during two subsequent intervals separated by a delay (see

Figure 1A). The subject must decide whether the second

stimulation (f2) has a higher or a lower frequency than the first

one (f1) and communicate the decision by pressing one of two

buttons [4,5]. Neurons in the primary somatosensory cortex (S1)

have been found to increase their firing rate as a function of the

stimulus frequency. During the delay between the two stimula-

tions, the frequency of the first one must be kept in working

memory, and neurons in the secondary somatosensory cortex (S2),

medial and ventral premotor cortices (MPC, VPC), and dorsolat-

eral prefrontal cortex (dlPFC) were identified to encode stimulus

frequency during this period [6–8]. When the second stimulation

is applied, f2 and f1 must be compared, and some neurons in

premotor and prefrontal cortices (and to a minor extent also in S2)

encode this comparison in their firing rate, while other neurons

encode either f1 or f2. By adding a delay between f2 and the

response (see Figure 1A, bottom row), Lemus et al. [9] found that

the firing of some MPC neurons during this period reflects the

comparison between f2 and f1, while other neurons still encode

either f1 or f2, thus suggesting a possible role for this area in the

post-decision processing of the choice. Such a role has also been

observed in other areas [10–13].

As reviewed in [14], the results suggest that the decision-making

process is implemented in the brain in a distributed and gradual

fashion, and thus, there is no such thing as a single decision locus.

This also seems to be the case in the continuous processing relating

sensory activity, the formation of a decision variable, and the

motor activity, in that the borders separating these stages do not

appear to be so clearly demarcated in the primate brain.

In visual discrimination tasks, the great richness of features of

our visual experience enables the design of a variety of decision-

making tasks, including, but not limited to, the discrimination of

motion (e.g., [15,16]), heading [17], disparity [18], and bar

orientation [12,19]. A prevalent task is random dot motion (RDM)

direction discrimination (e.g., [15,20], see also Figure 1B). In this

task subjects look at dots, some of which display random

movement while others move coherently in one direction. Subjects

must decide which is the direction of coherent motion (even when

there is none) and the typical response is made by an oculo-motor

movement towards the corresponding visual target. The percent-

age of dots moving coherently determines the difficulty of the trial.

This task allows one to study the various stages of a decision:

evidence formation, its integration into a decision signal, holding

the decision in memory (in fixed-time experiments), and the

commitment to a choice. Neurons in middle temporal area (MT)

are tuned to motion and therefore provide the sensory evidence for

the decision [21–24], whereas lateral intraparietal area (LIP) and

frontal eye fields (FEF) were found to integrate the evidence into a

decision signal. After stimulus onset, LIP neurons present a dip in

firing rate (see Figure 1D). Subsequently the activity varies

according to the subject’s choice: for stimuli moving towards the

response field (RF) of the neuron the firing rate increases, while for

movements in the opposite direction the rate decreases. The slope

of the ramping correlates with trial difficulty. Both in reaction time

(RT) [25] and fixed duration experiments [15,16], the activity

reaches an asymptotic value about 70 ms before saccade initiation,

thus suggesting the existence of a decision criterion like the one

postulated by diffusion-like models (see next section). Indeed, the

results obtained in the visual domain comply well with the view of

decision as an integration of sensory evidence until a criterion is

reached.

While all the previously discussed results show that several

aspects of decision-making processes can be unveiled by analyzing

the neuronal recordings in monkeys, our understanding of these

phenomena may also be promoted and, indeed, consolidated by

directly stimulating the neural system. Following this approach,

several studies have demonstrated that electrical microstimulation

of areas involved in decision making, both in the somatosensory

[26] and in the visual [27–29] domain, show similar effects to

those observed when the sensory organs receive the stimulation.

Integration of noisy evidence: Two modeling
perspectives

As has been previously stated, 2AFC tasks have been commonly

used to investigate decision-making processes. Although several

theoretical models have been proposed to explain the available

neurophysiological results, most of them [30–35] share the

fundamental assumption that an integration of noisy evidence

over time takes place, thus accumulating such evidence until a

decision is made. It is beyond the scope of this review to describe

all of these models in detail. Instead we will focus on the two main

competing theoretical frameworks, namely the drift diffusion

model (DDM) and the attractor neural networks (ANN).

Historically, the DDM [36] was developed first and has been

broadly used since then. The equation implementing the DDM in

a 2AFC task is based on a continuous variable, x(t), representing

the accumulated difference between the two alternatives (see

Figure 2C for a sketch). In its simplest implementation, x(t)
describes a Wiener process and is integrated over time according

to:

dx(t)~mdtzs2 dW ð1Þ

where dt is the accumulated time interval, m is the evidence to be

accumulated (inversely proportional to task difficulty and named

drift rate), and s2 dW is the so-called noise-diffusion term. The

value of dW is a number extracted from a normal distribution

with zero mean and standard deviation equal to the square root of

dt. The decision-making process is accomplished when x(t)
reaches one of two boundaries (see -a/2 or a/2 in Figure 2D).

The overall RT can be thought of as the sum of the time that

x(t) takes to reach the boundary, i.e., the decision time and non-

decision time components that account for sensory and motor

processing. It is worth noting that several common extensions of

the standard DDM have been proposed to specifically account for

across-trials variations related to fluctuations in (1) the starting

point value, (2) non-decision processing components, and (3) the

drift rate. One of the main strengths of the DDM stems from its

ease to fit behavioral data [37]. In this respect, DDM has been

used to test a broad range of psychophysical hypotheses (e.g., [38]).

In particular, DDM accounts well for RT and performance

distributions for different task procedures, and for speed-accuracy
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trade-offs (e.g., with or without time pressure; see [39] for a

review). Moreover, it has been shown that DDM can reproduce

the shape of the RT distributions both when it is approximately

Gaussian [40,41] (with a model implementing collapsing bound-

aries) and when it has the usual positive skewness [39,42] (with

fixed boundaries). All of these examples illustrate a situation that is

inherent to models that can be flexibly adapted to a large variety of

specific situations, i.e., different implementations of a DDM can

account for different types of behavior by manipulating certain

parameters of the model.

