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Abstract

Peptide-based therapeutics are here to stay and will prosper in the future. A key step in identifying novel peptide-drugs is
the determination of their bioactivities. Recent advances in peptidomics screening approaches hold promise as a strategy
for identifying novel drug targets. However, these screenings typically generate an immense number of peptides and tools
for ranking these peptides prior to planning functional studies are warranted. Whereas a couple of tools in the literature
predict multiple classes, these are constructed using multiple binary classifiers. We here aimed to use an innovative deep
learning approach to generate an improved peptide bioactivity classifier with capacity of distinguishing between multiple
classes. We present MultiPep: a deep learning multi-label classifier that assigns peptides to zero or more of 20 bioactivity
classes. We train and test MultiPep on data from several publically available databases. The same data are used for a hierar-
chical clustering, whose dendrogram shapes the architecture of MultiPep. We test a new loss function that combines a cus-
tomized version of Matthews correlation coefficient with binary cross entropy (BCE), and show that this is better than using
class-weighted BCE as loss function. Further, we show that MultiPep surpasses state-of-the-art peptide bioactivity classi-
fiers and that it predicts known and novel bioactivities of FDA-approved therapeutic peptides. In conclusion, we present in-
novative machine learning techniques used to produce a peptide prediction tool to aid peptide-based therapy development
and hypothesis generation.
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Introduction

Identifying bioactivities of peptides is becoming increasingly
important. Illuminating the biological activity of peptides will
help shedding light on their impact on various processes and
help revealing peptides that can be used for therapies against
diseases and disorders. A number of biologically available pepti-

des have already now proven efficient for use as drugs for
various diseases, including diabetes, osteoporosis, hyperten-
sion, cancer, and a variety of endocrine disorders [1, 2]. Though
peptide-based drug development is still hampered by certain
challenges, such as physiochemical instability and short half-
life [3, 4], it can be expected that the future with its technical
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advances will contain more therapies involving peptides [2, 3].
At the same time, mass spectrometry-based peptidomics
technologies are rapidly developing, allowing for the discovery
of previously unknown molecules [5, 6]. Although a subset of
these peptides likely represent potent metabolic signaling mole-
cules, the field currently lacks an efficient approach to scan for
specific bioactivities, which further allow meaningful follow-up
experiments for target validation. Thus, accurately predicting
the bioactivity of peptides is important for identifying novel
drug candidates as well as new and unknown peptides. Many
tools have been developed for predicting the bioactivity of pep-
tides. Table 1 shows a selection of important state-of-the-art bi-
nary classifiers that can group peptides into different bioactivity
classes.

Though many of the peptide bioactivity predictors presented
in Table 1 offer a wealth of additional information next to a pre-
diction score [9, 13–15], a common denominator for all of them
is that they are binary classifiers. For example, the classifier
PeptideRanker can predict whether a peptide has a bioactivity
or not, and Deep-AmPEP can distinguish short antimicrobial
peptides (AMPs) from short non-AMPs. This automatically
implies that peptides either have one or none bioactivity, which
is not in line with reality [15–25].

Getting an overview of peptides’ bioactivities is important
when seeking to unravel therapeutics-relevant peptides.
Further, an overview of peptides’ bioactivity profiles is vital
when analyzing mass spectrometry-based peptidomics data,
where a key step is to rank peptide candidates for downstream
functional studies. A few tools that can predict multiple bioac-
tivity classes simultaneously exist in the literature. PEPred-suite
[26] uses eight random forest (RF) models to predict how pepti-
des belong to eight different classes. Peptipedia [27] is another
tool that, among other things, can predict different bioactivities
of peptides by using 44 RF models trained on data from a large
number of peptide databases. A combination of several ma-
chine learning algorithm types has been utilized for the predic-
tion of peptide bioactivities (Table 1). However, through the
years, deep learning-based models have delivered state-of-the-
art results in the field of biological sequence analysis [9, 8, 28,
29]. And though much have been achieved already regarding
peptide bioactivity prediction (Table 1), the possibilities with
deep learning are endless, and allows for continuous improve-
ments. Here, we present MultiPep, a deep neural network multi-
label classifier that can predict the bioactivity of peptides based
on 20 bioactivity classes. The tool can take peptides of length 2–
200 amino acids that can consist of natural amino acids (A, R, N,
D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V). MultiPep utilizes con-
volutional neural networks [30] for predicting the peptide class
belonging, and can classify peptides into zero or more bioactiv-
ity classes based on their intrinsic amino acid patterns. The ar-
chitecture of MultiPep is inspired by a dendrogram from a

hierarchical clustering of our defined bioactivity classes’ mutual
overlaps (Fig. 1). An overlap occurs when two or more classes
contain the same peptides. The 20 output nodes of the network
are divided into “network class-clades,” which have outputs
that are agglomeratively combined until two single binary pre-
dictions are made. The architecture ensures that extra penalties
are added while training, if a sequence is predicted to be in, for
example, a wrong network class-clade.

As a new approach to finding the optimal network parame-
ters, we save the parameters of each network class-clade indi-
vidually whenever the performance has improved on the
validation set. This is opposed to saving all weights of the net-
work when the overall performance has improved. We show
that this approach is better than saving all weights of a network
simultaneously whenever performance increases.

Multi-label classification of imbalanced datasets is
approached in different ways [31–33]. Here, we test our custom-
ized version of Matthews Correlation Coefficient (MCC) function
as parameter-free loss function for our new benchmark multi-
label dataset with an imbalanced class-size distribution. We
combine our MCC loss function with binary cross entropy (BCE),
and we demonstrate that this approach is superior to the use of
class-weighted BCE when training on our dataset and when us-
ing loss as model selection criteria.

Further, we show that MultiPep can compete with and surpass
a set of state-of-the-art binary classifiers on seven different peptide
bioactivity classes (Table 1), and that MultiPep can outperform
Peptipedia on large set of compared bioactivity classes. Finally, we
use our trained models to predict FDA-approved therapeutic pepti-
des and we present how the predictions are in accordance with lit-
erature findings or can be used to generate novel hypotheses ready
for further analysis and wet laboratory testing. For a quick over-
view of the workflow of our study, see Supplementary Fig. S1.

Materials and methods
Data and databases

The data used for training, validation, and testing of our models
were downloaded from APD3 [15], BioDADPep [16], BIOPEP-UWM
[18], CancerPPD [19], CAMPR3 [20], DBAASP [21], LAMP2 [22],
NeuroPedia [23], NeuroPep [24], PeptideDB [25], and SATPdb [17].

APD3, CAMPR3, DBAASP, LAMP2, and SATPdb all contain
many peptides with experimentally validated antimicrobial
function, such as “antibacterial,” “antifungal,” and “antivirus.”
But, also peptides annotated with many other types of bioactiv-
ities ranging from “toxic” and “chemotactic” to “wound-healing”
and “enzyme inhibitor.” The databases are both curated
(CAMPR3, DBAASP, and SATPdb) and based on peptides found
in the literature (APD3) and scientific literature and authorita-
tive databases (LAMP2).

Table 1: State-of-the-art binary classifiers for bioactivity prediction

Prediction class Algorithm type(s) Name/description of tool

General bioactivity Neural network PeptideRanker [7]
Antimicrobial peptides Neural network Convolutional long short-term memory neural network [8]

Deep-AmPEP30 [9]
Anticancer peptides Support vector machine mACPpred [10]
Neuropeptide peptides Various PredNeuroP [11]
Toxic peptides Support vector machine ToxinPred [12]
Hemolytic peptides Various HLPpred-Fuse [13]
Antioxidant peptides Neural network AnOxPePred [14]
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CancerPDD contains experimentally validated anticancer
peptides collected from published research articles, patents,
and from other databases. PeptideDB and BIOPEP-UWM contain
peptides belonging to many different bioactivity classes.
PeptideDB contains bioactive peptides from 2820 metazoan spe-
cies extracted through searches in Swiss-Prot and Trembl pro-
tein databases, using BLAST alignment tools and other in silico
methods, whereas BIOPEP-UWM is a smaller but continuously
curated database.

