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We explored the performance of structure-based computational analysis in four

neurodegenerative conditions [Ataxia (AT, n = 16), Huntington’s Disease (HD, n = 52),

Alzheimer’s Disease (AD, n = 66), and Primary Progressive Aphasia (PPA, n = 50)], all

characterized by brain atrophy. The independent variables were the volumes of 283

anatomical areas, derived from automated segmentation of T1-high resolution brain

MRIs. The segmentation based volumetric quantification reduces image dimensionality

from the voxel level [on the order of O(106)] to anatomical structures [O(102)] for

subsequent statistical analysis. We evaluated the effectiveness of this approach

on extracting anatomical features, already described by human experience and a

priori biological knowledge, in specific scenarios: (1) when pathologies were relatively

homogeneous, with evident image alterations (e.g., AT); (2) when the time course was

highly correlated with the anatomical changes (e.g., HD), an analogy for prediction; (3)

when the pathology embraced heterogeneous phenotypes (e.g., AD) so the classification

was less efficient but, in compensation, anatomical and clinical information were less

redundant; and (4) when the entity was composed of multiple subgroups that had some

degree of anatomical representation (e.g., PPA), showing the potential of this method

for the clustering of more homogeneous phenotypes that can be of clinical importance.

Using the structure-based quantification and simple linear classifiers (partial least square),

we achieve 87.5 and 73% of accuracy on differentiating AT and pre-symptomatic

HD patents from controls, respectively. More importantly, the anatomical features

automatically revealed by the classifiers agreed with the patterns previously described

on these pathologies. The accuracy was lower (68%) on differentiating AD from controls,

as AD does not display a clear anatomical phenotype. On the other hand, the method

identified PPA clinical phenotypes and their respective anatomical signatures. Although

most of the data are presented here as proof of concept in simulated clinical scenarios,

structure-based analysis was potentially effective in characterizing phenotypes, retrieving

relevant anatomical features, predicting prognosis, and aiding diagnosis, with the

advantage of being easily translatable to clinics and understandable biologically.
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INTRODUCTION

A longtime dream of clinicians is to use computational tools
for aiding decisions. Like using the spelling and grammar
checkers when writing a text or Google for searching, clinical
computational tools would neither define purposes nor change
goals, but add a higher level of quality and speed to the
results. There are three must-haves for computational-aid tools:
speed, automation, and, of course, efficacy. The development
of such tools for medical records and imaging, in particular, is
extremely complex, involving knowledge in multiple domains.
Consequently, more than two decades after the initial attempts
(for review and perspectives see Orphanoudakis et al., 1996;
Akgul et al., 2011; Hwang et al., 2012; Kalpathy-Cramer et al.,
2015; Pinho et al., 2017; Spanier et al., 2017), no system is yet
adequately suited for practical daily use. The key to translating
the computational models to radiological practice is to resolve the
so-called semantic gap: “the differences between image similarity
on the high level of human perception and the low level of
a few numbers” (Depeursinge et al., 2011). Three basic steps
are involved: precise quantification, optimal feature selection
and combination, and, eventually, meaningful applications and
testing.

The first step, image quantification, is straightforward if one
is simply interested in the intensity of a given voxel. What
is not simple, however, is to extract some biological meaning
from the noisy voxel-by-voxel information, which can be of
the order of 106, considering only T1-weighted images, one
of the multiple MRI contrasts. There are numerous papers on
voxel-based analysis (VBA) in which human involvement is
eliminated on the assumption that a human being’s ability to
detect abnormality is neither sensitive nor reliable. A PubMed
search for “VBA,” “brain,” and “MRI” results in more than 2,300
publications in the last 10 years. These studies provide a wealth
of descriptive imaging results that are usually not perceptive at
an individual level and fail to be translated to clinical practice,
which meanwhile, remains supported by human judgment. If we
flip this approach 180◦ by asking: Can a computational approach
describe abnormalities that agree with human perception?,
we find the number of publications to be surprisingly small.
A PubMed search for “structure-based analysis” or “atlas-
based analysis,” “brain,” and “MRI” results in fewer than 200
publications in the last 10 years. An old strategy to replicate
human perception is to group voxels in regions of interest (ROIs)
and label them according to existing anatomical knowledge. For
example, all the voxels associated with certain x, y, z coordinates
are called “thalamus,” or “frontal lobe,” or “internal capsule,” and
so on. This is what radiologists do, increasing the signal-to-noise
ratio and adding a biological domain to their subjective analysis.
However, objectively quantifying, structurizing, and recording
the information for subsequent use is much more complex. In
addition, defining ROIs in multiple subjects multidimensionally
is just not feasible; precise automated tools are vital.