Generally, a number of features that include average and

instantaneous drifts, changes in boundaries [40,41], or the

introduction of a leak parameter (hence obtaining a stable

Ornstein-Uhlenbeck [OU] velocity process, accounting for an

imperfect integration), may be easily added to the simplest DDM

versions to accurately reproduce behavioral data. Yet it remains to

be seen what fundamental insights are to be extracted from such

accurate behavioral accounts. Although, in a way, adding and

tuning new parameters may lead to substantial fitting improve-

ments, it is not always the case that it goes hand-in-hand with an

enhanced understanding of the fundamental underlying processes.

Furthermore, special care when interpreting the results associ-

ated with the exploitation of the DDM fitting capabilities should

be taken, for one could be tempted to attribute all causality to one

particular parameter (or set of parameters), to the neglect of other

causal elements. We should thus bear in mind that naive

interpretations of Occam’s razor, combined with methods prone

to overfitting, can lead to the disregard of certain relevant features

[43].

It is worth pointing out that the DDM is a phenomenological

model and therefore does not attempt to provide a detailed

description of the neural mechanisms that underlie decision

making. Nonetheless, a biological motivation for the DDM was

recently proposed [35,44] and we will discuss this later. In contrast

to DDM, nonlinear ANN models of spiking neurons crucially seek

to provide a biophysically inspired description of these processes.

Such ANN models were initially used to explain the neurophys-

iological basis of other cognitive functions, such as working

memory [45–47]. Indeed, the observation that, besides decision-

related activity, LIP neurons also exhibit persistent activity during

delay periods [15] inspired Wang to explore the possibility that

ANN of working memory could also explain the integration of

stimuli and the formation of perceptual choices [32].

In ANN models the long-term behavior of nonlinear dynamical

systems, defined by neural networks of interconnected neurons, is

described by so-called fixed points. These split the configuration

space into basins of attractions. Such basins arise from the initial

configuration of the system that leads to the same attractor. In this

Figure 1. Prevalent experimental paradigms in perceptual decision-making research. (A) Sketch of a vibratory (audio or somatosensory)
two-intervals two-alternatives forced-choice (2I-2AFC) discrimination task. In the upper panel, the subject must communicate the decision
immediately after reaching it (e.g., [6]), whereas in the bottom panel, the decision should be communicated after a delay period (e.g., [9]). (B) Random
dot motion task with two [15,25] and four [63] targets. The upper branch of the two targets task represents the delayed decision version, where the
subject must wait and hold the decision in memory after the stimulus is removed (e.g., [15]). The lower branch represents the RT version, where each
trial is terminated by making an eye saccade towards the target whenever the subject reaches a decision. This allows measurement of RT [25]). (C)
Random dot motion task with two targets, in which subjects express their decisions through a hand movement. As hand movements are not ballistic,
this set-up allows study of the subjects’ changes of mind [76]. (D) An example of the kind of neurophysiological data typically obtained in a decision-
making experiment. The panel shows a sketch of monkeys’ LIP activity during a RDM task for different values of coherence. A complete account of
the corresponding real data can be found in [25].
doi:10.1371/journal.pcbi.1003492.g001
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theoretical framework, 2AFC decision making can be modeled by

an attractor network with a minimum of two stable fixed points,

which represent the two alternatives. Such a system would display

bistability and the transition from an initial configuration towards

one of the two stable attractors (i.e., stable unless a sufficiently

large perturbation takes the network out of the attractor) would

correspond to the decision process.

A type of ANN that is commonly used in decision-making

research consists of nz2 populations (pools) of leaky integrate and

fire neurons with common inputs and connectivities, where n

corresponds to the number of choices in nAFC tasks [32,48–50].

The n integrators are implemented by pools of excitatory neurons

that respond selectively to one of the alternatives and are thought

to encode decision-related activity. The other two populations

correspond to a homogeneous pool of inhibitory neurons, globally

connected to all neurons in the network, and a pool of excitatory

neurons, which is not selective of any of the alternatives. The

models exhibit recurrent connections between cells from the same

selective pool potentiated by a factor vzw1 with respect to the

baseline connectivity level, and weakened connectivities by a

factor v{v1 between cells from different selective pools,

following the hypothesis of Hebbian plasticity (i.e., synaptic

efficacies are modified by neural activity following a training

process). This is a key aspect in the formalism of attractor

dynamics, which endows the system with the capability to

implement a biased competition of the different populations of

excitatory neurons that is mediated by inhibition. The competition

and cooperation processes thereby established are the basic

elements of the underlying neural computations.

Especially during the last decade, which has seen an increase in

experimental evidence, both theoretical frameworks have proved

successful in accounting for the reported findings. One such

example can be found in the case of the previously described

motion discrimination task where motion pulses influence both

behavior and LIP neural activity, with the later pulses being less

relevant than earlier ones [51,52]. A DDM with a leakage term

was able to reproduce this experimental finding, while the time-

varying dynamics of the attractor model explained both behavioral

and neural data [53,54].

Although at the expense of reduced biological plausibility, one of

the great advantages of DDM over ANN is the fact that DDM is

described by a single equation. In contrast, ANNs are endowed with

richer dynamics, thus allowing one to model neurophysiological

data (i.e., neuronal spiking activity) that may subsequently be used

to derive behavior. Nevertheless, the mean-field approach [47] can

also reduce the amount of equations of the ANN, thus leading to a

formal framework that allows the analytical treatment of dynamical

systems. In this approach the number of equations is proportional to

the number of different populations of neurons. A further step was

made by an approach that combines numerical and analytical

methods (i.e., mean-field) to reduce the system to two rate equations;

see [55]. Later, Roxin and Ledberg [56] derived a formal relation

between the mean-fied reduction of the ANN and a one-

dimensional nonlinear diffusion in the proximity of the bifurcation

to bistability where the spontaneous state destabilizes. This is a valid

reduction for all the winner-takes-all models, which lets one relate

the variables of the nonlinear diffusion process to those of the full

spiking-neuron model, and thus, to neurobiologically meaningful

quantities. Otherwise, Smith [35] takes a different approach to

provide a neurophysiological motivation to the DDM. First, he

shows that, after initial transient effects, a Wiener process is

equivalent to an integrated OU process. As is already well known

from the Stein model [57], an integrated OU process can be

approximated to a pair of opponent shot noise processes (when their

intensity is very high). The link with neurophysiology can be

established in that shot noise processes have been used to model

neural responses. In a subsequent study Smith and McKenzie [44]

provided an alternative analysis that demonstrated how a time

inhomogeneous OU velocity process emerges even in the context of

a simple recurrent architecture. All in all, the relations between

ANN and DDM are complex, mathematically involved, and need

to be further analyzed.

