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Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military
activities and is the leading cause of death and long-term disability among U.S. soldiers.
The current limited understanding of brain injury mechanisms impedes the development
of protection, diagnostic, and treatment strategies. We believe mathematical models of
blast wave brain injury biomechanics and neurobiology, complemented with in vitro and
in vivo experimental studies, will enable a better understanding of injury mechanisms and
accelerate the development of both protective and treatment strategies. The goal of this
paper is to review the current state of the art in mathematical and computational model-
ing of blast-induced TBI, identify research gaps, and recommend future developments. A
brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain
injury is used as a foundation for a more detailed discussion of multiscale mathematical
models of primary biomechanics and secondary injury and repair mechanisms. The paper
also presents a discussion of model development strategies, experimental approaches to
generate benchmark data for model validation, and potential applications of the model for
prevention and protection against blast wave TBI.

Keywords: traumatic brain injury, blast injury, mathematical model, biomechanics, neurobiology

INTRODUCTION
In the current conflicts in Iraq and Afghanistan improvised explo-
sive devices (IEDs) are frequently used weapons of adversary com-
batants and terrorists against U.S. troops and civilians (Ramasamy
et al., 2009; Duckworth et al., 2012; Kang et al., 2012). The blast-
induced traumatic brain injury (bTBI) has become a “signature
wound of the war on terror” (Bhattacharjee, 2008). Consequently
its mitigation, diagnosis, and management are of particular inter-
est to the military. A recent RAND report estimates that 320,000
service members, or 20% of the deployed force, potentially suf-
fer from TBI (Tanielian and Jaycox, 2008). Blast events account
for nearly 70% of injuries in wounded service members in both
Iraq and Afghanistan, and are the main cause of TBI (Okie, 2005;
Heltemes et al., 2012). While penetrating and severe head injuries
comprise only 2.8% of injuries, 155,623, or about 80%, were clas-
sified as mild TBI (mTBI) (Curley et al., 2011; DePalma et al.,
2011). Most mTBI cases result in cognitive deficits immediately
after the brain injury and only ∼5% report brief loss of con-
sciousness (Hoge et al., 2008; Ling et al., 2009). Although most
of mTBI cases are expected to recover, persistent symptoms after
injury, such as chronic dizziness, fatigue, headaches, and delayed
recall of memory are common (Elder and Cristian, 2009; Warden
et al., 2009; Heltemes et al., 2012).

In spite of immense clinical and preclinical research on impact-
related brain injury due to vehicle crash and sport injuries in
civilian population, current understanding of injury mechanisms
is limited, diagnostics and treatment remain controversial, and
little is known about the short- and long-term outcomes of

mTBI. Compared to impact-related brain injury, the mechanisms
involved in blast-induced mTBI are much less understood. Over
the last few decades the Department of Defense (DoD) has per-
formed substantial research on blast trauma to the body, primarily
to address injuries seen in previous conflicts, and to improve per-
sonal protective equipment (PPE) (Elsayed and Atkins, 2008). The
resulting improvements in the PPE and trauma care have miti-
gated or reduced potential blast and ballistic injury to the thorax
but vulnerability to face, ear, brain, groin, and extremity injury still
remain (Curley et al., 2011). Protection against blast wave TBI is
particularly challenging because, in spite of the protective helmet,
a significant part of the soldier’s head is still exposed to the blast.
Until recently, it was not clear how a blast wave penetrates the
cranium and causes brain injury and, if and how military helmets
protect against it (Carey et al., 2006; Nyein et al., 2010; Przekwas
et al., 2011; Zhang et al., 2011). Military helmets are traditionally
designed to protect against ballistic and impact injury and even
recent redesign of the sling suspension replaced by foam pads did
not completely resolve blast TBI issues.

Given these uncertainties and the continued need to protect
U.S. military, the DoD has made substantial research investments
in understanding military relevant acute TBI and chronic mTBI
(Leggieri, 2009). Several scientific teams are conducting labora-
tory and clinical studies to elucidate injury mechanisms and to
develop protective strategies. The majority of these efforts use
an experimental approach of animal testing, in vitro study, and
analysis of clinical data, all of which are useful and necessary but
are slow, expensive, lack injury scaling, and prediction capability.

www.frontiersin.org May 2013 | Volume 4 | Article 59 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2013.00059/abstract
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2013.00059/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RajGupta_2&UID=76134
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AndrzejPrzekwas&UID=21654
mailto:raj.gupta@us.army.mil
mailto:ajp@cfdrc.com
http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


Gupta and Przekwas Mathematical models of blast TBI

Better understanding of the blast wave injury mechanisms may be
possible with a complementary experimental and computational
modeling approach. Validated biomechanics and physiology based
mathematical modeling tools of blast head injury may reduce the
need for trial-and-error tests involving laboratory animals, yet
provide a capability to study brain injury mechanisms, perhaps
accelerating the development of neuroprotective strategies and
aiding in the development of improved protective armor (Leggieri,
2009; Gupta and Przekwas, 2011).

