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Abstract
Background/objectives We examined the association for rates of age- and sex-standardized body mass index (zBMI) gain
between 0–3, 3–18, and 18–36 months with BP in children at 36–72 months of age.
Methods We collected repeated measures of zBMI and BP in 2502 children. zBMI was calculated using the World Health
Organization standards. Each child’s zBMI at birth and rates of zBMI gain in each period from birth to 36 months were
estimated using linear spline multilevel models. Generalized estimating equations were used to determine whether zBMI at
birth and zBMI gain between 0–3, 3–18, and 18–36 months were each associated with repeated measures of BP at
36–72 months of age. We sequentially conditioned on zBMI at birth and zBMI gain in each period prior to each period
tested, as covariates, and adjusted for important socio-demographic, familial, and study design covariates. We examined
whether these associations were modified by birthweight or maternal obesity, by including interaction terms.
Results After adjusting for all covariates and conditioning on prior zBMI gains, a 1 standard deviation unit faster rate of
zBMI gain during 0–3 months, (β= 0.59 mmHg; 95% CI 0.31, 0.86) and 3–18 months (β= 0.74 mmHg; 95% CI 0.46, 1.03)
were each associated with higher systolic BP at 36–72 months. No significant associations were observed, however, for
zBMI at birth or zBMI gain in the 18–36 month growth period. zBMI gains from 0–3 and 3–18 months were also associated
with diastolic BP. Birthweight significantly modified the relationship during the 3–18 month period (p= 0.02), with the low
birthweight group exhibiting the strongest association for faster rate of zBMI gain with higher systolic BP (β= 1.31 mmHg;
95% CI 0.14, 2.48).
Conclusions Given that long-term exposure to small elevations in BP are associated with subclinical cardiovascular disease,
promoting interventions targeting healthy growth in infancy may be important.
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Introduction

Blood pressure (BP) in childhood tracks into adulthood
[1] and persistent exposure to elevated levels in childhood
and adulthood is associated with increased risk of carotid
artery atherosclerosis [2]. Prevalence estimates from the
National Health and Nutrition Examination Survey
(NHANES) have reported that 1 in 10 children have
elevated BP (≥90th percentile [3]) [4]. Identifying risk
factors associated with BP in early childhood (0–6 years)
is important to develop targets for cardiovascular disease
(CVD) prevention.

Rapid postnatal growth has been proposed as an impor-
tant predictor of elevated BP. While some studies have
supported the association between accelerated weight or
adiposity gain in infancy with higher BP in line with the
“growth acceleration hypothesis” [5–8], faster growth rates
during the period in closest proximity to BP measurement
has been reported to be more strongly associated with BP in
childhood [5, 7, 9–13]. However, the growth period in
closest proximity to BP varies in age range and duration of
time over which growth is measured within and across prior
studies [5, 9, 12, 13], which challenges the interpretation of
whether the last period represents a “sensitive period” [14].
In addition, the effect of birthweight on the relationship
between accelerated growth and BP in childhood remains
unclear [7, 9, 11, 12]. This may be attributable to the
exclusion of children with low birthweight [12], or rela-
tively small sample size of previous studies [9]. Maternal
obesity status is also an important early life risk factor
associated with rapid growth as well as childhood BP [15],
but it is unknown whether maternal obesity status modifies
the relationship between rapid growth and BP in early
childhood.

BP is known to exhibit high within-person variability.
Repeated measures of BP taken over two or more visits
have been shown to improve the reliability of BP mea-
surement in children, as well as the correlation between
childhood and adulthood measures of BP [16, 17]. To our
knowledge no study has yet examined the relationship
between rate of age- and sex-standardized body mass index
(zBMI) gain with repeated measures of BP in early
childhood.

The primary objective of this study was to determine
whether rates of zBMI gain between 0–3, 3–18, and 18–
36 months were associated with repeated measures of BP in
children at 36–72 months of age. The secondary objectives
included determining whether birthweight and/or maternal
obesity modify the relationship between rates of zBMI gain
and BP. We also determined whether accelerated zBMI gain
in each period was associated with elevated BP according to
the 2017 American Academy of Pediatrics (AAP) norma-
tive pediatric tables.

