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Abstract  
Alzheimer’s disease is characterized by two pathological hallmarks: amyloid plaques and 
neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. 
Recent research shows that dense plaques can cause functional alteration of calcium signals in 

mice with Alzheimer’s disease. Calcium channel blockers are effective therapeutics for treating 
Alzheimer’s disease. This review provides an overview of the current research of calcium channel 
blockers involved in Alzheimer’s disease therapy.  
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INTRODUCTION 
    

Calcium plays an important role in many 

aspects of normal neuronal physiology, 

including synaptic plasticity and learning
[1]

. 

Though disturbances in calcium 

homeostasis have been observed in cells 

from Alzheimer’s disease (AD) patients for 

many years
[2-3]

, little attention was paid to 

calcium channel blockers as therapeutic 

targets. There are multiple types of calcium 

channels in the membrane, beta-amyloid 

(Aβ)-formed calcium channels and 

calcium-related proteins
[4-5]

. This review 

provides an overview of the current research 

of calcium channel blockers involved in AD 

therapy.  

 

OVERVIEW OF CALCIUM 
CHANNELS IN AD 
 

Calcium homeostasis can be disrupted in 

human aging
[6]

. Calcium channels can be 

basically divided into voltage-gated calcium 

channels and glutamate receptors calcium 

channel, such as N-methyl-D-aspartate 

(NMDA) receptor channels and 

α-amino-3-hydroxy-5-methyl-4- 

isoxazolepropionic acid (AMPA). Voltage 

gated calcium channels are subdivided into  

type L, type Q, type P, and type N, to name a 

few
[7]

.  

Calcium channel adjusts the concentration 

of calcium and contributes to physiological 

functions through gates in the phospholipid 

bilayer. Type N and Q voltage-gated calcium 

channels support neuronal synaptic 

transmission between the hippocampal CA1 

and CA3 regions
[8]

. L-type calcium channels 

mainly exist in the cell body of central 

neurons and proximal dendrites, while 

P-type calcium channels exist in a specific 

area of Purkinje cells, and at the end of 

axons
[9]

. 

NMDA receptor channels include glutamate 

receptor channels and voltage-gated 

channels, and have high permeability for 

calcium. NMDA receptor channels are most 

dense in the cerebral cortex and the 

hippocampus
[10]

. 

 

POSTULATED MECHANISMS 
ASSOCIATED WITH CALCIUM 
DYSREGULATION AND AD 
PATHOGENESIS 
 

Aβ, a secreted form of APP (sAPPα) and the 

amyloid precursor protein intracellular 

domain (AICD) are generated by sequential 

cleavages of the amyloid precursor protein 

by β and γ-secretases
[11]

. These processes 

likely happen in the endoplasmic reticulum 

(ER) and plasma membrane. The formation 

of calcium permeable channels enhances 

calcium influx into the cell. 

Phosphatidylserine in the plasma 

membrane surface facilitates the 

association of Aβ oligomers with the plasma 

membrane. While calcium-related 

mitochondrial impairment can happen, 

phosphatidylserine can be triggered flipping 

from the inner position to the surface of the 

cell membrane
[12]

. At the same time, Aβ 

interacts with Fe
2+

 and Cu
2+

 to generate 

reactive oxygen species. The formation of 
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reactive oxygen species leads to lipid peroxidation which 

generates the neurotoxic aldehyde 4-hydroxynonenal. 

4-hydroxynonenal can impair membrane transporters, 

guanosine triphosphate-binding proteins, and calcium 

channels through covalent modifications
[13]

. In addition, 

Aβ causes oxidative stress and dysregulation of calcium, 

which impairs the electron transport chain, decreases 

production of adenosine triphosphate (ATP) and 

increases production of superoxide anion radicals
[14]

. 

Then membrane depolarization is caused by the loss of 

membrane integrity and the reduction in ATP levels. 

These results lead to calcium influx through NMDA 

channels and voltage-gated calcium channels
[15]

. Aβ 

oligomers also directly affect the activity of NMDA 

receptors and voltage-gated calcium channels. AICD 

translocates to the nucleus and interacts with 

transcription regulators in ways that perturb calcium 

homeostasis
[16]

. Recent studies show that presenilins 

function as ER calcium leak channels. Furthermore, 

flavin adenine dinucleotide-associated mutations impair 

this Ca
2+

 leak-channel function which results in excessive 

accumulation of Ca
2+

 in the ER. Finally, calcium is 

released through ryanodine receptors and inositol 1, 4, 

5-trisphosphate receptor channels
[17]

 (Figure 1).  