Mathematical models of brain injury biomechanics have been
developed for decades, primarily to study accidental impacts and
vehicle crashes (King et al., 1995; Zhang et al., 2001; Takhounts
et al., 2003; Brands et al., 2004; Kleiven, 2007). Models of explosive
blast TBI are not well established yet because the injury mecha-
nisms are not well understood and the computational methods
needed to simulate these fast and multiphysics events are inade-
quate. The goal of this paper is to review the current state of the
art in mathematical modeling of blast wave TBI, identify areas for
further developments, model validation strategies, and potential
applications in diagnostics, injury prevention, and protection.

BLAST WAVES AND BRAIN INJURY MECHANISMS
BLAST WAVES AND BLAST – HUMAN BODY INTERACTION
The first phase of an explosion is the detonation, a rapid chemical
reaction and energy release generating high pressures and tem-
peratures. The expansion of gases after detonation compresses the
surrounding air into a pressure wave, shock wave, that propagates
at supersonic speed radially in all directions from the explosion
site. The front of the shock wave is followed by a high speed blast
wind. The shock wave generated by an explosion blast is called the
blast wave. If the explosion of a charge occurs at the ground surface
the energy is released into a half hemisphere, so it generates almost
two times larger effects as the free air explosion.

Theoretical and computational models often start with an ide-
alized explosion assuming the instantaneous release of energy
from a point source in a free field. In such a case an analyt-
ical solution of the Sedov–Taylor problem (Taylor, 1950) pro-
vides the pressure-time history in the form of the Friedlander
curve, Figure 1A. In practice, realistic impulses differ from the
ideal Friedlander profile. The effects of reflecting surfaces such
as ground or walls of solid objects produce secondary reflected

waves and complex wave patterns. For example, an experimental
pressure trace of a blast wave inside of a military vehicle, Figure 1B
(NATO, 2007), typically exhibits complex patterns with several
wave reflections.

When a blast wave encounters an object of higher density, such
as the human body, it reflects off of the object, diffracts around
it, and passes through it in the form of elastic and shear waves
(Cullis, 2002), Figure 2. The reflected wave overpressure signif-
icantly exceeds the overpressure of the incident wave. The side
walls, parallel to the shock propagation direction, are loaded with
the free shock overpressure. The rear side loading begins after the
blast wave passes the body and the diffracted waves meet at the
center back side. A person next to a solid wall may be exposed
to not only the forward shock wave but also to even stronger
reflected waves. In addition to the pressure loading, the body will
also experience friction drag forces induced by the blast wind. This
drag force appears after the primary wave front but its duration is
much longer. Furthermore, blast injuries in a confined space may
be more severe as the person is exposed to multiple reflected waves
coming from various directions.

From the human injury view point, the most important part of
the wave energy is the one that is transmitted into the body in the
form of both positive (compression) and negative (tension) stress
waves as well as shear stress waves. In tissues, the steep gradient
pressure waves are absorbed by viscoelastic damping and tissue
plastic deformation (tearing, breaking), resulting in mechanical
injury. When the pressure wave crosses material interfaces with
different densities, large perturbations in stress and deformation
take place. A wave impacting a denser material compresses it and
when it emerges from denser to lighter material it creates tensile
deformations. Therefore in the human body, organs and tissues of
different densities are accelerated at different relative rates, result-
ing in displacement, stretching, and shearing forces (Nakagawa
et al., 2011).