Subjects and methods

Study design and participants

We conducted a longitudinal study using repeated measures
of zBMI and BP in children participating in the TARGet
Kids! (The Applied Research Group for Kids) cohort [18].
TARGet Kids! is an ongoing longitudinal study and the
largest practice-based research network in Canada, whereby
children are recruited and followed prospectively during
well-child visits across primary care practices in Toronto
and Montreal, Canada. Overall, 7997 healthy children were
recruited from July 2008 to July 2017 across thirteen
TARGet Kids! clinics. We used two analytical stages for
this study; Stage 1 modeled repeated measures of zBMI
between 0–3, 3–18, and 18–36 months of age to generate
rates of zBMI gain for each child in each period. Stage 2
modeled the association between rates of zBMI gain with
BP in children at 36–72 months of age. Supplementary
Figs. 1 and 2 outline the participant flow for stage 1 and
stage 2. Since Stage 1 models zBMI gains for each child
using the World Health Organization (WHO) Growth
Standards, which did not include preterm infants or very
low birthweight infant [19], children born <37 weeks of
gestational age (n= 741 stage 1; n= 476 stage 2) and/or
children with missing or very low birthweight (<1 kg) were
excluded (n= 464 stage 1; n= 422 stage 2). After all
inclusion/exclusion criteria were applied, 4258 children
(with 26 843 zBMI observations) were included in stage 1
and 2502 of these children (with 4963 BP observations)
were included for analysis in stage 2. Approval was
obtained from the Research Ethics Boards at the Hospital
for Sick Children and St. Michael’s Hospital and parents of
participating children provided written informed consent.

Weight, height/length and zBMI

Weight and length/height were measured during well-child
visits by trained research assistants embedded in each pri-
mary care practice (21,556 observations from 7931 chil-
dren, Supplementary Fig. 1). A baby scale was used to
measure weight in children <2 years of age, and a precision
digital scale (SECA model 703, measurement accuracy
±0.025%; SECA, Hamburg, Germany) was used for older
children. A calibrated length board was used to measure
length in children <2 years of age and a calibrated stadi-
ometer (SECA, Germany) was used to measure height of
older children. Repeated measures of weight and length/
height were also abstracted from electronic health records
from routine physician visits when available for 4063 of the
children (observations= 34 800). We accounted for whe-
ther the zBMI observation was obtained from research vs
routine visits (visit type) as a covariate. We have reported
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coefficients of reliability [based on calculated technical
error of measurement [20]] of >99% for both intra- and
interobserver comparisons for length, height, and weight
comparing research with routine anthropometric measures
in three of our TARGet Kids! clinics (S Carsley and CS
Birken, unpublished data, 2019). To avoid overweighting
visits that were not well-child physician visits, we randomly
removed anthropometric observations (8.4% of routine
physician visit observations) measured during routine phy-
sician visits that occurred close together in time (Supple-
mentary methods) [13]. BMI was calculated and
standardized according to the WHO growth standards, using
the child’s exact age (in months) that the weight and height
were measured, and subtracting each child’s BMI from the
sex-specific mean and dividing by the sex-specific SD at
each age using the igrowup package for SAS. We chose to
standardize BMI using the WHO growth standards to be
able to describe growth in our cohort relative to an external
reference. This approach also adequately accounts for
changes in growth rates with age and ensures constant
variance as children age [14]. We used the WHO cutpoints
of <−5.0 and >+5.0 SD-units to identify and evaluate
potentially implausible z-scores of height, weight and BMI
[21, 22], and set the values to missing as described in
Supplementary methods (0.5% of observations) [23]. Chil-
dren with at least two measures of zBMI from birth to
36 months were included in this stage, however, we also
performed a sensitivity analysis to compare stage 1 results
when including children with at least one zBMI
observation.