BioDADPep is a database that contains peptides with anti-
Type I and/or Type II diabetes properties found based on liter-
ature search on PubMed and searches on other published
databases. The NeuroPep database contains neuropeptides

extracted from the literature, UniProt and other databases,
such as Neuropedia. All the entries in NeuroPep have been
manually checked [24]. Neuropedia is a database with neuro-
peptides based on in-house mass spectrometry data. For all
databases, where it was possible, only peptides with experi-
mentally validated bioactivity were downloaded. Duplicates
and peptide sequences containing unnatural amino acids (B,
J, O, U, X, and Z) were removed as well.

Defined bioactivity classes

Based on the downloaded peptides and their annotations,
20 bioactivity classes were defined (see Supplementary
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Figure 1: Dendrogram template and overall architecture of the convolutional neural network. (A) Dendrogram template. From the bottom, the five class clades can be

seen with the bioactivity classes of the clades written within each of them. Above the class clades are connecting levels that amalgamate all the class clades and com-

plete the dendrogram. For visualization purposes, not all leaves of the class clades are shown. (B) The overall architecture of MultiPep. From the bottom, the input layer

passes input data to the “network class-clades,” which consists of a CNN and an output layer. All layers with “Output” in their names are output layers. Above the net-

work class clades are upper-level output layers that connect all the network class clades. The gray-filled circles on top of the output layers indicate the number of out-

put nodes in the layers. The output nodes that are not explicitly named represent core bioactivity classes.

Multi-label classification of peptide bioactivities | 3

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpab021#supplementary-data


Information and Supplementary Table S1). The complete list of
classes and how the used databases have contributed to their
generation can be seen in Table 2. Some database class contri-
butions were based on overlaps. For instance, the class “ACE
inhibitor” stems only from the database BIOPEP-UWM, however,
the database LAMP2 contributed with 39 peptides, because it
had peptides from another class that overlapped with the pepti-
des from the “ACE inhibitor” class.

Bioactivity classes were only created if 100 or more peptides
were available for that class, and if the class had more than two
peptides that were unique for that specific class. We believed
that if the classes did not live up to these criteria, the classes
would be to information-poor for a classifier to use. Some of the
classes had major overlaps, while other classes had none
(Supplementary Fig. S2). The largest class was the Antibacterial
class with 14 362 peptides and the smallest was the Opioid class
with 117 peptides. Analyses to see how the defined bioactivity
classes differed in terms of overall peptide lengths and amino
acids distributions were made (Supplementary Figs S3 and S4).
Some of the bioactivity classes are very general (antimicrobial,
peptide hormone, and antihypertensive) while other classes are
more specific (ACE inhibitor, opioid, and dipeptidyl peptidase
inhibitor). No negative class with peptides without bioactivity
was defined, as the many different classes generated negative
classes for each other. If required, the applied databases can be
used to acquire more information about the classes.

Overall network architecture

MultiPep is a deep neural network implemented using Keras
(http://www.keras.io) and Tensorflow [34] in Python. MultiPep’s
architecture is inspired by a dendrogram from a hierarchical
clustering of our defined bioactivity classes’ mutual overlaps
(Fig. 1A and Supplementary Fig. S2). The max-normalized class
overlap values were clustered using the complete linkage type
and Euclidean distance as metric. We used the hierarchical
clustering algorithm provided by SciPy [35]. The cutoff for the
clustering was based on SciPy’s default cutoff value. Based on
the classes’ divisions, a dendrogram template that consisted of
five lower level class clades with two, six, three, five, and four
classes in each, respectively, was created. Above the class

clades, upper levels that connected the lower levels until all
class clades were amalgamated were made (Fig. 1A).

Using the dendrogram template, our deep neural network
was constructed (Fig. 1B). The network has “network class
clades,” which consist of small convolutional neural networks
(CNNs) and class-clade-specific output layers. See the section
“Class-clade-specific convolutional neural networks” for a de-
scription of the CNNs. The network class-clade-associated out-
put layers is connected to upper level output layers. Only the
network class-clade-associated output layers (Output 4_1,
Output 4_2, Output 4_3, Output 4_4, and Output 4_5 in Fig. 1B)
contain weights. These layers are regulated by the sigmoid acti-
vation function. The upper level output layers (Output 1, Output
2_1, Output 2_2, and Output 3 in Fig. 1B) are concatenation
layers that merge the two connected lower level output layers’
maximum output values. Table 3 shows which bioactivity classes
the upper level output layers represent. To provide an example,
if Output level_2_2_2 outputs 0.8 given a peptide, this peptides is
predicted to belong to one of the bioactivity classes “antifreeze,”
“cytokines/growth factors,” “antioxidative,” “drugdelivery,”
“opioid,” “ACE inhibitor,” “antihypertensive,” “antidiabetes,” or
“dipeptidyl peptidase inhibitor” by a score of 0.8.

Class-clade-specific convolutional neural networks

The CNNs from the different network class clades have the
same architecture, which is shown in Fig. 2. Each of the CNNs
are connected to the input layer. The input layer passes n input
examples as a 3D tensor of size n� 4000� 1ð Þ to seven 1D con-
volutional layers within the different CNNs. The input data are
passed as a 3D tensor, as this is required by Keras’ 1D convolu-
tional layers. See the section “Generating data for training and
testing” for a more detailed explanation of the input data size.

The convolutional layers have 40 kernels with no bias
parameters and they convolve over 4, 6, 10, 16, 22, 30, and 40
one-hot encoded amino acids, respectively. Their strides are 20,
which is the length of 1 one-hot encoded amino acids. The con-
volutional layers perform valid convolutions. The 3D tensors
that are outputted by the convolutional layers are max pooled
along their second axes. The max pooled convolutional output
values are concatenated, such that a (n� 280Þ tensor is created.

Table 2: Classes and databases.

Classes CAMP3 LAMP2 APD3 SATPdb DBAASP BIOPEP-UWM PeptideDB NeuroPedia CancerPDD BioDADPep NeuroPep Total
class
size

0 ACE inhibitor 1 39 1 687 29 973 4 1 1 65 3 973
1 Antibacterial 2104 11 516 2858 4533 10310 512 1059 16 265 31 37 13 538
2 Anticancer 245 1575 419 1177 1919 104 121 1 440 14 6 2426
3 Antidiabetes 11 46 17 125 41 189 9 3 2 1091 3 1112
4 Antifreeze 0 0 0 0 0 0 192 0 0 0 0 192
5 Antifungal 1457 4747 1955 2818 4172 219 559 11 197 22 27 5342
6 Antihypertensive 1 73 6 1664 51 783 10 3 5 107 8 1672
7 Antimicrobial 1882 13 446 2125 8887 3681 239 2544 15 225 9 57 14 362
8 Antioxidative 10 38 28 81 35 649 6 4 1 15 5 675
9 Antiparasite 133 479 190 342 388 46 94 5 20 6 10 503
10 Antivirus 735 4219 990 3918 1611 90 196 8 36 6 14 4500
11 Cellcellsignaling 11 38 15 679 30 22 378 392 0 3 391 682
12 Cytokines_

growthfactors
46 66 64 24 30 11 3729 0 1 0 1 3760

13 Dipeptidyl peptidase
inhibitor

0 58 2 169 50 459 6 4 1 158 6 459

14 Drugdelivery 11 108 11 1484 96 17 44 29 5 1 45 1484
15 Hemolytic 183 1299 342 1279 1045 61 111 0 51 1 2 1339
16 Neuropeptide 18 70 26 473 33 108 2101 552 2 4 3822 3926
17 Opioid 0 5 0 27 1 117 12 9 2 0 16 117
18 Peptidehormone 22 149 28 499 33 34 6943 495 1 2 2077 6943
19 Toxic 411 1746 523 3840 1416 310 2404 2 76 1 10 5793
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Each of the n input examples are then normalized by a division
of their summed absolute values. This is done to ensure that
the network focuses on amino acid patterns and does not pre-
dict based on sequence length. Dropout with a rate¼ 0.2 is ap-
plied on the normalization layer. The normalization layer is
connected to a chain of three dense layers with 500 nodes
where dropout is applied on each of them (rate¼ 0.5). See the
section “Training settings and network initialization” to read
more about the used regularization techniques. In the top of
Fig. 2, the CNN is connected to an output layer. This could, for
instance, be “CNN1” that is connected to “Output 4_1” in Fig. 1B.
All layers with weights that are not output layers consist of
Parametric Rectified Linear Units (PReLU) [36].