This structure-based analysis is linked to the second step to
solve the semantic gap: the feature selection and combination.
Here, two components are essential: the existing knowledge of
normal and abnormal patterns and the ability to recognize these

patterns in future patients. For example, when a patient has
striatum atrophy and motor disabilities, Huntington’s Disease
(HD) is a possible diagnosis because physicians learned that
these two features are associated with this disease. In addition
to centuries of pathophysiological knowledge, what is hidden
behind this apparently simple conclusion is an enormous amount
of comprehension about normal variation. In order to conclude
that those regions, in an individual of a certain age and gender,
are smaller than expected, an analysis of multiple granularity
levels (looking to the caudate, or the basal ganglia, or the deep
gray matter, or the lobe, or the whole brain), and multiple image
domains (volume, intensity, shapes), and finally the combination
of features in different fields (clinical and imaging) are necessary.
This leads to the amazing capability of pattern recognition
that humans have and that machine-learning methods try to
replicate.

Finally, even if we are able to quantify structures precisely in
different levels and domains, to compare individual cases with
large and variable normal and pathological databases, and to
extract and combine important features efficiently, we still have
to suit the computer-aid tools to the appropriate applications and
test them. If the goal is a diagnostic-aid tool, this may be the
most challenging step because the gold-standard is the clinical
diagnosis, which does not necessarily reflect the actual situation.
In addition, the correlation between pathology and anatomy may
be weak or indirect. This is usually the case in pathologies in
which the anatomical changes are subtle or happen later, or
when the time course is unknown, or in those that embrace
heterogeneous phenotypes. These cases are challenging and may
reduce the efficiency of classification models, but they also offer
an opportunity to design tools for binning a given entity into
subgroups, for example, that may be of clinical relevance.

Previously, our group and others advanced in the first
two steps (quantification and feature extraction). The brain
quantification and segmentation accuracy improved drastically
in this decade due to the advances in multi-atlas technologies
(Warfield et al., 2004; Artaechevarria et al., 2009; Langerak et al.,
2010; Lotjonen et al., 2010; Sabuncu et al., 2010; van Rikxoort
et al., 2010; Jia et al., 2012; Wang et al., 2013), allowing use of
state-of-the-art techniques for quantification and extraction of
clinically meaningful image features. We confirmed the accuracy
of these techniques in different populations and protocols (Liang
et al., 2015). We then tested whether the structured anatomical
data extracted actually captured the anatomical features that can
be perceived by trained clinicians (Faria et al., 2015). In the
present study, we advance to the next step and report progress
on feature selection, combination, and classification, showing
the potential of structure-based analysis for computer-aided
decisions.

This study focused on the brain MRIs of patients with these
neurodegenerative conditions: Ataxia (AT), Huntington’s
Disease (HD), Alzheimer’s Disease (AD), and Primary
Progressive Aphasia (PPA). Briefly, Ataxia, or more specifically,
the Spinocerebellar ataxia type 6 (SCA-6) which is considered
here, is an autosomal dominant disorder that is characterized by
a slowly progressive cerebellar ataxia, dysarthria and nystagmus
(Zhuchenko et al., 1997). The cerebellar atrophy, demonstrated

Frontiers in Neuroscience | www.frontiersin.org 2 October 2017 | Volume 11 | Article 578

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Faria et al. Clinical Brain MRI Pattern Recogntion

by several prior MRI studies, is a constant (Butteriss et al., 2005)
and relates with clinical manifestations (Eichler et al., 2011).

HD is a progressive lethal neurodegenerative disorder
characterized by movement disorders and progressive cognitive
and psychological manifestations (Huntington, 1872). The
anatomical hallmark of HD is striatal atrophy. Although the
atrophy may start as early as 15 years before the onset of
motor symptoms, and continue through the pre-manifest period
(Tabrizi et al., 2009, 2012, 2013; Paulsen et al., 2014a,b), it is
mostly undetectable by clinical evaluation of MRIs, at individual
level, in pre-symptomatic patients. The early quantitative
characterization of the atrophy, both at group and individual
level, is an important piece of information for the development of
disease-modifying treatments (Faria et al., 2016; Wu et al., 2016).

Alzheimer disease (AD) is a chronic neurodegenerative
disease characterized by short-term memory loss in the early
disease stages and progressive cognitive and functional deficits
as the disease advances. It is actually not a single disease but a
clinically, anatomically and biologically heterogeneous disorder
encompassing a wide spectrum of cognitive and anatomical
profiles (Zhang et al., 2016). Although a classical pattern of
atrophy is reported for AD as a group, first noticeable in the
medial temporal lobe (including hippocampus and entorhinal
cortex), eventually spreading through the remainder of the brain
(Apostolova et al., 2007), this pattern is not highly discriminant
at individual level (Frisoni et al., 2017). In addition, the atrophy
is usually clinically evident long after the cognitive deficits
start. The heterogeneity of phenotypes and subtleness of early
anatomical changes are extra challenges for the development of
therapeutics and prognostic models.

Primary progressive aphasia (PPA) is a clinical syndrome
characterized by insidious progressive language impairment that
is initially unaccompanied by other cognitive deficits (Mesulam,
1982). It is caused by various neurodegenerative diseases and has
a highly variable course. There are three main variants that are
distinguished by their key features and supporting brain imaging
characteristics, which are generally associated with distinct
underlying pathologies (Gorno-Tempini et al., 2011): agramatic
(Av) is supported by left posterior frontal and (Zhuchenko et al.,
1997) insular atrophy; semantic (Sv) is associated with left greater
than right anterior and inferior temporal atrophy; logopenic (Lv)
is associated with posterior temporal and inferior parietal atrophy
(Rohrer and Rosen, 2013; Wilson et al., 2016). The identification
of the variant provides some clues regarding the subsequent
course (Leyton et al., 2016), and would be of great value for
prognosis in the initial stages. However, the early classification is
particularly challenging because the clinical deficits are common
to all three variants and the anatomical changes are still clinically
silent. Methods for phenotypically characterization, particularly
at early phases, would be of great assistance.