Based on the above physical description of the blast wave events,
for the purpose of this article, we classify four potential insults
caused by blast explosions: primary blast insult (PBI) due to the
shock wave, secondary blast insult due to blast-propelled debris
fragments causing blunt or penetrating ballistic trauma, and ter-
tiary blast insults due to human body translocation by blast loads
and the resulting impact on rigid objects. Quaternary blast insults

FIGURE 1 | (A) Ideal shock wave pressure profile (Friedlander curve) and (B) example of complex overpressure pattern inside a vehicle subjected to a blast
mine (NATO, 2007).
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FIGURE 2 | CFD simulation of a blast wave impacting a sold block; four
time instances of pressure fields showing shock reflection from the
front face, diffraction around the block, and back reflection behind the
block.

refer to all other types of injury including burns, environmen-
tal wound contamination, etc. Detailed discussion of the injury
mechanisms and pathophysiology of trauma for these insult types,
particularly lung injury, have been described in military medicine
publications and reports (Stuhmiller et al., 1999; DePalma et al.,
2005, 2011; Elsayed and Atkins, 2008; Stuhmiller, 2008; Champion
et al., 2009).

In the published blast injury literature the expression “primary
and secondary injury” is interchangeably used to describe both
insults to the body as well as tissue injury and repair mechanisms
within the body. For the sake of clarity in this article we define
the insult to describe external loads to the body and the injury to
describe the physical, physiological, and biological mechanisms of
damage and repair.

PRIMARY MECHANISMS OF BLAST TBI
There are several potential pathways for the blast wave energy to
enter the brain, including: (1) the skull deformation creating a
stress wave within the brain, (2) translation/rotation of the head
causing compression/shear waves within the brain as well as brain
rotation within the skull, (3) the pressure wave directly entering the
brain via various foramina (orbital, ethmoidal, vestibulo-cochlear,
foramen magnum, and vascular foramina), and (4) an elastic
wave propagating along blood vessels from a compressed thorax
(Bhattacharjee, 2008; Courtney and Courtney, 2009; Cernak, 2010;
Chavko et al., 2011; Bass et al., 2012). Computational and exper-
imental studies show that the cranial bone is a good transmitter

FIGURE 3 | Coupled simulations of CFD blast wave and FEM
biomechanics of a human head. Pressure profiles in the air and in the
brain during intracranial pressure wave penetration. Note that the
intracranial pressure wave is faster than the incident shock wave in the air.

of elastic waves with little attenuation below 104–105 Hz (Stenfelt
and Goode, 2005). Cranial deformations are transmitted through
the cerebrospinal fluid (CSF) to the brain. In the initial period of
skull deformation the compression waves move through the skull
and brain tissue faster than the wave in the free air, which is shown
in Figure 3, presenting predicted pressure profiles in the air and
in the brain during a simulated blast load (Przekwas et al., 2011).
As in any elastic structure, the impulsively compressed skull, after
little delay, will recoil creating a tension wave in the CSF and in
the brain. This event may coincide with the arrival of the under-
pressure part of the blast wave that may further exacerbate the
skull/brain recompression event.

In addition to the compression/tension waves, which propagate
in the skull with the speed of sound (∼1560 m/s), the geomet-
ric/material asymmetries of the skull/brain and non-uniform blast
loading will also generate shear waves in the brain. These shear
waves are orders of magnitude slower (∼10 m/s), persist longer
and can be more damaging then compression waves. In vitro and
in vivo experiments show that tension strains are much more dam-
aging to the tissue than compression strains (Xi and Zhong, 2001).
Intuitively it can be explained that the surrounding water resists
the compression and supports tissue structural components while
the tensile force directly disrupts weaker (hydrogen, van der Waals)
and stronger (covalent, ionic) bonds at the molecular level.

The human brain has several deep sulci filled with CSF sep-
arating various gyri, probably to facilitate larger access area for
the perfusing blood vessels. We believe that they may also have
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an evolutionary biomechanical protective role. As it was men-
tioned above, the shear waves in brain can be more injurious than
compression waves. A fluid filled sulcus between two gyri is a
perfect transmitter of a compression wave but it is a very poor
transmitter of shear waves. Therefore, sulci may play a protective
role in the brain gray matter located close to the surface of gyri
during the shear (tangential) motion.