Generating data for training and testing

Models based on 10-fold cross-validation (CV) were trained. To
do this, the peptide classes were divided into 10 bins of similar
sizes. To distribute the peptides classes uniformly across the
bins, all peptides belonging to all specific sets of classes were
counted. If the count value was greater than 10, the peptides
were split into the 10 bins, and if the count value was lower
than 10, the peptides were uniformly distributed at random
across the bins. Like in Reference [11], all peptide sequences
were one-hot encoded before introduced to the MultiPep. All
sequences were zero-padded until they reached a length of 200
one-hot encoded amino acids.

Training sets, validation sets, and testing sets with a size
distribution of 0.8, 0.1, and 0.1, respectively, were generated. For
all peptide sequences, labels or targets were created. One indi-
cated membership of a class and zero indicated that they were
not members of the specific class.

Training settings and network initialization

The start parameters of the convolutional layers were initialized
using orthogonal weights. The initial weights of the dense non-
output layers were sampled from a uniform distribution with
min ¼ �1 and max ¼ 1. The initial weights of the output layers
were sampled from a uniform distribution with min ¼ 0:001 and
max ¼ 0:05. The bias parameters of the dense layers and output
layers were initialized as zeros.

The Adam [37] update function was used with a learning
rate of 0.0005. The remaining hyper-parameters for the Adam
update function were set to the Keras default values. The batch
size was 128 and dropout with a rate of 20% and 50% on the nor-
malization layer and the dense layers, respectively, was applied
(Fig. 2). As a final regularization technique, early stopping after

20 epochs was used. All data were shuffled before an epoch was
started. To acquire optimal models, weights for the network
class clades were saved whenever their performances on the
validation set had improved. Additionally, the weights of the
entire network were saved whenever the overall performance
had increased. The early-stopping count-down was set to zero
whenever the parameters of a “network class clade” were saved.
The performance was measured in terms of loss.

The customized MCC loss function

To increase the loss penalty during training, the BCE loss func-
tion was extended with a customized version of the MCC. The
MCC function is given by

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð ÞðTNþ FNÞ

p ; (1)

where TP ¼ true positives, TN ¼ true negatives, FP ¼ false positives,
and FN ¼ false negatives. MCC values range from �1 to 1, where �1
indicates complete disagreement and 1 indicates a perfect agreement
[38]. Here, the MCCloss function for a single sigmoid output node is
calculated by

TP� ¼
XN

i

ŷiyi; (2)

TN� ¼
XN

i

1� ŷi

� �
ð1� yiÞ; (3)

FP� ¼
XN

i

ŷi 1� yið Þ; (4)

FN� ¼
XN

i

1� ŷi

� �
yi; (5)

MCCloss ¼ 1� TP� � TN� � FP� � FN�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP� þ FP�ð Þ TP� þ FN�ð Þ TN� þ FP�ð Þ TN� þ FN�ð Þ

p ;

(6)

where TP�, TN�, FP�, and FN� are modified under certain circum-
stances. If yi ¼ 0 for all instances in a mini-batch, then TP� is set
to be minimum 1. If yi ¼ 1 for all instances in a mini-batch, then
TN� is set to be minimum 1. If ŷi ¼ 0 for all instances in a mini-
batch, then FP� is set to be minimum 1. If ŷi ¼ 1 for all instances
in a mini-batch, then FN� is set to be minimum one. These mod-
ifications are done to avoid that the denominator of the MCCloss

function becomes zero.

Table 3: Bioactivity classes represented by upper-level output layers

Layer outputs Combined classes

Output_1_1 Hemolytic, toxic, antiparasite, anticancer, antibacterial, antifungal, insecticides, antimicrobial, and antivirus
Output_1_2 Cell–cell signaling, neuropeptide, peptide hormone, antifreeze, cytokines/growth factors, antioxidative,

drugdelivery, opioid, ACE inhibitor, antihypertensive, antidiabetes, and dipeptidyl peptidase inhibitor
Output_2_1_1 Hemolytic and toxic
Output_2_1_2 Antiparasite, anticancer, antibacterial, antifungal, insecticides, antimicrobial, and antivirus
Output_2_2_1 Cell–cell signaling, neuropeptide, and peptide hormone
Output_2_2_2 Antifreeze, cytokines/growth factors, antioxidative, drugdelivery, opioid, ACE inhibitor, antihypertensive,

antidiabetes, and dipeptidyl peptidase inhibitor
Output_3_1 Antifreeze, cytokines/growth factors, antioxidative, drugdelivery, and opioid
Output_3_2 ACE inhibitor, antihypertensive, antidiabetes, and dipeptidyl peptidase inhibitor
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Again, with a single sigmoid output node, the loss for a sin-
gle predicted mini-batch ranges between 0 and 2. Zero is given
to a perfectly predicted mini-batch and two is given to perfectly
miss-predicted mini-batch that contains both yi ¼ 1 and yi ¼ 0
instances. In the situation where yi ¼ 1 and ŷi ¼ 0 or yi ¼ 0 and
ŷi ¼ 1 for all instances in a mini-batch, the loss can never reach
exactly 2 due to the TP� and TN� definitions. So, to avoid
“losing” loss while training, the loss is set to 2 if
j
PN

i yi �
PN

i ŷij ¼ N, where N is the number of examples in the
mini-batch. In the situation where yi ¼ 1 and ŷi ¼ 1 or yi ¼ 0 and

ŷi ¼ 0 for all instances in a mini-batch, the loss can never reach
exactly 0 due to the FP� and FN� definitions. To circumvent this,
the MCCloss was implemented such that its outputs are multi-
plied by 0 if j

PN
i yi �

PN
i ŷij ¼ 0.

The complete loss function with MCCloss

The entire loss function for a single output node given all
instances of mini-batch is defined as

Conv4 Conv6 Conv10 Conv16 Conv22 Conv30 Conv40

Max pool Max pool Max pool Max pool Max pool Max pool Max pool

Concatenate

Normalize

Dropout
(0.2)

Dense500

Dense500

Dropout
(0.5)

Dense500

Dropout
(0.5)

Output layer

Dropout
(0.5)

Input layer

CNN

× 500

× 500

× 500

× 191 × 40 × 185 × 40× 195 × 40× 197 × 40 × 171 × 40 × 161 × 40× 179 × 40

× 40 × 40× 40× 40 × 40 × 40× 40

× 280

× 280

Figure 2: Architecture of network class-clade convolutional neural networks. All layers with dark-gray backgrounds (except for the input layer) have weights, whereas

the layers with white backgrounds are mathematical operations or dropout layers. Below the name of each layer (except for the dropout layers), the sizes of the layers’

output tensors are written. Arrows show the flow of information and how the layers are connected. What constitutes the convolutional neural network (CNN) is encap-

sulated by a light-gray box. “Conv4” means a 1D convolutional layer with a kernel size of four one-hot-encoded amino acids. The same logic applies to the remaining

convolutional layers. “Dense500” means a dense layer with 500 nodes.
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Loss ¼ � 1
N

XN

i¼1

½yi � log ŷi

� �
þ 1� yið Þ � log 1� ŷi

� �
� þMCCloss; (7)

where N is the number of examples in the mini-batch. The loss
function can be seen as two-step function where the MCCloss

values are calculated for the entire batch in the first step and
then added to the BCE loss values, which then are averaged.
During the updating steps while training, the loss is summed
across all output nodes.