A previous study also showed that presenilins can 

interact directly or indirectly with inositol 1, 4, 

5-trisphosphate receptors, ryanodine receptors, and 

smooth ER Ca
2+

-ATPases to alter ER calcium release 

and uptake
[18]

. Calcium homeostasis modulator 1, which 

is likely associated with a passive Ca
2+ 

leak channel, is 

located mainly in the ER. The protein reelin enhances 

Ca
2+

 influx through NMDA receptor channels by binding 

to the apolipoprotein E receptor 2 which could block the 

actions of reelin
[19]

. In addition, amyloidogenic APP 

processing might prevent α-secretase cleavage of APP 

and generate a secreted form of APPα
[20]

. The sAPPα 

activates a cyclic guanosine monophosphate signaling 

pathway that activates K
+
 channels, which 

hyperpolarizes the membrane and reduces Ca
2+

 influx
[21]

. 

Calcium influx through calcium homeostasis modulator 1 

reduces Aβ generation and promotes the α-secretase 

pathway. The store-operated calcium channels localized 

in the plasma membrane allow Ca
2+

 refilling via 

capacitive calcium entry
[22]

. Calcium levels become 

raised in the cytosol, which activates calcium-related 

proteins and facilitates long-term depression, inhibits 

long-term potentiation, modifies neuronal cytoskeleton, 

causes synaptic loss, oxidative damage, excitotoxicity, 

cellular apoptosis and necrosis, and increases Aβ 

production and tau hyperphosphorylation
[23]

. 

Mitochondria absorb excessive calcium in the cytosol 

through mitochondrial Ca
2+ 

uniporters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Postulated mechanisms associated with calcium dysregulation and calcium channel blockers in Alzheimer’s disease. 
Beta-anyloid oligomers, which can insert in the plasma membrane, can form pores or interact with calcium channels to influence 
calcium influx or release from the endoplasmic reticulum (ER) or mitochondrial stores. Amyloid precursor protein intracellular 
domain (AICD) which can move to the nucleus interacts with Fe65 and Tip60 to modify gene transcription. Presenilins can 
function as ER calcium leak channels which can be repaired by flavin adenine dinucleotide (FAD)-associated mutants. 
FAD-associated mutant presenilins can also interact with inositol (1, 4, 5)-trisphosphate receptors (IP3R), ryanodine receptors 
(RyR), and smooth ER Ca2+-ATPases (SERCA) to influence calcium levels. The mechanisms describe potential targets for 
treating calcium dysregulation. Some drugs that target calcium channels, such as memantine and nimodipine, are efficacious for 
treating Alzheimer’s disease. The star represents potential targets for the future. 

PtdS: Phosphatidylserine; cGMP: cyclic guanosine monophosphate; NMDAR: N-methyl-D-aspartate receptor; AMPAR: 
amino-3-hydroxy-5-methyl-4-isoxazol propionate receptor; VGCCs: voltage-gated Ca2+ channels; SOCCs: store-operated 
calcium channels; CALHM1: calcium homeostasis modulator 1; PM: plasma membrane; ApoE: apolipoprotein E; ApoER2: ApoE 
receptor 2; SFk: src-family tyrosine kinase; ROS: reactive oxygen species; CypD: cyclophilin D; mPTP: mitochondrial 
permeability transition pore; MCU: mitochondrial Ca2+ uniporter; LTP: long-term potentiation; LTD: long-term depression. 
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This leads to calcium overloading in the mitochondria 

which results in the opening of mitochondrial 

permeability-transition pores.  

This process damages the mitochondrial ultrastructure, 

inhibits mitochondrial ATP production and other 

energy-dependent functions, and releases calcium 

stored in the mitochondria. Thus, the neuronal calcium 

signaling is further deregulated 
[24]

. The accumulation of 

with cyclophilin D also facilitates calcium-induced 

mitochondrial permeability transition pore opening
[25]

. 

 

CALCIUM CHANNEL BLOCKERS AND 
RECENT RESEARCH IN AD THERAPY 
 

Because of their chemical structures, voltage-gated 

calcium channel blockers can be mainly divided into 

three parts: (1) dihydropyridines, such as nifedipine, 

nimoldipine, nicardipine; (2) benzothiazepines, such as 

diltiazem; (3) phenylalkylamines, such as verapamil
[26]

.  