Figure 2. The effect of stimulus fluctuations on behavioral estimates of performance. (A) ANN model sketch. Connectivity parameters can
shape the dynamical regime of the network. (B) Representation of the dynamical state of the network. Each panel depicts the hypothetical energy
landscape that undergoes modulation due to input fluctuations. The stimulus fluctuations tilt the potential profile, biasing the decision process. (C)
Diffusion model sketch. The red and green stair traces represent the time varying drift, whereas the black trace represents the noise. (D) Decision
variable dynamics of a DDM stimulated with a variable input (as in panel B), represented by the green (right evidence) and red (left evidence) arrows.
doi:10.1371/journal.pcbi.1003492.g002
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Beyond 2AFC tasks
The study of 2AFC has paved the way for establishing basic

principles underlying decision making. But such tasks neglect

important aspects inherent to most decisions. However, these

aspects can still be considered in highly simplified experimental

scenarios such as those used in typical psychophysical or

neurophysiological experiments. Such aspects include the consid-

eration of multiple alternatives, the possibility of changing one’s

mind, and the effect of different sources of neural response

variability on decision making. Admittedly, many other aspects,

such as those related to subjective experience during decision

making (e.g., value-based decision making [58] or confidence-

related decision making [59]), have also received notable attention.

These aspects are, nonetheless, beyond the scope of this review.

The study of decision making between multiple alternatives was

already being addressed from a psychophysical perspective in the

1950s (e.g., [60]). A number of experimental procedures have been

used to this end (e.g., absolute identification paradigms [61] and

the study of preferential choice [31]). However, only during the

last few years have single-cell neurophysiological recordings been

becoming available [62–65] (see [66] for a review).

It is also worth noting that theoretical attempts to account for

multiple choice decision making were already being made in the

1970s and have since been an active area of research

[30,31,33,67–69]. The first attempts to model multiple choices

were made in the context of preferential choice [67,68], but they

failed to reproduce all the experimentally described effects [31].

Later Roe et al. [31] extended the decision field theory of

Busemeyer and Townsend [30], which is a kind of sequential

sampling model, to account for the multiple preferential choice

paradigm. In a subsequent work, Usher and McClelland [33]

introduced leakage and nonlinearity in the multiple accumulator

model. Building on this work, Bogacz et al. [69] studied the role of

nonlinearities and the application of this model to value-based

decisions and to Weber’s law. The general idea behind it all is that

a family of models known as race models [70] (where each target

or decision is described by an accumulator that is close in

formulation although not mathematically equivalent to DDM

[34]) can easily be extended to multiple targets by the simple

addition of more integrators.

The first single-cell neurophysiological recordings in a multiple-

alternative discrimination task were made by Churchland et al.

[63]. The recordings were acquired in monkeys (area LIP) on a

two- and four-choice direction-discrimination task, while behav-

ioral results were also being registered. These results have been

theoretically modeled in different studies [49,71,72]. Beck et al.

[71] followed a probabilistic approach with special emphasis on

optimality, whereas Furman and Wang [72] and Albantakis and

Deco [49] pursued a neurodynamical approach with an emphasis

on the detailed biophysical description of the circuitry that

underlies decision making.

Of special interest is the situation where multiple choices

simultaneously receive evidence, hereafter denoted as multiple

competing evidences. Following this experimental paradigm, Niwa

and Ditterich [73] tested human participants on a 3AFC version of

the RDM task. A key aspect of their experimental setting was the

multicomponent RDM stimulus, i.e., a stimulus comprised of up to

three coherent motion components instead of just one direction of

coherent motion. Thus, the amount of sensory evidence for all

three alternatives could be controlled.

It is worth noting that in a subsequent work [74], different

DDMs (e.g., with/without leak, lateral/feed-forward inhibition)

were tested on these experimental data. This study showed that all

models explained the behavioral data equally well. In particular,

one of the diffusion models used in that study had a similar

architecture to a commonly used, biologically plausible ANN

model, that is, with one common inhibitory pool, thus suggesting

that a spiking neural network could account for the behavioral

data as well.

Later, Bollimunta and Ditterich [64] used the same experimen-

tal paradigm with monkeys while recording neurophysiological

activity from LIP. Their experimental results suggest that a unique

variable in the 3AFC task, the net motion strength (NMS) variable,

suffices to predict monkeys’ accuracy and RTs. The NMS is

defined by the amount of information associated with the highest

coherence (cPRO) and the average coherence of the second and

third components (cANTI) as NMS~cPRO{cANTI. The NMS thus

aims to capture all available evidence within a single variable.

Interestingly, these neurophysiological results seem to challenge

the class of ANN models that explain well both behavior and

neural activity in decision-making tasks [75]. Specifically,

Bollimunta and Ditterich suggest that competition cannot be

solely mediated by lateral inhibition and they indicate that

feedforward inhibition is a necessary component of the neural

circuitry that underlies their data. Such conclusions are based on

the fact that the firing rates of LIP neurons seem to show an earlier

influence of the inhibitory sensory evidence than that driven by the

excitatory sensory evidence. In the case of the neurophysiological

recordings, the inhibitory sensory evidence (cANTI) corresponds to

the evidence against choosing the target that is in the receptive

field (RF) of the neuron being recorded, whereas the excitatory

sensory evidence (cPRO) corresponds to that evidence in favor of

choosing the target in its RF.