Loss function with class weights

Models using class weights were trained, which is a standard
way of training models on data with imbalanced class-size dis-
tributions [39]. The class weights were based on the data from
the training sets and were generated using the
“compute_class_weight” function from Scikit-learn [40]. This
means that a class weight, Clj, was generated for every j class.
While training, the loss of a single output node was calculated
using

LossCl ¼ �
1
N

XN

i¼1

yi � log ŷi

� �
þ 1� yið Þ � log 1� ŷi

� �� �
� Clj

h i
; (8)

where N is the number of examples in the mini-batch and Clj is
the class weight of the class in question. During the updating
steps while training, the loss is summed across all output
nodes.

Webtool and stand-alone-program

A Numpy [41] version of MultiPep based on the trained weights
was implemented. It is available on https://agbg.shinyapps.io/
MultiPep/. Users can choose between using the average of all CV
models’ prediction as the final output or to get the max of all CV
models’ predictions of the different classes as the final output.
This is true for the webtool and the stand-alone-program. The
webtool rounds the predictions to three decimals, while the
stand-alone-program provides a higher number of decimals.
The stand-alone-program is available at https://github.com/
scheelelab/MultiPep. If predicting more than 500 in one batch of
peptide sequences, we recommend using the stand-alone-
program.

Performance metrics

The performance of MultiPep and peptide predictors compared
with MultiPep was evaluated using the following metrics:

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð ÞðTNþ FNÞ

p ; (9)

F1 score ¼ 2TP
2TPþ FPþ FN

; (10)

Precision ¼ TP
TPþ FP

; (11)

Recall ¼ TP
TPþ FN

; (12)

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; (13)

where TP ¼ true positives, TN ¼ true negatives, FP ¼ false positives,
and FN ¼ false negatives.

Results
Architecture rationale

We designed the architecture of MultiPep with inspiration from
a dendrogram from a hierarchical clustering of our defined bio-
activity classes’ mutual overlaps. The performed clustering of
the max-normalized class overlap values provided a proxy for
the classes’ peptide similarities. We hypothesized that the net-
work would make more exact predictions when we grouped
similar classes together and connected them to the same CNN.
The CNNs would then be forced to learn how to distinguish be-
tween similar peptide patterns using the same network param-
eters. Further, the hierarchical structure of MultiPep ensures
that an extra penalty is added while training, if a peptide is pre-
dicted to be, for example, in a wrong class clade or if the output
layer of the network class clade produces only false negatives or
positives. This happens because a, for example, false positive in
an erroneous class clade will propagate through all connected
upper output layers and thus produce more loss via these
layers.

MCC loss function rationale

It has been suggested that the MCC function is a good perfor-
mance metric for imbalanced data sets [42]. Thus, inspired by
the work in Abhishek and Hamarneh [43], we found it intriguing
to use a customized version of MCC function as parameter-free
loss function for our data set with an imbalanced class–size dis-
tribution. However, the MCC function as is was in our opinion
not suited for a classifier that, while training, iteratively looks at
mini-batches of training examples. Especially not when training
on data sets with small classes. For example, the MCC function
will include division by 0, if for example, only true negatives or
true positives are predicted in a mini-batch (Equation 6). Our
loss function is a combination of the standard BCE and our
MCCloss function, as we found that this combination yielded the
best results. In this context, the MCCloss function produces extra
penalties for the predictions with a low MCC score.

Model performances

Using data derived from multiple peptide databases, we con-
ducted 10-fold CVs and tested the models on their associated
test sets. We trained several models using two different loss
functions. The neural network architecture and all hyper-
parameters and regularization settings were always the same.
First, we trained models using our loss function with the
MCCloss penalty, where we applied our training scheme that
saved the parameters of the best “network class clades” when-
ever performance on the validation sets increased. Secondly,
while training these models, we saved the parameters of the en-
tire network whenever the overall performance had increased.
Thirdly, we ran a 10-fold CV using the weighted BCE loss func-
tion. We used the training scheme, where the parameters of the
“network class clades” were saved whenever their performan-
ces increased and the training scheme where we saved all net-
work parameters whenever the overall performance had
increased. This produced 4� 10 different models, which we
used for a comparative study to find the best way of training the
network.

Tables 4 and 5 show the mean and standard deviations of
the performances of the trained models on the CV test sets us-
ing MCC and the F1 score as performance metrics. In the
tables, the mean values have been compared and the standard
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deviations are stated to provide readers with an overview of
the robustness of the models. Similar tables showing the per-
formance on the test sets, but using precision, recall, and
accuracy as performance metrics are available in the
Supplementary Information (Supplementary Tables S2–S4).
Additionally, plots of receiver operating characteristic (ROC)
curves of MultiPep models’ predictions of the test sets can be
found in the Supplementary Information (Supplementary Figs
S5–S14). Tables showing the performance on the validation
sets can as well be found in the Supplementary Information
(Supplementary Tables S5–S9). The classification threshold
was 0.5 and all mean values in the tables have been rounded to
three decimals, whereas all standard deviation values have
been rounded to two decimals. We did not use the upper
layers’ predictions for the comparisons, as we were only inter-
ested in finding how the models performed on the bioactivity
classes. The performances on the test sets and validation sets
of the individual CV models trained using the “save the indi-
vidual network class-clade” training scheme can be found in
Supplementary Tables S10–S29.

The performance comparisons suggest that the approach
where we save the parameters of the network class clades
whenever their performances increase is slightly better than

saving all parameters when whenever the overall perfor-
mance has increased. However, if taking the performances on
the validation sets into account, it seems to be favorable to
use the “save the individual network class clade” approach.
Further, the study indicates that using our combined BCE and
MCCloss loss function in general produces better classifiers
than when using weighted BCE as loss function. Altogether,
the performance of our models trained using the “save the in-
dividual network class clade” training scheme seems to pro-
duce reasonable and robust classifiers with an average MCC
score above 0.5, except for the “antiparasite,” “antifungal,”
and “antioxidative” class.

Comparisons against state-of-the-art binary classifiers

We next aimed to compare MultiPep against existing state-of-
the-art binary bioactivity classifiers. We could not find a range
of tools necessary for comparing all bioactivity classes predicted
by MultiPep. Thus, we chose a few different classifiers based on
their performances and bioactivity focus (Tables 1 and 6). We
only used the tools’ pre-trained models available on the tools’
webpages or on GitHub (Table 6). As many of the chosen classi-
fiers did not take peptides of length 2–200, it was necessary to

Table 4: Mean and standard deviation of MCC of CV models on test sets

Bioactivity class/output
name

BCE þMCCloss BCE þMCCloss � overall lowest loss Weighted BCE Weighted BCE—overall lowest loss

Output 1_1 0.839 6 0.01 0.843 6 0.01 0.803 6 0.01 0.799 6 0.01
Output 1_2 0.856 6 0.01 0.859 6 0.01 0.81 6 0.02 0.847 6 0.01
Output 2_1_1 0.782 6 0.01 0.788 6 0.01 0.764 6 0.02 0.778 6 0.01
Output 2_1_2 0.849 6 0.01 0.853 6 0.01 0.813 6 0.01 0.802 6 0.01
Output 2_2_1 0.895 6 0.01 0.894 6 0.01 0.875 6 0.01 0.878 6 0.01
Output 2_2_2 0.826 6 0.01 0.83 6 0.01 0.751 6 0.02 0.811 6 0.01
Output 3_1 0.798 6 0.01 0.798 6 0.01 0.711 6 0.03 0.787 6 0.02
Output 3_2 0.766 6 0.03 0.765 6 0.02 0.749 6 0.02 0.751 6 0.02
Hemolytic 0.531 6 0.04 0.539 6 0.03 0.514 6 0.03 0.52 6 0.03
Toxic 0.785 6 0.01 0.789 6 0.01 0.768 6 0.02 0.782 6 0.01
Antimicrobial 0.675 6 0.01 0.674 6 0.01 0.617 6 0.01 0.587 6 0.01
Antivirus 0.611 6 0.02 0.614 6 0.02 0.593 6 0.01 0.569 6 0.03
Antiparasite 0.281 6 0.05 0.173 6 0.1 0.299 6 0.06 0.289 6 0.07
Anticancer 0.51 6 0.03 0.488 6 0.02 0.513 6 0.03 0.47 6 0.03
Antibacterial 0.702 6 0.01 0.703 6 0.01 0.659 6 0.01 0.644 6 0.01
Antifungal 0.487 6 0.02 0.471 6 0.02 0.411 6 0.03 0.335 6 0.06
Cell–cell signaling 0.553 6 0.02 0.552 6 0.02 0.544 6 0.03 0.548 6 0.04
Neuropeptide 0.78 6 0.02 0.771 6 0.02 0.74 6 0.02 0.757 6 0.03
Peptide hormone 0.845 6 0.01 0.844 6 0.01 0.82 6 0.01 0.828 6 0.01
Antifreeze 0.966 6 0.04 0.976 6 0.03 0.976 6 0.03 0.977 6 0.02
Cytokines/growth factors 0.932 6 0.01 0.936 6 0.01 0.851 6 0.02 0.923 6 0.01
Antioxidative 0.467 6 0.06 0.461 6 0.06 0.378 6 0.09 0.483 6 0.07
Drugdelivery 0.598 6 0.05 0.588 6 0.04 0.248 6 0.13 0.556 6 0.05
Opioid 0.701 6 0.11 0.676 6 0.11 0.67 6 0.11 0.733 6 0.1
ACE inhibitor 0.511 6 0.02 0.511 6 0.02* 0.502 6 0.03 0.498 6 0.03
Antihypertensive 0.668 6 0.03 0.664 6 0.02 0.652 6 0.02 0.655 6 0.02
Antidiabetes 0.596 6 0.03 0.58 6 0.03 0.587 6 0.03 0.587 6 0.03
Dipeptidyl peptidase