Large, rapidly changing tensions in the brain and in CSF may
also cause short living cavitation spots. A collapsing cavitation
gas bubble can cause extensive damage to the surrounding tis-
sue. However, the possibility of blast wave induced cavitation in
the brain remains controversial. Cavitation has been experimen-
tally observed in laboratory experiments with idealized human
head surrogates (cylindrical fluid/gel containers) loaded with high
speed impactors (Kurosawa et al., 2009) or exposed to shock tube
blasts (Goeller et al., 2012). Recent computational simulations of
blast wave head/brain biomechanics predicted unphysical negative
absolute pressures in the brain suggesting the presence of cavita-
tion (Moore et al., 2009; Przekwas et al., 2009; Nyein et al., 2010).
Others have used “cavitation models” in the form of pressure traps
(Ziejewski et al., 2007; Moss et al., 2009; Panzer et al., 2012a).
Negative absolute pressures are physically possible in de-gassed or
entrapped liquids, e.g., in very tall trees or inside rock formations
(Zheng et al., 1991), however they are less likely in the metaboli-
cally active brain tissue with relatively large concentrations of O2

and CO2 which would act as nuclei spots for cavitation.
The primary compression/tension and shear waves are followed

by the macroscopic translational and rotational motion of the
brain inside the cranium due to inertial forces. Combination of
linear and, more importantly, angular accelerations of the brain
often lead to diffuse axonal injury (DAI), contusion, and acute
subdural hematoma (Smith and Meaney, 2000; King et al., 2003;
Rowson et al., 2012). Experimental tests on human volunteers
(Feng et al., 2010) and cadavers (Hardy et al., 2001; Zou et al.,
2007) showed that even for low-severity impacts in the sagittal
plane, the brain translation has a magnitude of 4–5 mm, and rota-
tion is on the order of ±5 °and lasts for almost 300 ms. Due to

the brain’s asymmetry and attachment to the brain stem, linear
displacement of the skull leads to both linear and angular displace-
ment of the brain relative to the skull. From the hydrodynamic
point of view, there is a difference between translational and rota-
tional brain movement in the skull, Figure 4. Linear translation of
the brain within the skull induces compensatory volumetric flow
of the CSF. On the other hand, the rotation of a brain does not
involve CSF displacement and the brain rotation is only opposed
by the brain surface-CSF shear force. In reality, brain rotations in
the horizontal and frontal planes are limited by falx while in the
sagittal plane they are limited only by the brain stem anchoring
and by bridging veins. As the CSF is almost incompressible any
macroscopic brain translation has to be associated with the flow
of the displaced surrounding fluid. In fact, the CSF is not only
responsible for the well-known neutral buoyancy of the brain, it
also provides a“hydrodynamic lubrication”protection of the brain
from contact with the cranium. It has been hypothesized that with
sufficient forces however, the brain may impact the cranium at the
impact point (coup injury) and at the opposite site (contrecoup
injury) leading to laceration, contusion, or hemorrhage (Smith
and Meaney, 2000). The relative linear inertial acceleration of a
floating object in a closed volume is only possible if the density
of the suspended object (brain) is different from the surround-
ing fluid (CSF). The brain-CSF density difference is very small
(ρBrain ∼1020 kg/m3, ρCSF ∼1005 kg/m3) so the relative motion
will be slow and it may take a long time for the brain to contact
the cranium. This has been experimentally observed in a physi-
cal surrogate model of an idealized head (van den Akker, 2010).
It should be pointed out that the rotational motion of the brain
within the cranium is not constrained by the density difference,
it can exhibit much higher velocities and, because of geometrical
non-uniformity of the cranium, it may result in a brain-cranium
contact. Experimental tests in animal models of TBI have shown
that the rotational motion of the brain is much more damag-
ing and can be responsible for focal and diffuse injuries, even in
moderate and mild events leading to brain rotation relative to
the skull (Margulies, 2000; King et al., 2003; Eucker et al., 2011).

FIGURE 4 | Schematic of brain-CSF interaction in linear and rotational acceleration.
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Maintaining the head in a rigid posture allowing linear but no
rotational accelerations may explain why race car drivers have sur-
vived crashes of 50–80 g; and why woodpeckers can decelerate
their brains up to 1200 g during prolonged wood pecking yet can
be knocked unconscious by inadvertently flying head first into a
window (May et al., 1979; Margulies, 2000).

As the brain is connected to the rest of the body through large
blood vessels and the spinal canal, there is a strong possibility of
the blast energy to enter the brain in the form of elastic waves
propagating along the vessels to the brain (Bhattacharjee, 2008;
Courtney and Courtney, 2009; Cernak, 2010). Because the vas-
cular elastic wave speed is very low (10–15m/s), these waves will
arrive at the brain after the initial blast. We define the primary
brain injury as the mechanical damage to brain structures caused
by the initial stress (pressure, shear) waves traversing the brain
just after the blast impact and after any mechanical impulse to the
head, all lasting tens to hundreds of milliseconds. Accordingly the
secondary brain injury and repair involves a time evolving myr-
iad of biophysical, neuro-biological, physiological, and potentially
cognitive mechanisms, caused by the primary injury, and lasting
for hours and, sometimes for life.