The choice of these clinical entities was due to the fact that
the common feature (atrophy) varies in extension and location,
providing an appropriate dynamic range of abnormalities. In
addition, the atrophy is mostly visible, which enables validation
by qualitative human evaluation. The overall goal of this study
was to test the performance of structure-based computational
analysis on extracting anatomical features, already described by

human experience and a priori biological knowledge, in specific
patient populations. The variables in question were the volumes
of 283 structures. We showed the potential of the structure-
based analysis on characterization and classification (1) when
pathologies were relatively homogeneous, with evident image
alterations (e.g., Ataxias); (2) when the time course was highly
correlated with the anatomical changes (e.g., HD), an analogy
for prediction; (3) when the pathology embraced heterogeneous
phenotypes (e.g., AD) so the classification was less efficient but,
in compensation, anatomical and clinical information were less
redundant; and (4) when the entity was composed of multiple
subgroups that had some degree of anatomical representation
(e.g., Primary Progressive Aphasia), showing the potential of this
method for the clustering of more homogeneous phenotypes that
can be of clinical importance.

MATERIALS AND METHODS

Database
The overall goal was to test the performance of structure-
based computational analysis in extracting anatomical features,
previously described by human experience and a priori biological
knowledge, in specific patient populations.

The data consisted of high-resolution T1-weighted brain
MRIs (MPRAGE), for five groups of individuals: healthy
individuals (controls, n = 208), AT (n = 16), HD (n = 52),
AD (n = 66), and PPA (n = 50) (Table 1). The data
from healthy individuals (controls) were obtained from three
sources: (1) internal datasets from Johns Hopkins University
(JHU), (2) International Consortium for Brain Mapping (ICBM,
loni.usc.edu/ICBM), and (3) the AD Neuroimaging Initiative
(ADNI, adni.loni.usc.edu). The control dataset included more
than 10 different protocols (including different machine
manufacturers, strength of magnetic field, and resolution), thus
replicating the heterogeneity encountered in clinical scenarios.
Individuals with AT were from JHU and had spinocerebellar
ataxia type 6 (SAC6). Individuals with HD, also from JHU, were
grouped into three different stages, according to their CAG-
Age Product (CAP) scores (Penney et al., 1997) and clinical
symptoms: pre-symptomatic far from onset (n = 23), pre-
symptomatic close to onset (n = 16), and early symptomatic
(n = 13). Individuals with AD, from JHU and ADNI, were
diagnosed according to new clinical guidelines (Albert et al.,
2011; Jack et al., 2011; McKhann et al., 2011; Sperling et al., 2011).
Individuals with PPA, from JHU, were diagnosed and classified
into three variants: logopenic (Lv, n= 18), semantic (Sv, n= 16),
and agrammatic (Av, n= 16), based on current clinical guidelines
(Mesulam, 1982; Gorno-Tempini et al., 2011). All the data had
previously been de-identified, and the participants consented to
enrolling by written consent.

Image Processing
In the present study, quantification of regional brain volume was
performed on a structural level, which involved the mapping of
each brain to 29 templates in which the structures in question had
previously been labeled. The brain mapping was performed with
large deformation diffeomorphic metric mapping (LDDMM)
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TABLE 1 | Demographic and protocol information.

Group Sample Age range (Years) Mean age ± St.dev. (Years) Male/Female Protocols (Manufacturer, Field Strength (T), Voxel

Size (mm), Sample)