Blood pressure

Systolic (SBP) and diastolic (DBP) blood pressure were
measured by trained research assistants once per year at
each clinic when the children were 3–6 years of age
according to the Fourth Report guidelines [3]. BP mea-
surements were also available from routine well-child
physician visits (1426 routine; 3537 research visit obser-
vations), and measured using the same approach. An
appropriate sized cuff was used in each clinic to measure
BP once per visit, as usually done in clinical practice, by
auscultation, on the child’s upper arm. To determine bio-
logical plausibility of BP measures we used upper cutpoints
of >260 mmHg for SBP and >200 mmHg for DBP [24]. No
values were greater than 180 mmHg in our cohort; there-
fore, no upper limit BP values were excluded. We excluded
SBP and DBP <50 mmHg and <25 mmHg, respectively, as
these represent values in the hypotensive range (observa-
tions= 4) [25]. The 2017 AAP Clinical Practice Guideline
were used to define elevated BP as ≥90th percentile for age-,
sex-, and height-standardized SBP or DBP values [26].

Statistical analysis

Stage 1: Rates of zBMI Gain

We used linear spline multilevel models [27] to calculate
rates of zBMI gain using proc MIXED in SAS, modeling
age as a random effect using an unstructured covariance.
We fit knot points at 3 and 18 months, which were pre-
viously identified in this cohort as turning points for chan-
ges in zBMI trajectories using a loess curve [23]. The
resulting model provided an estimate of the average zBMI
at birth (intercept) and the average rate of zBMI gain
(splines/slope) between 0–3, 3–18, and 18–36 months
(Supplementary Table 1). By specifying unstructured ran-
dom effects for the intercept and slope (splines), zBMI at
birth and zBMI trajectories were estimated for each child by
adding the random intercept and splines for each child to the
estimates of the population mean zBMI at birth (β0) and
rates of zBMI gain (β1–β3) for each period (0–3, 3–18, and
18–36 months) [28]. The stage 1 analysis included age
and splines as predictors and adjusted for sex, and visit type
(zBMI obtained from research vs routine visits). The
estimated zBMI at birth and rates of zBMI gain during each
period then served as the predictor variables for each child
in stage 2. To provide a clinically meaningful interpretation
of the effect size and to compare effect estimates across age
periods [14], we standardized the rates of zBMI gain to have
a mean of 0 and SD 1, using the mean ± SD of zBMI growth
rates from Supplementary Table 1.

Stage 2: Association of rates of zBMI gain with BP

We used generalized estimating equations (GEE) to test the
association between zBMI at birth and rates of zBMI gain
between 0–3, 3–18, and 18–36 months of age with repeated
measures of SBP and DBP at 36–72 months of age. GEE
allows for children with one or more measures of blood
pressure to be included in the analysis and accounts for
within-person correlation among children who had repeated
measures of blood pressure available between the ages of
36–72 months of age. In our unadjusted and adjusted ana-
lyses we sequentially conditioned on zBMI at birth and
zBMI gain in each period prior to each period tested, as
covariates in the model. This was done to test the effect of
zBMI gain in each period independent of prior body size.
We then fit a second model, building on the unadjusted
(conditioned) model adjusting for the following covariates
selected a priori: age and height at time of BP measures,
sex, family income, maternal (education, ethnicity, BMI,
hypertension during pregnancy), parental history of hyper-
tension, breastfeeding duration (not included in the model
for zBMI at birth), visit type (research vs routine), and
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clinic. Please see the Supplementary methods for details on
how each covariate was measured.

To determine whether associations for zBMI gain and BP
differed by sex we tested for a sex∗zBMI at birth and a
sex∗zBMI gain interaction in each period. We similarly
tested for interaction by birthweight and maternal obesity
status in each model to examine effect modification.
Logistic regression analysis with GEE (exchangeable cov-
ariance structure) was adjusted for the same covariates
(except for sex, age and height) as in the linear regression
GEE to determine whether zBMI at birth and zBMI gains
were associated with elevated BP (≥90th percentile AAP
criteria) [26].

We used multiple imputation to impute missing covari-
ates. Proportion of missing values for all covariates was
<16%. Models were run on 10 imputed datasets using the
mice package in R. Sensitivity analyses were performed for
subjects who had all covariates available (complete case
analysis). In addition, children with missing gestational age
(23%) were assigned as full-term in our analyses and a
sensitivity analysis excluding children with missing gesta-
tional age was performed. Results from sensitivity analyses
were similar to our main findings. Residuals were examined
to evaluate adequate model fit (data available upon request).
All p-values are two-tailed and not adjusted for multiple
comparisons. P-values <0.05 were considered statistically
significant. SAS v9.4 (SAS Institute, Cary, NC) and R
v3.4.1 (R:https://www.r-project.org/) were used for all
analyses.