However, in contrast to the conclusions derived from the

reported experimental results, it is worth noting that the NMS fails

to predict behavioral performance in those cases where the

difference between the coherence of the two motion components

with less coherently moving dots is large. To illustrate this point,

let us consider a situation where the coherence of each motion

component is c1~50%, c2 = 45%, and c3 = 5% (NMS = 25).

Based on the hypothesis that NMS can be used to predict

behavioral performance, this performance should be equivalent to

that obtained when c1~50%, c2 = 25%, and c3 = 25%. Of course,

this is clearly not the case. This is relevant because the firing rates

of the LIP neurons reported in [64] are pooled on the basis of a

variable akin to the NMS previously described. The variable cANTI

as defined in the context of the neurophysiological recordings may,

however, contain large differences between the coherences of the

components defining the inhibitory sensory evidence.

It is also worth noting that most studies, both in the DDM and

the ANN framework, consider that a decision is made once an

established threshold is reached. One may wonder how such a

mechanism could accommodate a change of mind. Resulaj et al.

[76] addressed this question experimentally by means of a

psychophysical RDM task, where human subjects had to indicate

the selected choice by moving a handle towards a left or right

target. By using continuous hand movements, as opposed to

ballistic saccades, changes of mind could (occasionally) be

observed in the handle traces (see Figure 1C). Although these

findings seem to pose a challenge to ANN (given the previously

established stability of the decision-attractors), Albantakis and

Deco [50] showed that the attractor picture is entirely consistent

with the reported experimental data. This is the case when the

system operates close to bifurcation, thus separating a state of

categorical decision making from a multistable region. In this

region, the existence of an attractor encoding the scenario where

all possible alternatives fire at a high rate makes it difficult to reach

a decision, thus facilitating changes of mind.
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All in all, as has been repeatedly underlined [77,78], it is of

utmost importance to continue the study of decision-making

processes beyond the simplest 2AFC experimental paradigm, both

from a bottom-up perspective and from a top-down perspective.

The bottom-up approach seeks to generate behavioral and

neurophysiological predictions derived from biophysically detailed

models, whereas the top-down perspective, starting from expected

behavior (like DDM optimality or the mathematical assumptions

underlying Bayesian inference models), may be adopted to predict

low-level implementations. The integration and cross-talk between

these two approaches may substantially push forward our current

understanding of decision making.

Spatiotemporal Structure of Noisy Stimuli in
Decision Making

The relation between the different research issues that we have

addressed in this work becomes more explicit when we consider

the central question of how the spatiotemporal structure of sensory

stimuli affects the perceptual decision-making process. In order to

tackle the various issues that stem from such a question, the RDM

discrimination task has received particular attention in this work,

due to the large body of relevant experimental results available.

Special emphasis has gone to pinpoint some aspects that still

remain underconstrained in the current modeling paradigms.

Indeed, some of the issues addressed will be of special interest to

the modeling community, although definite answers to such

questions can only come from the interplay with experimental

research.

Challenges in the investigation of decision processes
with multiple competing evidences

When we compare 2AFC to nAFC tasks with multiple

competing alternatives, it is probably the spatial structure of the

RDM stimulus that changes the most. In particular, the fact that

each of the multiple alternatives receives its evidence simulta-

neously adds another level of complexity to the problem. This

raises certain interesting issues that we will now explore.

A key aspect when modeling decision-making processes is the

definition of the inputs to the decision system. One could, for

instance, adopt a simplified phenomenological approach whereby the

input to each decision integrator linearly increases with the coherence

of the motion component to which the integrator is selective.

When considering a RDM, various parameters can be

manipulated [79,80] and the activity of MT neurons depends on

them in different ways. In this task, the activity of MT neurons is

commonly regarded (from a modeling perspective) as the most

elaborate sensory signal that enters the decisional area LIP.

Consequently, it is the signal that has been herein denoted as input

to the decisional system.

Of special interest to our discussion are the neurophysiological

results, which show that the activity of MT neurons does not

linearly depend on the dot density [21,81,82] but, rather, shows a

divisive normalization effect. However, such activity is arguably

linear with regards to coherence [22,83] in RDM visual stimuli

with a single coherent component. Moreover, neurophysiological

data available for multiple components [84] suggests that the

response to the transparent motion of direction-selective neurons

in MT can be ‘‘approximated by the scaled sum of their responses

to the individual motion components’’ (see [84], p. 274). On the

one hand, this indicates that the linear approximation holds for

multiple components. On the other, it implies that one cannot

distinguish between two or multiple components if the linear sum

of their MT neural activity is the same.

In contrast, based on tests on human participants in a 3AFC

version of the RDM task with three coherent motion components,

Niwa and Ditterich [73] have provided evidence for a divisive

normalization mechanism. In the data of [73] there are three

distinct effects that should be accounted for: (1) for NMSw0 the

probability of correct responses decreases when the coherence of

the two weaker components increases, (2) for NMS~0 the RTs

are faster for increasing coherence of the weaker components, and

(3) for NMSw0 the RTs are slower for increasing coherence of

the weaker components. The authors account for these results

using a race model with feed-forward inhibition that receives input

from a sensory layer implementing a divisive normalization

mechanism.

We note here that, although one could be tempted to seek the

origin of such effects in the particular architecture or integration

method, the behavior of the model is already shaped by the

particular divisive normalization of the input layer in [73]. Indeed,

for NMS~0 and increasing coherence of the weaker components,

the input to the three integrators increases, speeding up the

integration process (this is also true when the divisive normaliza-

tion is substituted by a linear function). When NMS *> 7 the input

to the integrator associated with the strongest component

decreases as a function of the coherence of the weaker

components. As a consequence, the first passage time increases.

Moreover, the input to the integrators associated with the weaker

components increases, thus also increasing their probability to

reach the threshold first and lowering, in turn, the probability of

correct responses.