Controls 208 20–95 57.9 ± 18.8 98/110 Phillips, 1.5, 1 × 0.875 × 0.875, 28

Phillips, 1.5, 1.2 × 0.94 × 0.94, 9

Phillips, 3, 1 × 1 × 1, 7

Phillips, 3, 1.2 × 1 × 1, 26

Phillips, 3, 0.9 × 0.9 × 0.9, 52

Phillips, 3, 1.1 × 0.83 × 0.83, 16

GE, 1.5, 1.2 × 0.94 × 0.94, 6

GE, 3, 1.2 × 1.02 × 1.02, 6

Siemens, 1.5, 1.2 × 1.25 × 1.25, 7

Siemens, 3, 1 × 1 × 1, 28

Siemens, 3, 1.2 × 1 × 1, 23

Ataxia 16 48–73 60.8 ± 6.8 13/3 Phillips, 3, 1.1 × 0.83 × 0.83, 16

HD

Far from onset 23 21–51 36.8 ± 9.7 10/13

Near to onset 16 20–55 45.1 ± 8.6 13/3 Phillips, 3, 0.9 × 0.9 × 0.9, 52

Early symptoms 13 30–59 50.8 ± 7.9 7/6

AD 66 55–93 74 ± 10.5 40/26 Siemens, 3, 1.2 × 1 × 1, 27

Siemens, 1.5, 1.2 × 1.25 × 1.25, 7

Phillips, 1.5, 1.2 × 0.94 × 0.94, 7

Phillips, 3, 1.2 × 1 × 1, 8

GE, 1.5, 1.2 × 0.94 × 0.94, 9

GE, 3, 1.2 × 1.02 × 1.02, 8

PPA

Lv 18 51–79 68.3 ± 5.4 10/8 Siemens, 3, 1 × 1 × 1, 21

Sv 16 57–77 65.5 ± 6.5 11/5 Phillips, 3, 1.2 × 1 × 1, 29

Av 16 48–84 68.2 ± 10.7 9/7

(Wang et al., 2007; Ceritoglu et al., 2009; Djamanakova et al.,
2013). Inversely, the labels were warped to each subject space
and then fused by a likelihood fusion algorithm, which took into
account both the location and intensity information of each label
(Langerak et al., 2010; Sabuncu et al., 2010; Wang et al., 2013).
The details of this method, the atlas creation, and the validation
in diverse protocols and anatomical phenotypes are described in
our previous publications (Tang et al., 2013; Liang et al., 2015; Ma
et al., 2015; Wu et al., 2016).

By this multi-atlas automated brain segmentation tool, the
raw images, which consisted of more than 1 million voxels were
converted to 286 structural representations, of which the volumes
were measured. Based on the hierarchical relationship defined
in the atlas, these structures can be combined to create five
ontological levels with 8–19–53–125–286 structures respectively
(Figure 1). Details of the hierarchical-ontological grouping are
found in our previous publications (Djamanakova et al., 2014;
Wu et al., 2016). One of the reasons for choosing the structure-
based multi-level design is that the physician’s analysis does not
operate at the voxel level, but at the structural level, migrating

freely along the hierarchy. The choice of level is a trade-off
between regional specificity and noise: in higher levels, more
structures are defined and spatial specificity increases, yet noise
also increases. In hypothesis-driven studies, the choice of the
level depends on the interest in a given structure. In data-driven
studies, the data can be analyzed using all ontological levels
combined, or at each level independently. Our present analyses
were performed according to the latter approach.

Statistical Analysis and Outputs
We used partial least square—discriminant analysis (PLS-DA) to
classify individuals in three different analyses: (1) AT vs. controls,
(2) HD vs. controls, and (3) AD vs. controls. As many different
protocols as possible were included for each analysis, yet keeping
the individuals paired by age, gender, and image protocol in each
group compared. The PLS-DA inputs were the regional volumes
of brain structures in the five ontological levels, normalized by
the intracranial volume. As the classification accuracy increased
with the level of granularity and converged at level 3, the
results are reported at this level. Level 3 is a medium level of
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FIGURE 1 | Schematic representation of the automated image parcellation using a multi-atlas likelihood fusion (MALF) algorithm. Each brain image is mapped to each

atlas, and the pre-defined labels are correlated with each original brain. The labels can be grouped into five ontological hierarchical levels (L1–L5). By this process, the

images are converted to matrices of structures by image features; in the present study, we used the regional volumes.

granularity, where the whole brain is segmented in lobes, deep
gray matter, major deep white matter structures, ventricles, and
sulci (Djamanakova et al., 2014). It matches well the radiologists
reading (Faria et al., 2015), and the segmentation reproducibility
is high (Djamanakova et al., 2013; Faria et al., 2015; Liang et al.,
2015).

We opted for using simple linear classifiers to reduce the
chance of overfitting, increase the potential for generalization of
the results, and facilitate the translation to clinical practice, which
is our aim, rather than the greatness of the classification. We
could have obtained higher classification accuracy using more
elaborate classifiers (such as a support vector machine and black-
box models). Briefly, PLS is the least restrictive extension of
the multiple linear regression models, therefore applicable to
situations where the number of predictor variables exceeds the
number of observations. As in the principal component analysis
(PCA), the scores, or components, are the sets of values of linearly
uncorrelated variables and the regression coefficients (loadings or
weights) reflect the importance of the predictor variables in the
model.

In each analysis, the samples were divided in training set, in
which the classifier was built, and test set, in which the accuracy
was tested. The validation in an independent test set reduces the
impact of overfitting by biased variable selection and results in
more realistic classification accuracy. In addition to the classifier
accuracy, the outputs of interest were (1) the anatomical features

important for the classification (related to the PLS loading
weights) or, in other words, the regional pattern of atrophy that
characterizes each group, and (2) the individual’s chances of
belonging to different groups, which can be of direct importance
for clinical guidance. Secondary outputs of interest are (1) the
distance among individuals in the principal component space,
which can be used for image retrieval of individuals with similar
phenotypes, and (2) the individual z-score maps of atrophy.

In the case of PPA, we qualitatively explored a possible natural
segregation among the phenotypes with PCA. The inputs were,
again, the regional volumes of brain structures, normalized by the
intracranial volume. We then assessed the potential of our tools
on subdividing groups according to anatomical phenotype, using
hierarchical clustering.