Dihydropyridines are widely used to vasodilate arterial 

resistance vessels and to increase the reflex in the 

sympathetic response
[27]

. The overall hemodynamic 

effect is a drop in blood pressure and an increase in 

cardiac output, heart rate, and contractility
[28]

.  

Targeting the glutamatergic system, specifically NMDA 

receptors, offers a novel treatment approach because of 

the limited efficacy of existing drugs targeting AD. 

Memantine has been used in AD therapy as a 

noncompetitive NMDA receptor antagonist with low 

affinity
[29]

. Memantine increases the expression of the 

NMDA receptor subunit 2B and the postsynaptic 

density-95. Memantine also binds to NMDA receptors on 

brain cells to help reduce abnormal activity in the brain, 

and to block the activity of excessive glutamate. 

Memantine binds to NMDA receptors with a higher 

affinity than Mg
2+

 ions to inhibit the prolonged influx of 

Ca
2+

 ions, which leads to neuronal toxicity. Ketamine is a 

non-competitive NMDA receptor antagonist and likely 

impairs the memory function of the brain in AD
[30]

. 

AD cells produce Aβ which leads to cell death. Calcium 

channel blockers protect AD cells from Aβ oligomer 

production
[31]

. Recent research also indicates that 

isradipine has a better therapeutic effect compared with 

verapamil, diltiazem, isradipine and nimodipine. All of 

these drugs are L-voltage-gated calcium channel 

blockers
[32]

. 

 

OTHER CANDIDATES THAT BLOCK OR 
TARGET CALCIUM CHANNELS IN THE 
TREATMENT OF AD 
 

Juliflorine, a piperidinium alkaloid, is isolated from the 

leaves of Prosopis juliflora. Juliflorine is a 

non-competitive inhibitor of the enzymes, 

acetylcholinesterase and butyrylcholinesterase
[33]

. Its 

potential calcium channel blocking activity and safety 

profile in the human neutrophil viability assay make 

juliflorine a leading candidate for the treatment of AD. 

Juliflorine can also be used as a scaffold to synthesize 

new derivatives
[34]

. 

The senescence-accelerated mouse (SAM) prone/8 

(SAMP8) is a model for investigating the fundamental 

mechanisms of AD at the gene and protein levels, and 

the SAM resistant/1 (SAMR1) mouse is its normal 

control
[35]

. Calcium/calmodulin-dependent protein  

kinase II-α is one of the most abundant subunits of 

calcium/calmodulin dependent protein kinase II in the 

cerebral cortex and hippocampus
[36]

. A previous study 

has shown that the expression of mRNA and protein of 

calmodulin-dependent protein kinase II was significantly 

increased in the cerebral cortex and hippocampus of 

SAMP8 after 10 months of age, but was down-regulated 

when treated with some anti-AD drugs (for example, 

natural product huperzine A and some traditional 

Chinese medicinal prescriptions), suggesting that 

calmodulin-dependent protein kinase II may play an 

important role in age-related cognitive deterioration in AD, 

and may be a potential target for anti-AD drugs
[37]

. 

The ryanodine receptor plays a vital role in the regulation 

of calcium release from the ER in the brain, so the 

impairment of ryanodine receptors contributes to the 

pathogenesis of AD
[38]

. Recent studies have revealed 

that alterations in ryanodine receptor binding and 

function are very early events in the pathogenesis of AD, 

and may be fundamental to the progression of both 

neurofibrillary and β-amyloid pathologies
[39]

. Ryanodine 

receptors increase early in the disease, prior to the loss 

of ryanodine receptors that is correlated with the 

progression of neurofibrillary pathology and amyloid 

deposition. This means that ryanodine receptor-induced 

calcium release in the ER may be crucially involved in 

the formation of the pathological hallmarks of AD
[40]

.  

 

CONCLUSION 
 

Ample evidence shows that calcium dysregulation plays 

an important role in AD. Although the precise 

pathogenesis of AD remains unclear, many calcium 

channel blockers have proved efficacious in numerous 

cell culture and animal models of AD. Furthermore, most 

of these treatments target receptor-operated calcium 

channels and voltage-gated calcium channels. There are 

still new potential targets on the horizon for the 

development of drugs directed towards calcium 

channels. 
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