Therefore, a closer analysis of the signals obtained in the 3AFC

task in [73] when applying a divisive normalization reveals the

emergence of a structure which already encodes the decision in the

input. In addition, a subsequent work by Ditterich [74] has shown

that several distinct architectures can explain these data if

provided with the same divisive normalization mechanism in the

input stage. However as other mechanisms than a divisive

normalization of the MT responses could be responsible for the

reported behavioral results (as, for example, an elaboration of the

signal in higher cortical areas), we would want to argue that

further neurophysiological studies are necessary to establish the

response of MT neurons to the type of stimuli employed in

multiple-choice decision making for simultaneously competing

evidences. Furthermore, one should take into account that

qualitatively different behavioral results are obtained across species

(human [73]; monkeys [64]). From a modeling perspective, the

characterization of the input to the decision system might play a

critical role in this regard. In brief, we note here that it is not clear

how to treat multiple-component stimuli and that further

experimental results are needed to shed more light on this issue.

Other questions arise when considering the choice mechanism

in relation to multiple alternatives. By choice mechanism, we

mean here the way a commitment to a choice is determined in

decision-making models. Historically, DDMs used a threshold to

terminate the accumulation process [36], and this mechanism is

compatible with neurophysiological findings in LIP, as was already

explained above. And yet, when facing fixed-time experiments,

some investigators disregard the threshold and determine the

choice based on the sign of the decision variable alone (e.g.,

[11,85]). In ANN models the decision is given by the position of

the system in the attractors’ landscape. In 2AFC tasks, since the

two decision attractors are separated in the 2D space defined by

the firing rates of the decision pools, different possible choice

mechanisms can be used. The most frequently used is a threshold

on the activity of the decision pools (resembling the classical DDM

choice mechanism), but a mechanism based on the difference of
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activity between pools is also sometimes adopted [86,87]. When

considering multiple alternatives, several functions of the state of

the integrators could be used (e.g., difference between the two

larger accumulators, between the largest and the mean of the

others, etc.). Here again more research is necessary to further

constrain the models. The experimental paradigm proposed by

Niwa and Ditterich [73] whereby different amounts of evidence

can be provided to each of the components seems an ideal

candidate to shed some light on this issue. In summary, when

considering multiple competing evidences it is important to

understand how to extend the models initially developed in the

context of 2AFC. In this new scenario, questions such as how to set

the decision rules and how to combine the evidences provided by

the multiple components acquire special relevance.

The role of spatiotemporal stimulus fluctuations in
perceptual decision making

The stochastic behavior that emerges when subjects must make

a decision on the basis of uncertain evidence has long puzzled

scientists. Much investigation has gone into the mechanisms that

underlie the decision-making process when no net evidence for

any particular alternative exists (from an experimental point of

view see, e.g., [22,23] and from a theoretical point of view see,

e.g., [32]). In this scenario, noise has gained a leading role as a

candidate to explain the origin of the stochastic behavior and is,

in turn, at the heart of a heated debate in the modeling

community.

On the one hand, different theoretical studies [32,88] have

emphasized the role that noise originating in the nervous system

can have in decision making. In these approaches, the importance

of a noisy representation internal to brain networks in decision-

making processes is prominent and such noise is regarded as the

ultimate driving factor of the decision-making process [89].

Indeed, it has been suggested that it is precisely such noise that

enables probabilistic transitions between different decision states

(e.g., [89,90]). The noise is said to originate from the stochastic

spiking times of neurons in Poisson-like spike trains in finite size

networks. On the other hand, studies rooted in Bayesian theories

have pointed out that in complex tasks the main source of

behavioral variability is suboptimal inference, while internal noise

would only be playing a minor role [91]. It is worth noting that

suboptimal inference works as an amplifier of the noise already

present in the system and not as a new source of noise. Suboptimal

inference arises when noisy information from several sources must

be combined, but an optimal selection of the weights has not been

achieved. It is in this regard that the two approaches previously

discussed are, in fact, complementary. Note that the final

variability of the compound response can never be higher than

that corresponding to the source with the highest noise. To achieve

a complete understanding of the decision-making process these

approaches should be considered jointly. In fact, additional

sources of neural variability (e.g., variability due to attentional

effects or stimulus fluctuations, among others) should also be

investigated. Only in this way, both the contribution of each

individual source and their joint effect will be fully characterized.

Of special interest to this discussion is the experimental finding

that in a RDM 2AFC task, the trial-to-trial variability in MT

neuronal responses is correlated to monkey’s behavioral perfor-

mance [23]. To describe such relations, Britten et al. [23]

introduced the choice probability (CP) measure. This is defined as

the area under the ROC-curve obtained from the distributions of

the firing rates of a neuron (or a population of neurons), given the

two possible outcomes: correct or error. Together with the

conclusion that a certain level of correlation between the responses

of MT neurons with similar preferred directions is required to

account for the observed CP [24], this illustrates the importance in

perceptual decisions of both variability and correlations in MT

neuronal responses [92]. However, this variability might have

different origins (e.g., variability emerging at the network level,

inherited bottom-up influences such as input fluctuations or

suboptimal sensory responses, and top-down modulations).

We will now discuss some of these aspects. More specifically, we

will pay special attention to the role of spatiotemporal stimulus

fluctuations in perceptual decision making. To this end, we will

review previous modeling studies and assess their main implica-

tions for our current understanding of the neuronal basis of

decision making. A common way to visualize the behavior of a

2AFC ANN model, such as that illustrated in Figure 2A and

considered in [32], is by establishing an analogy with the situation

in which a potential energy can be defined. The decision-making

process is then treated as the evolution of a particle in an energy

landscape. In 2AFC this would lead to a double well potential

profile (see Figure 2B), where a falling particle in the energy

landscape represents the decision variable. We suggest that if the

input to the network varies in time, the potential energy in the

landscape picture can be thought of as being continuously tilted,

thus modulating the depth of the wells. Consequently, the profile

may eventually become steeper on one side and momentarily bias

the decision, in what is known as a biased-competition scenario.