RESULTS

Ataxia: Extraction of Homogeneous and
Noticeable Image Features
The analysis performed on 16 individuals with ataxia (8 for
training, 8 for testing; Supplementary Table), and controls paired
by age, gender, and image protocol achieved accuracy of 0.875 in
differentiating individuals with AT from controls. Figure 2 shows
the PLS-DA plot (scores vs. loadings) and the two components
used by the classifier. Component 1 is mostly responsible for
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FIGURE 2 | Biplot of scores and loadings from a PLS-DA analysis between controls (C) and patients with ataxia (at). The loading weights of the regional volumes, or

the importance of regional atrophy in the classifier, are color-coded on the axial MRIs (radiological view). This gives, at a glance, a snapshot of the important features of

the disease. In this case, the volume of the cerebellum (component 1) and brainstem/mesencephalon (component 2) had the highest absolute weights, in agreement

with the physiopathology of ataxia. At the bottom left, the classifier accuracy in an external test set is reported. The actual brain images of the patients used in the

model are shown.

the segregation between the two groups. The cerebellum had
the highest loading, i.e., the cerebellar atrophy played a major
role on the classification, in agreement with the well-known
and apparent cerebellar atrophy in ataxia. The highest absolute
loadings of component 2 are diffusely distributed among the
frontal, temporal and parietal lobes; it directly correlated with the
degree of atrophy on these lobes, as measured by their volumetric
z-score (Pearson rho of 0.72, 0.67, 0.61 for frontal, temporal, and
parietal, respectively), and inversely correlated with age (rho =

−0.77). Therefore, we infer that component 2 reflects age-related
atrophy in individuals with AT.

Huntington’s Disease: Prediction
We tested whether we could correctly classify individuals with
pre-symptomatic HD using the anatomic features of individuals

with early symptomatic HD. The goal was to use HD as a
model to predict conversion to a specific anatomical phenotype
rather than to diagnose HD, which can be done precisely by
genetic tests. The classifier was built with individuals with early
symptoms (n = 13) vs. paired controls, and tested in pre-
symptomatic individuals close (n = 16) and far (n = 23) from
the onset, vs. paired controls (Supplementary Table). Again, two
components were enough to create a model with 73% accuracy
in classifying pre-symptomatic individuals near to disease onset
(Figure 3). The highest loading weights were in the striatum, as
expected, based on the disease physiopathogeny. As described
by previous studies, striatum atrophy can barely be determined
at the individual level on the pre-symptomatic stage, although
it can be detected quantitatively, at the group level, up to 15
years before clinical onset. In addition, the early-symptomatic
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FIGURE 3 | PLS-DA biplot of controls (C) and patients with early symptoms of Huntington’s Disease (HD). The deep gray matter has the highest absolute weight, in

agreement with the anatomical pattern typically described and visually detectable. At the bottom left, we report the accuracy of this model on classifying

pre-symptomatic individuals close to HD onset. The actual brain images of two participants are shown.

HD group is anatomically heterogeneous, with some individuals
presenting very clear striatum atrophy and others being very
close to normal (Figure 3). This indicates that in certain disease
types or at certain stages of a disease, the anatomy may not
encode enough information to provide diagnosis for all patients.
Regardless, we were effective enough in capturing and using
this feature for the individual classification. The model did not
achieve accuracy significantly higher than the by-chance for
classifying pre-symptomatic individuals far from HD onset.

Alzheimer’s Disease: Classification of
Diseases with Subtle or Heterogeneous
Abnormalities
Unlike in ataxia and HD, the atrophy in most of the
neurodegenerative diseases is detectable at the late stage of the
disease and is regionally heterogeneous. This is the case with
AD. We achieved a reasonable accuracy (69%) in diagnosing
AD (model built in 33 AD individuals vs. paired controls, and
tested in independent 33 AD individuals vs. paired controls;

see Supplementary Table), significantly higher than the by-
chance classification. However, there was an enormous overlap
among groups, as notable in the PLS-DA plot and in the
probability plot that represents the chance of each individual’s
belonging to each group (Figure 4). The loading-weights map
showed no distinguishing features; the weights are comparable
and widespread, indicating that the anatomy in AD is mildly
or heterogeneously affected, which can be confirmed by visual
inspection of the brain MRIs.

Primary Progressive Aphasia: Binning by
Anatomical Phenotype
As mentioned in the previous section, increasingly therapies
are targeting the early stages of neurodegenerative diseases.
However, accurate diagnosis is more difficult because of the
lack of clear and/or specific clinical deficits. At this stage, the
initial stratification of the heterogeneous patient population is of
critical importance. The difficulty arises because potential patient
subgroups are degenerate both in the clinical and anatomical
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FIGURE 4 | PLS-DA biplot of controls (C) and individuals with AD (A). The overlap between groups is likely due to the heterogeneity and subtleness of imaging

features (see the map of loading weights at the bottom left). The anatomical images (brain MRIs) show that individuals at the extremes of the groups show marked

anatomical features, while those in the intermediary zone have dubious (both quantitative and qualitative) findings. The colors overlaid in the brain MRIs code the

z-scores of the volume (i.e., the regional degree of atrophy); blue is atrophy, red is enlargement. They also show how the quantitative information can be delivered in

an understandable way. Using the higher level of granularity, it was possible to create a model with accuracy greater than by chance (bottom right), although lower

than in the cases reported before. This was evidenced by the probability plot’s showing less segregation between individuals of different groups (bottom center).