inhibitor
0.564 6 0.05 0.564 6 0.04 0.557 6 0.03 0.559 6 0.08

Average of bioactivity
classes:

0.638 0.629 0.595 0.615

Best total 8 7 2 3

Notes: Bold values indicate the model with the best performance. The asterisk symbols indicate that more than three decimals are needed to reveal the highest values.

At the two bottom rows, “Best total” shows the number of times the average of the models are the best and “Average of bioactivity classes” shows the average of the

columns above, but only for the bioactivity classes.
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create different sets of peptide sequences that were compatible
with the tools’ input formats (see Supplementary Table S30 for
sizes of peptide sets).

For the tool by Veltri et al. [8], Deep-AmPEP30 and RF-
AmPEP30, the positive peptides were from the “antibacterial”
class whereas the negative peptides were drawn from the

Table 5: Mean and standard deviation of F1 score of CV models on test sets

Bioactivity class/output name BCE 1 MCCloss BCE 1 MCCloss 2 overall lowest loss Weighted BCE Weighted BCE—overall lowest loss

Output 1_1 0.936 6 0.0 0.937 6 0.0 0.922 6 0.0 0.921 6 0.0
Output 1_2 0.909 6 0.01 0.911 6 0.01 0.874 6 0.01 0.903 6 0.01
Output 2_1_1 0.801 6 0.01 0.807 6 0.01 0.782 6 0.02 0.799 6 0.01
Output 2_1_2 0.928 6 0.0 0.929 6 0.0 0.911 6 0.0 0.907 6 0.0
Output 2_2_1 0.915 6 0.01 0.914 6 0.01 0.898 6 0.01 0.902 6 0.01
Output 2_2_2 0.857 6 0.01 0.86 6 0.01 0.787 6 0.02 0.844 6 0.01
Output 3_1 0.82 6 0.01 0.821 6 0.01 0.723 6 0.04 0.81 6 0.02
Output 3_2 0.781 6 0.02 0.781 6 0.02 0.766 6 0.02 0.768 6 0.02
Hemolytic 0.538 6 0.04 0.543 6 0.03 0.52 6 0.03 0.528 6 0.03
Toxic 0.8 6 0.01 0.806 6 0.01 0.78 6 0.02 0.799 6 0.01
Antimicrobial 0.776 6 0.01 0.777 6 0.01 0.741 6 0.01 0.724 6 0.01
Antivirus 0.62 6 0.02 0.621 6 0.02 0.596 6 0.02 0.558 6 0.04
Antiparasite 0.267 6 0.06 0.151 6 0.1 0.293 6 0.06 0.28 6 0.07
Anticancer 0.5 6 0.04 0.478 6 0.02 0.515 6 0.03 0.447 6 0.06
Antibacterial 0.793 6 0.01 0.793 6 0.01 0.764 6 0.01 0.753 6 0.01
Antifungal 0.547 6 0.02 0.535 6 0.02 0.478 6 0.03 0.394 6 0.07
Cell-cell signaling 0.552 6 0.02 0.551 6 0.02 0.531 6 0.03 0.536 6 0.04
Neuropeptide 0.798 6 0.02 0.79 6 0.02 0.761 6 0.02 0.777 6 0.03
Peptide hormone 0.868 6 0.01* 0.868 6 0.01 0.847 6 0.01 0.854 6 0.01
Antifreeze 0.965 6 0.04 0.976 6 0.03 0.976 6 0.03 0.976 6 0.02*
Cytokines/growth factors 0.937 6 0.01 0.94 6 0.01 0.863 6 0.02 0.929 6 0.01
Antioxidative 0.468 6 0.06 0.466 6 0.07 0.318 6 0.11 0.481 6 0.07
Drugdelivery 0.593 6 0.05 0.583 6 0.04 0.166 6 0.12 0.552 6 0.05
Opioid 0.694 6 0.11 0.667 6 0.11 0.654 6 0.11 0.725 6 0.1
ACE inhibitor 0.506 6 0.02 0.493 6 0.02 0.505 6 0.03 0.501 6 0.03
Antihypertensive 0.667 6 0.03 0.66 6 0.02 0.652 6 0.02 0.656 6 0.02
Antidiabetes 0.598 6 0.03 0.584 6 0.03 0.586 6 0.03 0.589 6 0.03
Dipeptidyl peptidase inhibitor 0.562 6 0.05 0.563 6 0.04 0.543 6 0.04 0.55 6 0.08
Average of bioactivity classes: 0.652 0.642 0.604 0.63
Best total: 8 7 2 3

Notes: Bold values indicate the model with the best performance. The asterisk symbol indicates that more than three decimals are needed to reveal the highest values.

At the two bottom rows, “Best total” shows the number of times the average of the models are the best, and “Average of bioactivity classes” shows the average of the

columns above, but only for the bioactivity classes.

Table 6: Comparisons against state-of-the-art peptide bioactivity predictors

MCC F1 score Precision Recall Accuracy

MultiPep 0.804 0.91 0.983 0.848 0.897
Neural network by Veltri et al. [8], link 0.526 0.836 0.773 0.909 0.78
MultiPep 0.813 0.94 0.984 0.9 0.917
Deep-AmPEP30, link 0.657 0.9 0.92 0.88 0.858
RF-AmPEP30, link 0.712 0.914 0.94 0.889 0.879
MultiPep 0.604 0.631 1.0 0.461 0.824
mACPpred, link 0.459 0.653 0.512 0.9 0.688
MultiPep 0.879 0.892 0.959 0.833 0.973
PredNeuroP, link 0.698 0.722 0.579 0.959 0.901
MultiPep 0.677 0.77 0.997 0.627 0.817
ToxinPred, link 0.567 0.687 0.943 0.54 0.76
MultiPep 0.724 0.725 1.0 0.569 0.928
HLPred-Fuse, link 0.435 0.511 0.355 0.908 0.708
MultiPep 0.588 0.552 1.0 0.381 0.913
AnOxPePred, link 0.29 0.394 0.377 0.413 0.822

Notes: Bold values indicate that the performance is better than the compared tool(s). All values in the table have been rounded to three decimals. Links to the webtools/

github of the tools are inserted next to the names of the tools in the first column from the left.
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classes “cell–cell signaling,” “neuropeptide,” and “peptide
hormone.” For mACPred, ToxinPred, HLPpred-Fuse, and
AnOxPePred, the positive peptides were from the classes
“anticancer,” “toxic,” “hemolytic,” and “antioxidative,” respec-
tively, and the negative peptides were as well drawn from the
classes “cell–cell signaling,” “neuropeptide,” and “peptide
hormone.” For PredNeuroP, we sampled positive peptides from
the “neuropeptide” class and negative peptides from the classes
“antiparasite,” “anticancer,” “antibacterial,” “antifungal,”
“antimicrobial,” and “antivirus.” For the tool by Veltri et al. [8],
we used their newest model for the predictions. For ToxinPred,
we used the tool’s Swiss-Prot-based SVM model. For
AnOxPePred, we used the tools “Peptide Mode” and only used
its “Free Radical Scavenger”-prediction mode.