Results

Participant characteristics of the 2502 children included in
the stage 2 analyses examining the association between
zBMI gain and BP are shown in Table 1. The majority of
children (60%) had ≥2 measures of BP from 36–72 months
of age (Supplementary Table 2). The average age at the first
measure of BP was 44 months (Table 1). Average SBP was
87 mmHg and 1.8% of children had elevated SBP. Average
DBP was 56 mmHg and 17% of children had elevated DBP.

Supplementary Table 1 shows the estimated rates of
zBMI gains from modeling the repeated measures of zBMI
from birth to 36 months of age in Stage 1. Each child
contributed a median of seven repeated measures of zBMI
(interquartile range= 3–9 measures) observations from
birth to 36 months of age (n= 4258, observations= 26
843), with 84% of children having three or more repeated
measures of zBMI. The estimated rates of zBMI gain in the
first 3 months was −0.12 zBMI-units per month, followed
by an acceleration of 0.06 zBMI-units per month during 3–
18 months, and a slower acceleration 0.01 zBMI-units per
month in the last period (18–36 months). We [23] and

others [29–32] have shown similar patterns of zBMI
deceleration and gains using the WHO growth standards.
Supplementary Table 3 shows overall good model fit for

Table 1 Participant characteristics

n Mean (SD) or N (%)a

Age (months)b 2502 44.0 (8.7)

SBP (mmHg)b 2502 87 (7.9)

Elevated SBPb,c 2494

No 2449 (98.2)

Yes 45 (1.8)

DBP (mmHg)b 2502 56 (7.5)

Elevated DBPb,c 2494

No 2064 (82.8)

Yes 430 (17.2)

Height (cm)b 2494 100.9 (8.2)

Weight (kg)b 2496 16.4 (4.1)

zBMIb 2485 0.35 (1.4)

Birthweight (kg)d 2502 3.39 (0.51)

<2.5 kg 110 (4.4)

≥2.5 and <4 kg 2112 (84.4)

≥4 kg 280 (11.2)

Breastfeeding duration (months)e 2321 11.1 (7.9)

Maternal age (years)d 2374 36.0 (4.5)

Maternal ethnicityd 2351

European 1718 (73)

East Asian 144 (6)

South/Southeast Asian 180 (8)

Other 309 (13)

Incomed 2089

$0–$39,999 123 (5.9)

$40,000–$79,999 262 (12.5)

$80,000–$149,999 684 (32.7)

$150,000+ 1020 (48.8)

Maternal educationd 2433

College/University 2215 (91)

High school 204 (8)

Public school 14 (1)

Maternal BMId 2283 24.6 (4.6)

BMI <30 2037 (89)

BMI ≥30 246 (11)

Maternal smoking during pregnancyd 2301

No 2272 (99)

Yes 29 (1)

Gestational high BPd 2358

No 2273 (96)

Yes 85 (4)

Family history of hypertensiond 2412

No 2327 (96.5)

Yes 85 (3.5)

aBased on complete case analysis
bFirst visit when BP was measured
cDefined as SBP ≥90th percentile in the 2017 AAP normative BP
tables
dCollected at enrollment
eDetermined using information from the most recent visit for each
child
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stage 1 growth trajectories with the 95% limits of agreement
for the observed vs predicted zBMI values falling within
10% of the mean zBMI from birth to 36 months. A sensi-
tivity analysis of Stage 1 was performed with very strong
correlations (>0.93) of estimates of the zBMI at birth and
zBMI gains in the three periods in children with at least one
zBMI measure, compared to at least two zBMI measures
(Data available upon request).