domains. In this case, we are interested less in correlation
between present diagnosis and anatomical features (because
the diagnosis based on clinical information cannot separate
important subgroups) and more in expanding the patient
populations using both clinical and anatomical manifestations,
potentially identifying a way to define subgroups. Binning a
disease into subgroups may facilitate the design of therapies
and the creation of predictive models because the subgroups
may be related to specific pathological substrates, deficits or
prognoses. We used PPA as a model system because of the
existence of three well-known clinical variants. The knowledge of
their anatomical correlates, albeit loose, could serve as our gold
standard. In the PCA of the anatomical features (the regional
volumes) there was a natural segregation into three clinically
labeled groups (Figure 5). By clustering the data using only the
anatomical features, we found groups that accurately agreed
with the variant diagnosis (Rand Index = 0.71). Then, by using
PLS-DA and extracting the loading weights, we confirmed that
the features for automated classification according to clusters
agreed with those for the classification according to clinical
diagnosis. In addition, these anatomical features agreed with
what is clinically defined for the variants, such as predominance
of atrophy in the left temporal lobe for the Semantic variant, in
the inferior parietal for the Logopenic, and in the inferior frontal
lobe and the insula for the Agrammatic (Gorno-Tempini et al.,
2004).

DISCUSSION

We evaluated the performance of structure-based computational
analysis on extracting anatomical features, previously described
by human experience and a priori biological knowledge, in
specific patient populations. Previously, we tested the robustness
of our automated quantification approach against different
image protocols and scanners, using subjects with different
patterns and degrees of brain atrophy, and compared our
conclusions with those of trained clinicians using visual analysis
(Djamanakova et al., 2013; Faria et al., 2015; Liang et al.,
2015). In the present study, we tested whether we could classify
individuals and anatomically characterize different diseases in
simulated clinical scenarios. Our database contains diverse image
protocols and scanners. The demographic information taken into
account by the linear classifiers include only age and gender,
which are always clinically available. Although we could create
better classification models by adding other clinical information,
homogenizing the dataset, or using classifiers more sophisticated
than PLS-DA, this would reduce the potential for generalization
and translation to real clinical situations. In summary, rather
than the greatness of classification, our aim was to create models
robust enough to be translated to clinical practice, and at least in
a first step, perform as well as clinicians in terms of extraction
of important anatomical features and detection of anatomical
patterns, helping to fill the semantic gap.
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FIGURE 5 | Potential of detecting subgroups in heterogeneous pathologies. The top row is a supervised analysis, with knowledge about the PPA variant; the bottom

row is unsupervised, based only on image features. The colors in the plots code three PPA variants (L = logopenic, S = semantic, A = agrammatic). The PCA plot

(top left) shows a natural segregation between the variants. Without any clinical information, the images are clustered with high accuracy (Rand Index = 0.71) (bottom

left). The anatomical features extracted in the PLS-DA model (center) when patients are grouped by clinical information (top right) or clustered by image features

(bottom right) are very similar, and agree with the anatomical features described for the variants, indicating that both methods yield groups based on the same

anatomical pattern.

Detection of Abnormal Imaging Patterns
In a disease with a clear anatomical phenotype (Ataxia), we
obtained 87.5% accuracy, using a small sample size of patients in
different stages of the disease. More important, the anatomical
features extracted agreed with what is previously described
as the hallmark of Ataxia (cerebellar and brainstem atrophy)
(Klockgether et al., 1998; Schulz et al., 1999; Eichler et al.,
2011; Reetz et al., 2013). The maps of the loading weights
and the visual inspection of the images (Figure 2) reveal
that the first component carries mostly information about the
disease’s anatomical phenotype, while the second component
basically reflects brain atrophy directly related to age. Thus,
the components extracted carry biological meaning, i.e., they
contain information that can be interpreted in the light of
actual medical knowledge because they both (our quantification
tool and the medical knowledge) are based at the level of
anatomical structures. In consequence, the classification models
and the feature extraction machinery can be easily interpreted
and translated to clinical practice. Although this result is purely
confirmatory, the quantitative and systematic characterization
of the anatomical feature in the PLS-DA space may give us
an interesting clue about the patient status. For example, if
there are ataxia patients who not only have the typical ataxia

feature (component 1), but also are located at an unexpected
position in component 2 (i.e., accelerated whole-brain atrophy
related to age), this may correlate with poor future outcomes.
Thus, a quantitative approach of this type could provide
new insight into diagnosis and prognosis, further facilitating
research.