Additionally, we compared MultiPep with THPep, a tool
specialized in finding tumor homing peptides [44]. Here, the
positive peptides were from the class “anticancer” and the
negative peptides were from the classes “cell–cell signaling,”
“neuropeptide,” and “peptide hormone.”

For all peptide sets created, we ensured that there were no
overlaps between the positive and negative peptides. We did
not make any effort to create balanced data sets, as this should
not matter for the comparisons. For the comparisons, we used
the MultiPep model trained using our “save the individual net-
work class-clade” approach that produced the lowest overall
loss on the test set (Supplementary Tables S15 and S25). All pep-
tides from the above-described peptide sequence sets were
drawn from the model’s test set, as the peptides in this set con-
tain unseen peptides that have not been part of model’s train-
ing. We did not consider if the sequences in the smaller
sequence sets were part of the different tools’ training sets. All
peptide sequence sets are available on https://github.com/schee
lelab/MultiPep. We observed that MultiPep in general outper-
forms existing peptide prediction tools when subject to our
model’s test set (Table 6 and Supplementary Table S31). While
the recall ability of MultiPep is bested by the other tools except
for Deep-AmPEP30, RF-AmPEP30, and ToxinPred, MultiPep con-
sistently outperforms the other tools on the MCC score, preci-
sion, and accuracy.

Comparing prediction error of MultiPep against
PeptideRanker

As an additional analysis, we compared MultiPep with
PeptideRanker. PeptideRanker is a binary classifier that can pre-
dict general bioactivity of peptides. Thus, we found it interest-
ing to compare MultiPep against this tool. Using PeptideRanker,
we predicted all peptides of the test set of the model with the
lowest loss on the test trained using our “save the individual
network class-clade” training scheme (Supplementary Tables
S15 and S25). The set contained 4585 peptides and we did not
consider whether any of the used peptides from out test set
were part of the training data of PeptideRanker. For both
MultiPep and PeptideRanker, instead of using peptides with no
bioactivity, we used all peptides of the test set as true positives
and found the error of the tool’s predictions. We calculated the

error of PeptideRanker’s predictions by
PN

i¼1
1�round pð Þ

N , where N is

the number of examples in the test set, p is the predictions, and
roundðÞ is a function that rounds values to their nearest integer.
The rounding function implies that the threshold for the predic-
tions was 0.5. For MultiPep, we took the predictions on the
Output_1 output layer and found how they diverged from the

labels of that layer. We calculated
PN

i¼1

Pk

j¼1
jyj�roundðpjÞj
N , where N is

the number of examples in the test set, is an element of the
row vectory with labels, is an element of the row vector p with
predictions, and roundðÞ is a function that rounds values to
their nearest integer. Also, to make a more direct estimate of
whether MultiPep can assign a prediction above 0.5 to bioactive
peptides, we calculated an additional error percentage byPN

i¼1
1�round maxðpÞð Þ

N , where N and p are the same as above and

maxðÞ is a function that finds the maximum value of the row
vector p. With this approach, we calculated the prediction errors
(Table 7). This analysis shows that MultiPep, with a low predic-
tion error, successfully identifies a higher number of bioactive
peptide from a list of peptides with known bioactivity.

MultiPep versus peptipedia

Peptipedia is a tool that can predict many different bioactivity
classes simultaneously. The authors describe how they have
trained 44 different RF models that each can predict belonging
to a specific bioactivity class [27]. As described for the compari-
sons above, we used the MultiPep model trained using our “save
the individual network class-clade” approach that produced the
lowest overall loss on the test set (Supplementary Tables S15
and S25). We used the test set of this model to generate a test-
subset that was used as input to the Peptipedia models
(Supplementary Table S30). Noteworthy, as the Peptipedia webt-
ool was unavailable during the writing of this article, we re-
trieved the Peptipedia predictions via personal communication
with the authors of the article presenting Peptipedia [27]. In the
prediction data received by the Peptipedia authors, 41 bioactiv-
ity classes were included. The Peptipedia prediction is available
on https://github.com/scheelelab/MultiPep. Both MultiPep and
Peptipedia can predict many different bioactivity classes.
Supplementary Table S32 presents an overview of classes that
were deemed comparable and incomparable, which was based
on the name of the classes. For this grouping of the classes, it
was taken into account how the MultiPep classes were gener-
ated (Supplementary Information). If a MultiPep bioactivity
class was deemed comparable with more than one Peptipedia
bioactivity class, the predictions of these Peptipedia classes
were merged such that, for every predicted peptide, the max
value of the predictions was used. Comparable bioactivity clas-
ses are expected to contain similar and identical peptides.
Table 8 shows how MultiPep and Peptipedia performed on the
generated test-subset. With the exception of the recall score for
the antiparasite and the antifungal classes, we observed that
MultiPep outperforms Peptipedia on all performances for pre-
dicting the compared bioactivity classes.

MultiPep models versus logistic regression models

We next aimed to compare our MultiPep deep learning models
with linear logistic regression models. Therefore, we trained 10
logistic regression models using our peptide data and our 10-fold
CV scheme. We used the logistic regression functionalities

Table 7: Prediction error of MultiPep compared with PeptideRanker

Program names Rounded prediction error

MultiPep (Output_1, max) 0.074
MultiPep (Output_1) 0.140
PeptideRanker 0.299

Note: Final prediction errors rounded to three decimals.
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provided by the Python package Scikit-learn [40]. We initialized
the following hyper-parameters as follows: random_state¼ 1234,
max_iter¼ 1000, and class_weight¼ “balanced.” The remaining
hyper-parameters were set to their default values. The peptides
were one-hot encoded before introduced to the logistic regres-
sion models. When comparing the performances of the two
model types, it can be seen that MultiPep outperforms the logis-
tic regression models (Tables 4 and 5 and Supplementary Tables
S2–S9, S33, and S34). Nevertheless, the logistic regression models
seem to have a generally better recall performance.

Prediction of FDA-approved therapeutic peptides

We wanted to test utility of MultiPep to classify FDA-approved
therapeutic peptides. Thus, we generated a list of peptide
sequences from THPdb [45], containing FDA-approved peptides.
We ensured that none of the peptides were part of our training,
validation, or test sets before we predicted. We predicted the ex-
ample peptides from THPdb as is and did not use any additional
information (Table 8). For the predictions, we used the average of
all 10 CV models trained using our “save the individual network
class-clade” training scheme. However, we also predicted the
therapeutic peptides using the max score of the CV models
(Supplementary Table S35). The threshold for shoving prediction
scores was set to 0.15 (Table 9 and Supplementary Table S35).

Aprotinin is an inhibitor of plasmin, trypsin, chymotrypsin,
kallikrein, thrombin, and activated protein C that is used to con-
trol bleeding during surgery [46]. However, MultiPep predicts that
it has broad-spectrum antimicrobial properties, which is consis-
tent with additional research on the effects of Aprotinin [47, 48].

Glatiramer acetate is a drug that is used to treat relapsing-
remitting multiple sclerosis and has an average of 40–100 resi-
dues [49]. Interestingly, it has been found that Glatiramer ace-
tate has efficient antibacterial properties [50], which is in line
with the predictions of MultiPep. Moreover, MultiPep detected
minor antiviral properties of Glatiramer acetate. However, this
needs to be verified.