Table 2 shows the association between zBMI at birth and
rates of zBMI gain in each period with BP. zBMI at birth
was not associated with SBP or DBP at 36–72 months of
age. Rates of zBMI gain between 0–3 months was asso-
ciated with higher BP, such that a 1 SD unit faster rate of
zBMI gain was associated with a 0.50 mmHg higher SBP in
the unadjusted model, and 0.59 mmHg higher SBP in the
adjusted analysis (p < 0.001). In the 3–18 months period, a
1 SD unit faster rate of zBMI gain was associated with a
1.15 mmHg higher SBP (p < 0.001) in the unadjusted
model, and a 0.74 mmHg higher SBP (p < 0.001) in the
adjusted analysis. In the 18–36 months period, a 1 SD unit
faster rate of zBMI gain was associated with a 0.61 mmHg
higher SBP in the unadjusted model (p= 0.02); however,
the effect was attenuated and no longer significant after
adjusting for covariates. Table 2 also shows results for
DBP. Overall, we report similar associations in the adjusted
analyses as observed for SBP, but with smaller effect sizes.
To determine whether significant associations remained
with BP independent of concurrent zBMI, we additionally
adjusted for zBMI at the time BP was measured. We
observed a slight attenuation in effect estimates, but the
overall patterns observed in the main analyses remained
(Supplementary Table 4).

Results from the analyses including the sex interaction
term showed that the association between zBMI at birth and
rates of zBMI gain with SBP and DBP were similar in boys

and girls, with the exception of the association between
accelerated zBMI gain in the last period with higher SBP
(pinteraction= 0.03), where a stronger association was
observed in girls (Supplementary Fig. 3). Birthweight sig-
nificantly modified the relationship for accelerated zBMI
gain during 3–18 months and SBP (pinteraction= 0.02), with
the strongest positive relationship among low birthweight
children (Fig. 1). Overall, maternal obesity status did not
significantly modify the relationship between zBMI at birth
or rates of zBMI gain during any period with BP (Supple-
mentary Fig. 3).

Table 3 reports the association between zBMI at birth
and accelerated zBMI gain in each period with odds of
elevated SBP and DBP. In the first 3 months, a 1 SD unit
faster rate of zBMI gain was associated with a 1.55-fold
higher odds of elevated SBP (95% CI 1.18, 2.04). In the 3–
18 months period, a 1 SD unit faster rate of zBMI gain was
associated with a 1.42-fold higher odds of elevated SBP
(95% CI 1.07, 1.89). Rate of zBMI gain during 18–
36 months was not associated with odds of elevated SBP,
but a 1 SD unit faster rate of zBMI gain in this period was
associated with a 1.22-fold higher odds of an elevated DBP
(95% CI 1.04, 1.44).

Discussion

In this study of 2502 children we show that accelerated
zBMI gain in early (0–3 months) and late (3–18 months)
infancy are each associated with higher levels of SBP and
DBP at 36–72 months of age, independent of zBMI at birth
and zBMI growth in prior periods. Among children born
with low birthweight, faster rates of zBMI gain during the
3–18 month growth period were associated with a greater
increase in BP. To our knowledge this is the first study that

Table 2 Association of zBMI at birth and rate of zBMI gain in each period with blood pressure (mmHg)

Systolic blood pressure Diastolic blood pressure

Unadjustedb Adjustedb,c Unadjustedb Adjustedb,c

Period (months)a β 95% CI β 95% CI β 95% CI β 95% CI

zBMI at birthd −0.04 (−0.31, 0.23) 0.04 (−0.20, 0.28) 0.06 (−0.21, 0.32) 0.15 (−0.08, 0.37)

zBMI gain 0–3 me 0.5 (0.19, 0.80) 0.59 (0.31, 0.86) 0.17 (−0.12, 0.45) 0.28 (0.04, 0.53)

zBMI gain 3–18 m 1.15 (0.85, 1.45) 0.74 (0.46, 1.03) 0.62 (0.35, 0.88) 0.44 (0.20, 0.68)

zBMI gain 18–36 m 0.61 (0.10, 1.12) 0.43 (−0.06, 0.92) −0.7 (−1.18, −0.22) −0.03 (−0.42, 0.37)

aEach row shows results from four separate models
bzBMI gain is sequentially conditioned on zBMI at birth and rate of zBMI gain in each period occurring prior to the current period
cAdjusted for age and height at time of BP measures, sex, family income, maternal (education, ethnicity, BMI, hypertension during pregnancy),
parental history of hypertension, breastfeeding duration, visit type, and clinic
dNot adjusted for breastfeeding duration
eSince we observed a deceleration of −0.12 zBMI-units per month in the first 3 months (Supplementary Table 1), the interpretation of the positive
effect estimate shows that a 1SD-unit slower rate of decrease in zBMI-units from 0–3 months was associated with higher BP (mmHg)
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examined the association between rates of zBMI gain with
BP measured repeatedly over multiple visits in early
childhood.