To investigate the prognostic value of quantitative anatomical
description, we tested the classification performance in diseases
where the anatomy clearly correlates with the time course,
applying the classifiers in stages where the abnormal features
couldn’t be detected visually, at the individual level. In other
words, we tested the potential for prognostic prediction using the
HD population. We achieved 73% accuracy in classifying pre-
symptomatic HD individuals, with a model based on features
of early symptomatic HD individuals. The feature selection
identified the deep gray matter as the most important region
for the classification, again agreeing with the physiopathology
of HD (Figure 3) (Aylward et al., 2000; Nopoulos et al., 2010;
Paulsen et al., 2010, 2014a,b; Guo et al., 2012; Delmaire et al.,
2013; Georgiou-Karistianis et al., 2013; Faria et al., 2016). HD
is a genetic disease where the product of genetic load and age
correlates very well with the time to onset (Ross et al., 2014).
Therefore, one can reasonably argue that predictive models
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based on imaging features are useless. The same applies to
Ataxia to some extent. However, our aim was not to diagnosis
HD or Ataxia. These diseases were taken as models for proof
of concept because the gold standard (clinical diagnosis) is
well-established. The aim was to evaluate the structure-based
automated quantification approach, in terms of feature selection
and robustness against heterogeneous datasets, and its potential
to detect features that go beyond the artifactual noise. Particularly
in HD, the potential for classifying pre-symptomatic individuals
surpasses what can be done with clinical imaging analysis
because the subtle abnormalities are not visually detectable at the
individual level (Paulsen et al., 2008).

Potential for Binning in More
Homogeneous Phenotypes
Unlike diseases with a clear anatomical phenotype, those that
embrace heterogeneous anatomical and clinical phenotypes, or
subtle abnormalities, or unknown time courses, offer extra
challenges for both visual and automated analysis. This is, for
instance, the case with AD. To date, there are about 100 models
for predicting conversion frommild cognitive impairment to AD,
based on imaging. A PubMed search for “Prediction of MCI
to AD conversion MRI” reveals 96 publications in the last 10
years; for more recent reviews, please see (Shaffer et al., 2013;
Sanchez-Catasus et al., 2017). Either they achieve unsatisfactory
accuracy, or high accuracy at the cost of overfitting, or they
are late in the disease course. As a result, we can generalize
by saying that there is, as yet, no effective prediction useful
in clinical scenarios. Figure 4 may offer some clues about why
this happens. Our classification model achieved <70% accuracy.
There is substantial overlap between controls and AD in the PLS-
DA plot, and there is no predominant weight in the loadings
of component 1. Visual inspection of the images reveals that
both groups (control and AD) are heterogeneous in terms of
atrophy pattern and degree at this age range. This explains why
the individual classification, by visual radiological analysis, is also
ineffective.

The source of this challenge is two-fold. First, it is possible
that anatomy is not encoding enough information to characterize
the pathology reliably. Second, because we do not have
strongly discriminating factors, both in clinical and imaging
information, the stratification of the patient population is
incomplete. For example, if AD is actually a syndrome caused
by multiple pathologies with multiple anatomical manifestations,
AD’s common anatomical features cannot be extracted. In this
situation, we need to resort to different study designs, using both
clinical and imaging features to stratify the population. Models
such as AD provide opportunities to investigate the existence of
subgroups, with certain anatomical expression, that can behave
as specific entities in some clinical domains. For instance, in
Ataxia (Figure 2) one can see a subtle spread of patients along
the component that differentiates the groups (component 1).
Hypothetically, this spread may reflect the effect of a correlated
feature, such as disease severity. Similarly in AD or other
heterogeneous disease models, there may be a non-orthogonal
axis that represents an unknown variable. With regression in

this axis, it is possible to detect the subgroups that, for instance,
respond differently to therapeutics, or have different prognosis.

To investigate the potential of the automated structure-
based quantification to binning an entity into subgroups
of clinical relevance, we used individuals with PPA. PPA,
a neurodegenerative clinical syndrome characterized by
decline in language ability 2 years before any other cognitive
deficit, is an ideal condition to investigate the clustering
in sub-phenotypes, since three variants loosely correlated
with underlying pathologies and with certain anatomical
representation are described (Gorno-Tempini et al., 2011;
Rohrer and Rosen, 2013). Although there is still no treatment
for PPA, there is hope that certain therapies can be effective
for specific variants (Cadorio et al., 2017). Now, suppose that
the three variants are yet unknown. An unsupervised PCA
plot shows a natural segregation of the data into two or three
subgroups (Figure 5), but because the variants are hypothetically
unknown, one cannot explain the data variance with clinical
labels. An unsupervised hierarchical cluster shows the data
divided into subgroups that correlate very well with the real
variant’s diagnosis. The image features selected for classification
in these clusters (bottom row, Figure 5) agree with those selected
for classification according to the real variant’s diagnosis (top
row, Figure 5) and also to those that are described as hallmarks
for the variants (Turner et al., 1996; Rohrer et al., 2009; Shim
et al., 2012; Zhang et al., 2013; Agosta et al., 2015; Botha et al.,
2015; Bisenius et al., 2016), proving the potential of our approach
to identify subgroups of clinical relevance.