Lucinactant is used to treat respiratory distress syndrome in
infants. It contains two phospholipids and a high concentration
of sinapultide (also known as KL-4), a synthetic peptide
designed to have similar activity to surfactant protein B [51, 52].
MultiPep classifies the peptide sinapultide as an antibacterial
and hemolytic peptide with minor antimicrobial and toxic

properties. Though Lucinactant is to be considered safe com-
pared with alternative surfactants, it is associated with certain
side-effects, such as transient pallor, dose interruption, and en-
dotracheal obstruction [51], which may explain the toxic profile
of sinapultide predicted by MultiPep. Further studies are needed
to verify, if sinapultide has antibacterial properties.

Pramlintide is used for treatment of insulin-using patients
with type 2 or type 1 diabetes mellitus [53]. Pramlintide is an an-
alog of the neuroendocrine hormone amylin and it works via
similar mechanisms [53]. To this end, MultiPep detected high
association with the classes “neuropeptide” and “peptide
hormone” which indicates that MultiPep was able to capture
the general mechanism of action the peptide-drug.

Liraglutide, Teduglutide, and Metreleptin are analogs of GLP-
1, GLP-2, and leptin, respectively [54–56]. They have all been pre-
dicted to belong to the classes “neuropeptide” and “peptide
hormone,” which is consistent with the general mechanism of
action of GLP-1, GLP-2, and Leptin [57–60]. GLP-1 and GLP-2 have
highly different bioactivity profiles [57], thus, it is exciting to see
that GLP-2 has been predicted to have strong cell–cell signaling
properties as well.

Bivalirudin is a direct thrombin inhibitor that is used to treat
heparin-induced thrombocytopenia [61]. Interestingly, the
MultiPep models have predicted that the peptide has both neu-
ropeptide and peptide hormone properties. It will be interesting
to see if these predictions can be verified by experimental
procedures.

Sermorelin is a synthetic analog of growth hormone-
releasing hormone (GHRH) and is used to treat children with
growth hormone deficiency [62]. MultiPep classifies the peptide
sequence of Sermorelin as a peptide hormone and a neuropep-
tide. This is fascinating when considering the general mecha-
nism of action of the drug and when considering the findings
that indicate that intravenous and subcutaneous sermorelin
has been found to stimulate growth hormone secretion from
the anterior pituitary [62].

The corticotropin from Questcor Pharmaceuticals contains a
39-amino-acid peptide natural form of adrenocorticotropic hor-
mone (ACTH) [63]. It works by stimulating the adrenal cortex to
secrete cortisol, corticosterone, aldosterone, and a few other
weakly androgenic substances. In the body, corticotropin-
releasing hormone (CRH) from the hypothalamus stimulates
the release of ACTH from the anterior pituitary gland [63].

Table 8: Performance of MultiPep and Peptipedia

MCC F1 score Precision Recall Accuracy

Bioactivity classes M P M P M P M P M P

Hemolytic 0.599 0.023 0.609 0.064 0.655 0.044 0.569 0.115 0.977 0.895
Toxic 0.785 �0.052 0.798 0.172 0.952 0.115 0.686 0.341 0.952 0.551
Antimicrobial 0.689 0.065 0.791 0.48 0.806 0.355 0.777 0.74 0.863 0.463
Antivirus 0.634 0.021 0.647 0.171 0.834 0.116 0.528 0.324 0.939 0.666
Antiparasite 0.281 0.039 0.269 0.031 0.409 0.016 0.2 0.533 0.988 0.647
Anticancer 0.563 0.08 0.564 0.142 0.746 0.086 0.453 0.419 0.961 0.719
Antibacterial 0.721 0.254 0.811 0.497 0.775 0.477 0.851 0.519 0.876 0.671
Antifungal 0.493 0.211 0.556 0.32 0.544 0.214 0.569 0.637 0.889 0.668
Neuropeptide 0.802 0.249 0.82 0.296 0.815 0.377 0.825 0.243 0.967 0.896
Drugdelivery 0.653 0.111 0.65 0.143 0.804 0.133 0.545 0.154 0.98 0.937
Antihypertensive 0.679 0.0 0.672 0.0 0.557 0.0 0.848 0.0 0.982 0.978
Antidiabetes 0.641 0.046 0.646 0.05 0.697 0.097 0.602 0.034 0.986 0.973

Notes: Bold values indicate that the performance is better than the compared tool. All values in the table have been rounded to three decimals. M, MultiPep; P,

Peptipedia.
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Altogether, the predictions of MultiPep seem to be consistent
with the general physiological properties of the hormone.

Thymalfasin is a synthetic analog of thymosin alpha 1 and is
used for the treatment of chronic hepatitis B and C and as an
immune enhancer for treating several other diseases [64].
Thymosin alpha 1 has a wide range of biological activities,
which may explain its classification as a peptide hormone [64].
Further, MultiPep predictions indicate that the Thymalfasin
may have minor neuropeptide properties. Remarkably, studies
show that thymosin alpha 1 is found in the CNS of rats and can
regulate the levels of nerve growth factor hormone and contrib-
ute to neurogenesis and cognition [65, 66].

Aldesleukin, anakinra, Interferon beta-1b, interferon
alfacon-1, interferon-gamma-1b, Peginterferon alfa 2a, and
Oprelvekin are recombinant versions of interleukins and inter-
ferons used to treat various illnesses [67–73]. Filgrastim,
Palifermin, and Sargramostim are recombinant forms of human
granulocyte colony stimulating factor, keratinocyte growth
factor, and granulocyte–macrophage-colony stimulating factor,
respectively [74–76]. All of these peptide drugs have been

classified as “cytokines/growth factors,” which indeed describe
their overall peptide class.

Discussion

In this work, we construct and demonstrate the utility of a new
multi-label classifier, MultiPep. Moreover, we test our novel loss
function where BCE synergistically is merged with a customized
version of the MCC function. Our results suggest that using our
loss of function, instead of weighted BCE, is beneficial when
training using large multi-label datasets containing an imbal-
anced class–size distribution. Whether this is a general ten-
dency needs to be verified. Additionally, we use an innovative
neural network architecture and a new training scheme to find
optimal network parameters. We demonstrate that our novel
training scheme on average produces models that are better
than when saving all parameters of a network simultaneously
whenever performance has increased. Further, we show that
MultiPep on our data surpasses state-of-the-art peptide bioac-
tivity classifiers, and that it can predict the general bioactivities

Table 9: Prediction of FDA-approved therapeutic peptides

Therapeutic peptides Predictions

Aprotinin (Trasylol, Bayer Pharmaceuticals, Th1158) Antibacterial: 0.486
Antimicrobial: 0.627

Glatiramer acetate (Copaxone, Teva Pharmaceutical
Industries, Th1113)

Antimicrobial: 0.815
Antivirus: 0.232

Lucinactant (Surfaxin, Discovery Laboratories, Th1146) Hemolytic: 0.631
Toxic: 0.321
Antibacterial: 0.977
Antimicrobial: 0.276

Pramlintide (Symlin, AstraZeneca, Th1100) Cell–cell signaling: 0.430
Neuropeptide: 0.995
Peptide hormone: 0.997

Liraglutide (Saxenda, Novo Nordisk, Th1124) Cell–cell signaling: 0.225
Neuropeptide: 0.893
Peptide hormone: 0.982

Teduglutide (Gattex, NPS Pharmaceuticals, Th1137) Cell–cell signaling: 1.0
Neuropeptide: 0.999
Peptide hormone: 1.0

Bivalirudin (Angiomax, The Medicines Company, Th1006) Neuropeptide: 0.690
Peptide hormone: 0.806

Sermorelin (Sermorelin acetate, Emd serono inc., Th1157) Neuropeptide: 0.812
Peptide hormone: 0.997

Metreleptin (Myalept, Amylin Pharmaceuticals, Th1208) Neuropeptide: 0.873
Peptide hormone: 1.0

Corticotropin (H.P. Acthar, Questcor Pharmaceuticals, Th1104) Neuropeptide: 0.839
Peptide hormone: 0.999

Thymalfasin (Zadaxin, SciClone Pharmaceuticals, Th1110) Neuropeptide: 0.173
Peptide hormone: 0.567

Aldesleukin (Proleukin, Chiron Corp., Th1036), Anakinra
(Kineret, Amgen Inc., Th1023), Filgrastim (Neulasta, Amgen
Inc., Th1082), Interferon beta-1b (Betaseron, Bayer, Th1057),
Interferon alfacon-1 (INFERGEN, Kadmon Pharmaceuticals,
Th1058), Interferon gamma-1b (Actimmune, InterMune Inc.,
Th1030), Peginterferon alfa-2a (Pegasys, Hoffman-La Roche
Inc., Th1008), Oprelvekin (Neumega, Genetics Institute Inc.,
Th1033), Palifermin (Kepivance, Amgen Inc., Th1034), and
Sargramostim (Leucomax, Novartis, Th1017)

Cytokines/growth factors: 1.0

Notes: The names of the therapeutic peptides are written in Column 1 together with the peptides’ brand names, designer company, and a link to the peptides in THPdb.