Our findings are consistent with the study by Tilling et al.
who also modeled growth rates estimated from linear spline
multilevel models in the PROBIT cohort and demonstrated
that faster weight gain in early (0–3 months) and late
infancy (3–12 months), conditioned on prior body size,
were each associated with higher BP in early childhood
[12]. Here, we extend their work by modeling zBMI in
order to characterize gains in adiposity independent of
increases in height. In contrast, other studies have shown
that rapid growth in early (0–6 months), but not late infancy
(6–12 months), was associated with higher BP levels in
childhood [5, 7]. Differences in findings across studies may
be due to smaller sample size or length of periods examined
[5, 7, 14]. In addition, a simulation study [28] demonstrated
that effect estimates for the association between growth
rates and BP in studies, which calculate growth rates using
the arithmetic difference in body size between two ages,
may be biased towards the null [7].

In the model unadjusted for covariates, but conditioned
on prior zBMI gains, we observed a weak positive asso-
ciation of accelerated zBMI gain during the last period (18–
36 months of age) with higher BP at 36–72 months of age.
Despite closer proximity to measures of BP, the association
was no longer significant after adjusting for covariates. Our
results differ from other studies, that report stronger asso-
ciations between accelerated growth in the last age period
with higher levels of BP [5, 7, 9–13]. We accounted for a
number of important covariates including family history of
hypertension, gestational hypertension and child height,
which were not consistently adjusted for in prior studies
[5, 7, 9–13]. In addition, the last period we examined from
18 to 36 months of age, precedes the average age for
adiposity rebound [33], and therefore may represent a bio-
logically less influential phase. Indeed, studies that extended
the age period beyond 36 months to include the adiposity
rebound period have observed significant associations
between faster growth rates and higher BP [9–12].

We observed a significant interaction between birth-
weight and zBMI gain during 3–18 months of age.

Fig. 1 Effect estimate (95% CI) between zBMI gain in each period with BP by birthweight (pinteraction shown). BP blood pressure, mo months

Table 3 Odds ratio (95% CI) for the association of zBMI at birth and rate of zBMI gain in each period with elevated blood pressure (mmHg)

Systolic blood pressure Diastolic blood pressure

Unadjustedb Adjustedb,c Unadjustedb Adjustedb,c

Period (months)a Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI Odds ratio 95% CI

zBMI at birthd 0.85 (0.66, 1.11) 0.92 (0.71, 1.20) 1 (0.90, 1.11) 1.01 (0.92, 1.11)

zBMI gain 0–3 me 1.14 (0.83, 1.54) 1.55 (1.18, 2.04) 1.03 (0.93, 1.14) 1.07 (0.97, 1.18)

zBMI gain 3–18 m 1.91 (1.47, 2.49) 1.42 (1.07, 1.89) 1.02 (0.92, 1.13) 1.04 (0.94, 1.15)

zBMI gain 18–36 m 0.97 (0.62, 1.50) 0.64 (0.39, 1.05) 1.11 (0.92, 1.33) 1.22 (1.04, 1.44)

aEach row shows results from four separate models
bzBMI gain is sequentially conditioned on zBMI at birth and rate of zBMI gain in each period occurring prior to the current period
cAdjusted for family income, maternal (education, ethnicity, BMI, hypertension during pregnancy), parental history of hypertension, breastfeeding
duration, visit type, and clinic
dNot adjusted for breastfeeding duration
eSince we observed a deceleration of −0.12 zBMI-units per month in the first 3 months (Supplementary Table 1), the interpretation of the positive
effect estimate shows that a 1SD-unit slower rate of decrease in zBMI-units from 0–3 months was associated with a higher odds of elevated BP
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Consistent with our findings, observations from the EDEN
cohort report that children who were born small-for-
gestational age and experience the most rapid growth
exhibited the highest levels of BP [34]. In contrast, previous
studies measuring BP in early childhood have not detected a
significant effect modification by birthweight. This may be
attributable to smaller sample sizes [9]. In addition, prior
studies measured BP during a single visit rather than over
several visits [7, 9, 11, 12]. Low birthweight has been
shown to be associated with higher long-term BP variability
over time [35], therefore, accounting for within-person
variability may be important when examining effect mod-
ification by birthweight.