For comparison, Figure 2C shows the schema of a DDM receiving

a similar fluctuating input. In the DDM the fluctuations of the

drift-rate momentarily push the decision variable towards one of

the two boundaries, producing a similar effect to the energy

landscape modulation. In order to account for the stimulus

fluctuations, one should first find a suitable spatiotemporal

characterization of such fluctuations, an aspect that will be

addressed below.

Encoding the input signals to decision systems. The

accurate characterization of neuronal activity from sensory areas

in response to the physical stimuli remains a major research issue.

This is indeed the case for MT neuronal activity when RDM

stimuli are considered. To fully appreciate this aspect, it is worth

recalling that trial-to-trial variability in MT neuronal responses

were found to correlate with monkey behavioral performance

[23]. Thus, a faithful characterization of the MT signal should

clearly be sought, in that key aspects of the decision-making

processes critically depend on it.

Let us address this issue from the perspective of a phenome-

nological approach. In particular, let us consider a family of filters

that has a long tradition in the motion-perception literature, called

the energy motion filters. Some implications derived from their use

in decision-making research will be pointed out. The local motion

energy associated with visual stimuli moving in opposite directions

is calculated by means of two pairs of linear spatiotemporal filters

in quadrature. Each pair is responsive for either the coherent

motion direction or its opposite direction. Such filters are usually

implemented following the seminal work by Adelson and Bergen

[93], whereby each directional filter is defined as the sum of two

space-time separable filters whose basic components are Gabor

spatial filters and multistage low-pass filters with a small amount of

inhibition as temporal filters. The temporal impulse response

function (derived to account for human motion perception [94]) is

rooted in an early work about the dynamics of photo-receptors

[95]. Importantly, these functions define spatiotemporal frequency

passband filters that are consistent with the responses observed

from MT neurons. In particular, Britten et al. [22] found that the

motion energy derived from the filters is modulated by coherence

in a similar way to that found in MT cells’ responses.
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Motion energy has been used to characterize the input to

decision-making systems in cases when the temporal evolution of

the signal acquired special relevance (e.g., [52,96]). It is worth

noting that although this family of filters is endowed with a sound

biological motivation, one may wonder whether the characteriza-

tion offered by them is sufficient to capture all aspects of the MT

signals that play a relevant role in decision-making processes.

Furthermore, it is clear that the parameters of the filters influence

the resulting motion energy [97], but we are still lacking a deep

understanding of what the implications are of such changes on

predicted behavior. Finally, in order to apply these approaches to

the case of multiple targets, a non-trivial extension of the pairs of

filters to include further motion directions is required. To the best

of our knowledge, this has not been reported in the literature.

The effect of spatiotemporal input fluctuations on

perceptual decision making. For any particular coherence

level in the RDM discrimination task, the visual stimuli contribute

a source of variability. This is due to random spatiotemporal

fluctuations that vary from trial to trial, thus potentially increasing

the variability of MT neuronal responses. Britten et al. [22,23], in

fact, addressed this issue by recording MT neurons while exact

replicates of a given stimulus (i.e., the same spatiotemporal

structure of the random dot pattern) were repeatedly shown.

These studies found no statistical differences in variance-to-mean

ratios (VMR) distributions when comparing responses associated

with different (non-replicated) and same (replicated) instantiations

of the visual stimuli. Hence, they concluded that the fluctuations in

these visual stimuli did not contribute to the variance of the

recorded MT neuronal responses. Nonetheless, rather than VMR

for the complete duration of the stimulus display (i.e., 2 s), one

could also consider the Fano factor (FF) of the underlying random

process. Indeed, the FF is the ratio between the variance and the

mean of a stochastic, whose value is calculated for different time

windows. This point was, in fact, addressed by de la Rocha et al.

[92] who found, by re-analyzing Britten et al.’s [22] data, that

stimulus fluctuations had a substantial effect on the variance of

MT neuronal responses for smaller windows (e.g., 125 ms) in the

0% coherence stimuli. In particular, they found significantly larger

FF values for stochastic/non-replicated (FF = 1.35, n = 79) versus

replicated stimuli (FF = 1.10, n = 45). In contrast, when the

complete duration of the stimulus display was considered (i.e.,

2 s), FF&2 was found in both cases.

From a modeling perspective, Wang [32] had also assessed the

effect of small stochastic fluctuations on the decision outcomes. To

this end, an ANN model was used. The input to the two decision

pools were, in this case, time-dependent, i.e., l1(ti) and l2(ti).
Each lx(ti) (with x[1,2) represented the rate of the Poisson process

that generated the specific spike trains at the discrete steps of

50 ms. Interestingly, one of the conclusions from this study was

that no difference could be observed between the cases when (1)

equal rates �ll1~�ll2 were used as inputs to the network and (2) time-

varying rates l1(ti) and l2(ti) drawn from a Gaussian distribution

with mean �ll1~�ll2 (i.e., same average rate as in the previous case)

were used as inputs to the network. Of course, this scenario

corresponds to the case when equal evidence is provided to both

pools (e.g., 0% coherence).

Indeed, this should be the case when small fluctuations are

considered since in both conditions the probability of choosing

either direction follows a binomial distribution. Nonetheless, the

binomial nature of these processes arises for different reasons. In

the first case, both pools have an associated probability p~0:5 of

choosing either right or left. In contrast, in the second case,

although the spatiotemporal structure and its associated fluctua-

tions could have biased either option, such bias occurs with a

probability p~0:5 for either direction. Therefore the process

overall shares the same stochastic binomial nature and is

indistinguishable from the first case. In order to determine

whether the particular spatiotemporal structure of the input has

in fact a significant impact on behavioral performance, one must

compare the probability distribution associated with a given choice

under the two following conditions: stochastic stimuli versus

replicated stimuli. Clearly, for sufficiently large fluctuations there

should be a difference between the two scenarios since one such

large perturbation could effectively drive the system towards a

particular choice.

All in all, both de la Rocha et al.’s [92] and our discussion

regarding Wang’s results [32] suggest that further studies are

required to accurately assess the role that small spatiotemporal

fluctuations play in perceptual decision making. Note, further-

more, that no other processes such as miniature eye movements or

attentional shifts are commonly considered when investigating

spatiotemporal fluctuations in the stimuli. However, when dealing

with behavioral results, attentional processes are likely to play an

important role. Therefore, the final impact of such fluctuations in

the decision system might be modulated by attentional processes.