The second column contains MultiPep’s predictions. Predictions in bold are above threshold at 0.5. The predictions are based on the average of all 10 CV models. The

threshold for showing prediction scores is 0.15.
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of FDA-approved therapeutic peptides. It should be noted that
the comparisons with the other tools were made using our data
only; thus, the results do not suggest that MultiPep is a better
tool as such. If the classifiers were trained on the same data the
outcome might have been different. The results demonstrate
that MultiPep is better on the currently used data. This was con-
sistent with our goal for the comparisons, namely to show how
the different pre-trained models performed on a previously un-
seen dataset.

MultiPep is designed to be a tool that can grant scientists an
overview of peptides’ bioactivities. It does not offer a wealth of
additional predictive information like other peptide bioactivity
classifiers [9, 12–14]. Thus, we suggest that MultiPep can be
used in a pipeline, where the predictions of MultiPep can be fur-
ther evaluated using tools that have more narrow and special-
ized classification foci. All in the interest of the progress of
research.

MultiPep is not the only tool that simultaneously can predict
more bioactivity classes of peptides. Previous tools in the litera-
ture, PEPred-Suite and Peptipedia, also predicts multiple classes
for peptides. The Peptipedia models performed rather poorly on
the applied test-subset. As implied above, the Peptipedia mod-
els were trained on other data, and their bioactivity classes
were probably defined differently. For the comparison, we
deemed that a range of MultiPep bioactivity classes and
Peptipedia bioactivity classes were comparable (Supplementary
Table S32). We assumed that when the class names were simi-
lar or identical, then predictions of models trained on these
classes would be somewhat overlapping. This did not seem to
be the case. So, are the MultiPep and Peptipedia bioactivity clas-
ses just incomparable and of different origin? Though
MultiPep’s performance was better, the binary classifiers that
were tested against MultiPep (Table 6) performed reasonably on
our test subsets with our defined bioactivity classes. This indi-
cates that MultiPep and these models agree on the definition of
the used classes and that these bioactivity classes and included
peptides contain essential class-specific features. Altogether,
this suggests that the problem does not lie with the bioactivity
classes defined in the data presented in this work. In addition,
the peptide data used by MultiPep and Peptipedia stem from a
number of identical databases [27]. Therefore, it is very unlikely
that MultiPep’s and Peptipedia’s defined bioactivity classes are
of completely different origin.

The difference in performance might rather be explained by
the algorithms used to create the tools. PEPred-Suite and
Peptipedia utilize individual RF models to predict bioactivity
classes of peptides. MultiPep on the other hand uses a single
deep learning-based model with sub-models to predict bioactiv-
ities of peptides. In other words, PEPred-Suite and Peptipedia
solve many binary classification problems, whereas MultiPep
turns it into a multi-label classification problem.

Another difference is that PEPred-Suite and Peptipedia use
elaborate techniques to encode the peptide sequences, and
MultiPep uses a simple one-hot encoding. Many peptide encod-
ing techniques exist and peptide encoding in general is a field
that is gaining a lot of attention [77, 78]. PEPred-Suite uses adap-
tive feature representation strategy, where they, among other
things, use 10 feature encoding algorithms, which together effi-
ciently capture local and global compositional information and
well as position-specific residue information and physiochemi-
cal information [26]. Peptipedia encodes peptides using repre-
sentations of physicochemical properties and transforms them
using Fourier transforms [27, 79]. Although some general selec-
tion rules have been suggested, it is difficult to find a single

universally optimal peptide encoding technique [77, 78]. As it
has been found that deep learning models require little encod-
ing for the classification process [77], we chose to use a simple
and, in our opinion, reliable encoding technique where all
amino acids are equally similar or dissimilar (one-hot encod-
ing). We then leave it to our models to find patterns and amino
acid relationships.

Though our loss function where we combine our customized
MCC function with BCE worked well in our study, it still has
some shortcomings. For example, the loss calculations are more
robust when the target list for a mini-batch contains both yi ¼ 1
and yi ¼ 0, and not as robust when all targets are either yi ¼ 1 or
yi ¼ 0. Still, what we presented here is a great start for directly
including the MCC function as a loss function for data sets with
imbalanced class distributions.

MultiPep’s training data consist of peptides derived from
various databases. The peptides have only been filtered based
on size and uniqueness and not filtered based on general se-
quence homology. In theory, this may cause a minor inflation of
the performances of some bioactivity classes, since similar pep-
tides for a given class may be more easy to classify correctly.
Also, in theory, this can hurt the generalizability of machine
learning tools like MultiPep; however, we show via our 10-fold
CV and prediction of associated test sets that our tool can gen-
eralize to unseen data and that it is robust when training on dif-
ferent data sets. Further, we show based on the comparisons
with other state-of-the-art tools on sets from our test set and
the prediction of FDA-approved therapeutic peptides that our
tool produce sound and meaningful predictions.

MultiPep can take peptides of length 2–200 amino acid resi-
dues, which is a feature that is only matched by PeptideRanker
and THPep. The minor peptide-length restrictions allow for
ready classification of a long range of peptides without the need
to filter by size; a step that otherwise may hamper the evalua-
tion of bioactivity properties of peptides of interest.

For the predictions of the FDA-approved therapeutic pepti-
des, we ensured that none of these peptides were part of our
training, validation of test sets before we predicted any of them.
However, for some of the therapeutic peptides, there were pep-
tides of high similarity in the benchmark data set. For example,
Liraglutide and Metreleptin are analogs of GLP-1 and leptin, re-
spectively, and GLP-1 and leptin are both present in our training
data set. Thus, it can be expected that the predicted bioactivity
profiles of such therapeutic peptides would be similar to those
of the peptides on which they are based.

Again, for the FDA-approved peptides, the average of all CV
models’ outputs was used for generating the predictions. We
believe that the ensemble consisting of all CV models together
will provide predictions that are more accurate. MultiPep is first
of all a classifier, which, in this case, means that the prediction
scores are supposed to be interpreted in a binary fashion with a
threshold at 0.5. However, as shown with the predictions of the
FDA-approved therapeutic peptides, predictions below thresh-
old might still indicate that given peptides have properties asso-
ciated with a certain class. For example, Thymalfasin was
predicted by MultiPep as a neuropeptide but with a score below
threshold. However, this peptide has indeed been found to be
localized in the brain and to regulate different cerebral-associ-
ated mechanisms. This phenomenon is due to the fact that at
least one of the CV models had found that Thymalfasin should
be classified as a neuropeptide (Supplementary Table S35).
Therefore, we have integrated functionalities that allow users
of MultiPep to find the max predictions or the average of predic-
tions for a given class based on all MultiPep CV models. This is
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both true for the webtool and the stand-alone program. This
will enable users to choose between whether they want all
models to have a vote or if one is enough. MultiPep cannot di-
rectly detect degradation products in mass spectrometry-based
peptidomics data. However, the tool can classify peptides into
zero or up to 20 classes, outperform state-of-the-art binary clas-
sifiers on the used data, and meaningfully predict bioactivities
of FDA-approved therapeutic peptides. Altogether, this enables
MultiPep, like no other peptide prediction tool, to estimate
whether a peptide may have a bioactivity or not. In conclusion,
we present a valuable tool for the emerging field of peptide re-
search and, at the same time, provide conceptual advance in
applications of deep learning neural networks.
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