Deliverables
Subgrouping can be extrapolated to individuals, i.e., the detection
of outliers in terms of anatomy may point to individuals who
may be unique in additional domains. For instance, in HD
(Figure 3) anatomical heterogeneity still remains among the
genetically homogenized group, as there is at least one individual
with visually normal anatomy. It is an open question if this
anatomical variability has any predictive value for prognosis, to
be answered by quantitative and systematic characterization of
this population.

Another potential deliverable is the diagnostic probability
map for each individual (Figure 6). Given a database large
enough to contain various pathologies and the high variability
of imaging protocols and age range for controls and patients, it
is possible to calculate the probability of differential diagnosis
for a new individual, as shown in Figure 6. In this example, one
can reasonably argue that it is clinically improbable to have HD,
Ataxia and AD as differential diagnoses. Again, these diseases
were taken as proof of concept, because they all have the same
basic anatomic feature (atrophy) and a clear clinical diagnosis
used as the gold-standard. The concept of diagnostic probability
graphics can be extended to more plausible clinical scenarios.

Finally, the potential for aiding clinical interpretation and
education may be a valuable low-hanging fruit. The simple use
of z-score maps (Figure 4) may confirm or exclude a clinical
impression and speed up the radiological reading. Also, having
a database big and heterogeneous enough, and coupling image
and text information (such as diagnosis, prognosis, response to
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FIGURE 6 | Pattern recognition and probabilistic diagnostic plots. This figure was created by inputting the probability of classification of each individual in different

groups, i.e., the individual’s chances of belonging to different groups, given by the PLS models. In the star plot (left), each star is an individual, and the colors are their

true diagnosis. The x and y axis represent the diagnosis according to our classification models. The point where the stars cross the circles in each axis represents the

probability of an individual’s being labeled as having the diagnosis coded by that axis. The fact that the stars are elongated where the color (true diagnosis) agrees with

the axis diagnosis indicates that the vast majority of patients are correctly classified. At right, a different representation of the same data, easier to visualize the

probability of diagnoses in a single individual. Now, the colors represent the diagnosis given by our classification models. Each line represents an individual; the

crossing point between the colored lines and the axial lines represents the probability of such an individual’s being given that diagnosis. The four small panels at right

show the probability curves of diagnosis for four selected individuals (bold arrows), color-coded by the true diagnosis. Y axis ranges from 0 to 1 and encodes the

chance of the selected individual of being classified, by the algorithm, with the diagnosis in the X axis. For instance, the individual in the upper left quadrant has almost

no chance (close to 0) of being classified as AT, a low chance of being classified as HD, a higher chance of being classified as control, and a high chance of being

classified as AD. In fact, this individual had AD, as revealed by the color (purple) that represents the true diagnosis.

treatments, etc.), it is possible to perform a direct image search,
producing static reports about similar phenotypes. For example,
given a new subject image, it is possible to search in a big dataset
for dozens of images with similar features linked to information
of clinical relevance.

Limitations
This study is based on a single image variable, the volume.
One of the greatest advantages of the structure-based approach
is that it allows the combination of many other features,
such as T2 contrast, diffusion tensor image indices, functional
MRI correlations, metabolite concentration, and others, as
we demonstrated in previous studies (Faria et al., 2012).
Although there are big challenges in combining features of
different domains (e.g., drawbacks on feature concatenation
methods, variation among clinical protocols barring the creation
of common databases for certain domains, the need for a
priori knowledge of noise in order to create models for
easy generalization), multi-domain structure-based analysis is
a promising strategy for conditions with no single dominant
discriminating feature.

An important constraint of the structure-based analysis is
that any quantitative characterization and classification model
will be limited by the pre-defined space. In other words, if the
anatomical pattern does not respect the boundaries of a given
parcellation scheme, the abnormality can be overlooked. One
strategy to ameliorate this issue is to use different levels of
granularity. So one can analyze the data in parcels as big as
a hemisphere, or as small as a cranial nerve, which is actually
smaller than the gaussian filters traditionally used for voxel-based
analysis. However, if the strategy is to replicate the radiological
interpretation, then structure-based analysis is intuitively a better
solution because visual inspection occurs at the structural level,
not at the voxel level.

Perspectives
We explored the performance of structure-based computational
analysis in simulated clinical scenarios. The pillars of this
approach are automated and accurate quantification, reliability
and robustness against artifactual noise, easy interpretation
of selected features, and a knowledge repository that is a
large database as heterogeneous as possible both in terms of

Frontiers in Neuroscience | www.frontiersin.org 11 October 2017 | Volume 11 | Article 578

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Faria et al. Clinical Brain MRI Pattern Recogntion

pathologies and image protocols. The deliverables are diverse,
from the image quantification itself, through to the image
pattern search, to the diagnostic aid. Although the impact of
this method is yet to be tested, it has potential educational
value, it may reduce the time for radiological reading, or it
may work as second reader in locations where sub-specialized
radiologists are not available. In any case, because no such
tool can be directly applicable to clinical practice, any positive
impact is valuable. In addition, electronic structurized databases
and search engines are the basis of high throughput image
analysis and may represent the migration of brain MRI to the
BigData era, contributing to the emergent field of Precision
Medicine.
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