The small effect size observed in our cohort are in line
with previous studies reporting effect sizes of a 1 mmHg
higher SBP in early childhood associated with faster growth
[5, 6, 9, 11, 12]. According to the amplification hypothesis,
the relatively small effect size observed in early childhood
may increase as children age [36]. For example, Chiolero
et al found that weight gain from 1–5.5 years of age was
associated with a 1 mmHg higher SBP in girls at 5.5 years of
age, but the effect size of the association for weight gain
between 1–5.5 years of age increased to 4 mmHg when BP
was measured at 9 years of age [11]. Accelerated zBMI gain
in early and late infancy in our cohort was associated with a
1.4–1.5-fold higher odds of elevated SBP. Persistent expo-
sure to higher BP beginning in early childhood may result in
higher risk of CVD burden, as illustrated by greater carotid
intima media thickness in the International Childhood Car-
diovascular Cohort consortium [2]. The Cardiovascular Risk
in Young Finns study has shown that SBP was 1.92mmHg
higher among adults with coronary artery calcium compared
to those without, using long-term average BP measures over
a 27-year period beginning in adolescence [37].

Strengths and limitations

Unlike using conditional residuals or the arithmetic differ-
ence to model growth rates, linear spline multilevel models
do not require that anthropometrics are measured at the
same time for all subjects in the cohort [38]. Some prior
studies have modeled growth rates using unstandardized
body size [12, 13], however, in the study by Aris et al., no
differences were reported between their analyses examining
associations with BP using unstandardized and WHO-
standardized BMI velocities. using unstandardized and
WHO-standardized BMI velocities [9].

We used repeated measures of BP available in our study
since children have been shown to exhibit particularly high
within-person variability in BP [16]. A limitation of our
study is that we measured BP only once per visit and
therefore we are unable to remove additional random error
associated with within-person fluctuations that occur on a

given day. Random error associated with measuring BP may
lead to increases in standard error, thus widening the con-
fidence interval of the effect estimates [39]. In addition, use
of a single BP measurement on a single occasion may have
resulted in a higher estimate of elevated BP, and therefore
effect estimates for the association with the odds of elevated
BP should be interpreted with caution. However, when
blood pressure classification change was examined among
NHANES participants, 91% of children maintained their BP
classification when comparing classification across three
repeated measurements taken over one visit [40]. We used
the new AAP age-, sex-, and height-standardized BP per-
centiles, which updated the 2004 tables by excluding chil-
dren with overweight and/or obesity (zBMI ≥ 85th
percentile) [26]. Given the lower threshold for elevated BP
in the updated tables [26], this may have also contributed to
higher prevalence estimates for elevated BP observed. We
measured BP by auscultation in our cohort, which is
advantageous in comparison to oscillometric devices which
may overestimate BP, and facilitates comparison to the
normative pediatric tables that were based on auscultation
[3]. Auscultation measures, however, may be prone to
interobserver bias and we therefore adjusted for clinic to
account for this potential source of bias [16]. Finally, gen-
eralizability of results from our study may be limited to
children with reported ethnicity as European-descent (73%)
and generally high socioeconomic status, living in urban
settings. However, we note that the distribution of ethnicity
in our study is comparable to Canadian census data [41].
This study does not address rates of zBMI gain and BP in
preterm infants, or infants born <1000 g, who may be at
increased risk of elevated BP. Further studies are needed in
other settings to establish external validity.

In conclusion, results from our study demonstrate that
rates of zBMI gain from 0–3 months and 3–18 months of
age are associated with higher blood pressure in early
childhood, independent of zBMI at birth, and zBMI gains in
prior periods. We observed a stronger association between
rapid growth during 3–18 months of age with BP in children
born with low birthweight, and therefore highlight a devel-
opmental window to prioritize interventions for children in
this risk group. Further studies are needed to replicate our
observations and to identify interventions to promote growth
with optimal short-term and long-term health outcomes on
CVD during these distinct periods of early life.
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