Ideally, future experimental results where the concerted action of

all these variables (e.g., stimulus fluctuations and attentional

mechanisms) are controlled for are likely to shed some light onto

this issue. Such experiments would contribute to gain fundamental

insights on the effects that different sources of shared variability

have in decision making.

A very timely work by Brunton et al. [85] constitutes a first

effort to define and conduct experiments that aim at character-

izing the possible effect of stimuli microstructure variability on

decision making. In their experimental paradigm, subjects are

presented with trains of pulses, which can be either auditive or

visual, and have to judge whether there were more pulses on the

right or on the left. By using a stimulus formed of pulses, they can

analyze more precisely the role of stimulus fluctuations and

distinguish these fluctuations from noise in the diffusion process.

To this end, the authors fit a DDM to their behavioral data. In this

fitting, the exact timing of each stimulus pulse is considered. Based

on the DDM analysis, the authors can discriminate between

stimulus fluctuations (pulses) and diffusion noise. The most

relevant observation in their own words is, ‘‘The dominant source

of variability was thus noise in the evidence associated with each

incoming pulse’’ ([85], p. 96), rather than noise in the diffusion

process. This is in contrast to Britten et al.’s data [22,23] but in

agreement with the results reported in de la Rocha et al.’s [92],

which suggest that stimulus fluctuations could play a significant

role in decision making. It is particularly surprising that the

authors found a value of the diffusion noise parameter in the

DDM indistinguishable from zero in the best fit point. It is,

however, possible that their findings are due to the particular

paradigm that was used. Note that the stimulus is composed of

pulses and strong fluctuations may naturally arise. Whether their

results are a general feature of decision-making processes is an

interesting issue which deserves further investigation.

To conclude this section, we will briefly recall the possible role

that top-down modulations from decisional areas may have on

decision making. Interestingly, Nienborg and Cumming [18] have

shown that after an initial transient, the CP shows a plateau until

the end of the trial. De la Rocha et al. [92] implemented a

biologically plausible model accounting for the temporal evolution

of the CP shown in [18]. In particular, they introduced a top-down

signal from decisional areas into sensory stages. Their results

suggest that, to correctly interpret the neurophysiological data, one

should take into consideration not only the fluctuations associated
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with the stimulus but also the fluctuations driven by top-down

decisional areas. Top-down modulations of this kind have been

demonstrated in multiple experiments [18,98–101] and theoret-

ically interpreted in the ANN framework by [87,102].

Do different types of spatiotemporal input fluctuations
affect decision making in distinctive ways?

Up until now, we have been claiming that spatiotemporal

fluctuations in the stimulus may be an important factor in decision

making, when this is considered in appropriate time scales.

However, an issue that has not received much attention from

either the neurophysiological or the modeling perspective is the

impact that different types of stimulus fluctuations have on

decision making and how to characterize the neuronal responses

to them. To illustrate this issue, we will return to RDM

discrimination and pose the following two questions: (1) Do

different types of RDM implementations lead to different

behavioral results? (2) How, from a modeling perspective, do we

take these different types of implementations into account?

In what follows, we will discuss two types of RDM instantia-

tions. Firstly, the case of white noise (WN): In the WN instantiation a

proportion of points is randomly chosen to move in a direction of

motion, i.e., the coherent component. The rest of the dots are

randomly relocated within the visual display, thus having a

random direction and speed. These dots are the noise component.

Secondly, random direction motion (RM) (denoted as Brownian motion

in [79]): similar to WN, but the points associated with the noise

component show the same speed as those that move coherently. A

sketch of the two different types of RDM stimuli is shown in

Figure 2A, 2B. Interestingly, Pilly and Seitz [79] investigated (from

a psychophysical perspective) the ability of human subjects to

estimate motion direction in an 8AFC task. In that study, four

commonly used RDM implementations (including WN and RM)

were considered, and for each implementation some of the

parameters defining the RDM visual stimulus were varied. The

authors found substantial differences in behavioral performances

when certain parameters (e.g., spatial displacement, temporal

displacement, or visual contrast) were varied in the various types of

stimuli. They related these findings to the spatiotemporal

displacement tuning properties of cells in MT. In agreement with

the comparative study in a 2AFC task by Scase et al. [80], they

reported that subjects discriminated the direction better for RM

than WN.

Continuing the previous discussion, which illustrates a prom-

inent role of stimulus fluctuations in guiding behavior, one may

wonder whether sensory signals in MT (driven by the different

types of RDM stimuli) would also reflect differences that are

compatible with the psychophysical results reported in [79,80]. To

shed more light on this matter we show in Figure 3 the energy

motion profiles of the two types of stimuli in a 2AFC, following the

implementation by Zylberberg et al. [96].

Although it is beyond the scope of this review to conduct a

systematic study to address all of the available results in [79], and

the discrimination task therein used is an 8AFC as opposed to a

2AFC, we would like to pinpoint some inconsistencies that might

arise between the experimental results and predictions from

current models. In particular, when one compares RDM stimuli

with different motion speeds, a large overlap of the energy motion

associated with the two directions is found. However, a smaller

difference in mean motion energy between the two directions is

obtained for the lower speed and RM stimuli. In our illustration,

the two velocity of dots considered are v~4deg=s and

v~12deg=s. In both cases the stimuli show a motion coherence

c~25% in a single component. This might therefore suggest that,

at least for these speeds, RM stimuli leads to inferior performances

than WN stimuli, something which is in contradiction with the

available results [79,80]. Moreover, Pilly and Seitz [79] show in

one of their experiments that the increase in dot velocity from

v~4deg=s to v~12deg=s (both in high and low contrast displays)

leads to an improvement of motion direction discrimination for

WN, but not for RM. However, the energy motion profiles

(compare Figure 3C, 3D to Figure 3E, 3F) suggest that both

algorithms may benefit from such an increase, as can be derived

from an improved separability of the motion energy distributions

when the velocity of dots is increased.

As we have previously pointed out, we still lack a deep

understanding of how varying the filter parameters (while still

conforming to the constraints posed by psychophysical investiga-

tions) could influence the resulting motion energy [97]. In this

study, motion filters were not intended to function as a complete

model of MT activity but only as a first step to characterize the

spatiotemporal variability associated with different types of RDM

stimuli. The previous discussion suggests that further neurophys-

iological data considering different types of stimuli would surely

shed more light on the suitability of the energy motion filters to

characterize MT activity.

Final Remarks

In this article we have reviewed some of the recent progress

made in decision-making research. We deliberately restricted its

focus by adopting a computational perspective and have only

discussed those studies that investigate the neural basis of decision

making. We have critically reviewed both neurophysiological and

modeling literature with the purpose of trying to determine the

role that the spatiotemporal structure of stimuli has in perceptual

decision making. This has allowed us to pinpoint a number of

important issues that thus far remain open. Furthermore, we have

also raised certain other questions pertinent to the understanding

of the mechanisms that underlie the decision-making process. In

particular, special attention has gone to the following three issues:

(1) the types of responses that are found in sensory areas, when

stimuli with multiple competing evidences are taken into

consideration (i.e., divisive normalization versus linear summation

of independent components), and the new challenges this poses for

modeling; (2) the role that fluctuations in the stimulus play as

sources of uncertainty within decision making; and (3) the effect on

perceptual decisions of different types of noise in the stimulus and

how this is treated by certain commonly used phenomenological

models.

We have illustrated these aspects by taking examples from

visual perception, and more specifically, the RDM discrimination

task. The reasons for this were manifold. Firstly, there is a large

body of literature that deals with this task. The amount of this

literature can only be rivaled by that available on the vibro-tactile

frequency discrimination task. However, the vibro-tactile fre-

quency discrimination task generally ignores the spatial dimen-

sion inherent to RDM visual stimuli. Moreover, several

neurophysiological studies [22,32] that use RDM stimuli to

investigate the role of stimulus fluctuations in decision making

exist, and this was an aspect central to our approach. Secondly,

for the task used in the literature concerning somatosensory

studies in order to make a decision in the vibro-tactile task, the

brain must compare two frequencies (i.e., f2 with f1). This

comparison can only occur after f2 has been applied. Thus,

information about f1 must be held in working memory. This

participation of the working memory adds a further complexity to

the modeling task. As, however, this element is something that is
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not shared by other tasks, we have preferred to keep our focus on

more elementary aspects.

Nevertheless, we would like to argue that the issues raised in this

article may be extended to other sensory modalities. As discussed

earlier, Brunton et al. [85] have recently presented research where

the role of stimulus fluctuations is assessed in both the auditory and

the visual sensory modalities. An extension of their experiments

may be easily imagined to include multiple competing evidences

(e.g., by presenting trains of pulses coming from multiple

directions). Moreover, the vibro-tactile frequency discrimination

task could be revisited in a way that complemented the results

reported there. Specifically, the periodicity of the signals f1 and f2

could be slightly broken (i.e., by not keeping the same time interval

between two consecutive touches of the fingertip) while maintain-

ing the same overall frequencies. With the advent of these and

future experimental results, the influence of the spatiotemporal

structure of noisy stimuli in decision making will be further

clarified, and with it, our understanding of the mechanisms that

underlie the decision-making process.

In this work the neurophysiological data that has been mostly

selected and described is that obtained from single-cell recordings

in perceptual decision-making experiments. This imposes a

particular level of description for our system, which has, in turn,

been characterized from different perspectives, i.e., those

provided by the various models. Indeed, an effort has been

made to critically read the models and their associated

interpretations. Our objective has been 2-fold. On the one hand,

we have intended to identify those modeling aspects that remain

underconstrained and we have pointed out how new experiments

might help to better constrain them. On the other hand, we have

Figure 3. Energy motion associated with different implementations of stochastic stimulus fluctuations. The top panels show
illustrations of two implementations of RDM stimulus (see [79] for these and further examples): (A) random motion (RM) and (B) white noise (WN).
Panels A and B show sample trajectories of the dots (here represented with a rectangle and a number) for five frames. The dots are moving either
towards the right or randomly. The number on each dot represents the frame in which it flashes. At every frame, dots are assigned randomly to either
the noise or the signal set. This is represented as red (noise) and black (signal) numbers in the rectangles. See the text for a more detailed description
of the algorithms. The four bottom panels show energy motion profiles associated with RM (panels C and E) and WN (panels D and F) for different
values of dots speed: middle panels C and D for 4deg=s and bottom panels E and F for 12deg=s. In particular, 2AFC RDM stimuli with motion in two
opposite directions and a single coherent component with a coherence level c~25% are considered. The black and red curves correspond to the
preferred and null direction, respectively. The four histograms show the probability distribution function (pdf) of the average motion energy in a
50 ms time window. In our implementation, the movement of the points was updated every frame (as in [22,23]), in contrast to every three frames as
is common in other studies (e.g., [25,64,73]).
doi:10.1371/journal.pcbi.1003492.g003
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also aimed to propose specific ways in which the current models

could be used to generate new predictions that should be

subsequently experimentally tested. It is with this perspective that

we want to conclude, i.e., by highlighting the importance of the

synergistic interplay between experimental and theoretical work.

An excellent example of this joined effort is illustrated by

Churchland et al. [103]. The cooperation evidenced by this study

can be summarized in three steps. First, experimental data are

used to guide and constrain the alternative models. Then those

models, which explain equally well the experimental data, are

further analyzed to generate predictions that are both testable

and crucially different for the various models. This thus allows for

the discrimination among the different alternative models. This

approach goes beyond the selection criterion of choosing the

simplest model. Indeed, as described in [43], the parsimony

principle might not be the best way to choose among alternative

models when it comes to the biological sciences. What we are

recalling here is nothing other than the idea of the virtuous loop,

‘‘experiment-model-experiment.’’
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