Current understanding of primary injury mechanisms to the
brain microstructures is very limited partially because of anatom-
ical heterogeneity of the brain, very short duration of injury
events, difficulties in collecting in vivo experimental data from
animal models, and lack of adequate mathematical models. It
is clear, however, that part of the energy in waves traversing the
brain is absorbed by various brain structures including vascula-
ture, axonal tracks, neuronal dendrites and synapses, cytoskele-
ton, and ion channels causing localized and diffuse damage of
the primary injury. From the mechanical perspective, macro
and micro interfaces between structures with disparate prop-
erties (density, elastance) are particularly vulnerable to damage
caused by high stain rate loads typically observed in the blast
brain injury. These macro and micro interfaces may include the
blood brain barrier (BBB), choroid plexus, brain-CSF interface,
neuronal/axonal membranes, nodes of Ranvier, dendritic spines,

synaptic clefts, transmembrane structures, and others. These inter-
faces may be particularly susceptible to mechanical damage if their
resonant properties are matched to frequencies of the primary
wave. In severe TBI, the primary mechanical damage, e.g., skull
fractures or hematomas can be visibly detectable on CT or MRI
images. In concussions and mTBI, the primary damage, such as
diffuse neuroaxonal injury (Smith and Meaney, 2000; Stys, 2005;
Pullarkat et al., 2006; Tsutsui and Stys, 2012), microvascular injury
(Dietrich et al., 1994; Readnower et al., 2010; Chodobski et al.,
2011), and synaptic injury (Albensi, 2001; Ferenc et al., 2009;
Przekwas et al., 2009; Ding et al., 2011) are very difficult to detect,
even with high resolution diffusion tensor images (Mac Donald
et al., 2011).

SECONDARY INJURY AND REPAIR MECHANISMS
The primary mechanical insult results in a cascade of secondary
injury and repair mechanisms. In vivo and in vitro experimental
models of TBI have begun to unravel the mechanisms producing
secondary mechanisms (Kochanek et al., 2000; Smith and Meaney,
2000; Wieloch and Nikolich, 2006; Cernak, 2010; Barkhoudarian
et al., 2011; Risling et al., 2011). Figure 5 schematically illustrates
our attempt to establish a timeline of secondary mechanisms as
well as windows for optimized pharmacological treatment. In gen-
eral, they can be classified into several related categories including:
biophysical, metabolic, neurochemical, and inflammatory. Each
of them includes several mediators involved in a constellation of
neuro-biological pathways, most of which are still poorly defined.

Immediately after a mild or moderate primary brain insult,
significant electrochemical and hydraulic (osmotic) exchange of
ionic, molecular, and fluid constituents occurs between the intra-
cellular and extracellular neuronal and microvascular structures.
This exchange generates cytotoxic and ionic swelling (edema) of
astrocytes and neurons at the expense of the extracellular space,
causing reduction in the diffusive transport of vital metabolites
and neurotransmitters. The limited intrinsic energy reserves of
the CNS require continuous supply of glucose (Glc) and oxy-
gen for a normal function, most notably for neurotransmission

FIGURE 5 | A schematic of time-structured secondary brain injury mechanisms and potential windows for pharmacological intervention.
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(predominantly for glutamate (Glu) uptake) and for neuronal
ionic repolarization (Ca++ and Na+/K+ exchange). Any addi-
tional energy requirements needed for structural repair of the
injury will have to be facilitated by accelerated supply and uti-
lization of Glc and oxygen to produce ATP. This hypermetabolic
state may cause local cerebral ischemia, hypoxia, neuroexcita-
tion, and failure of axonal and neuronal conduction. Because
the intra-arterioral and capillary blood pressures are much larger
than the intracranial pressure (ICP), any mechanical damage to
the BBB may cause efflux of water and small molecules (some
of them neurotoxic) from the luminal to the interstitial space
causing brain swelling, mechanical deformation of the brain tis-
sue and increase of ICP. These in turn may compress the venous
and CSF volumes reducing the cerebral blood flow (CBF) rate
and causing ischemia. Altered metabolic states may result in fur-
ther cellular/mitochondrial damage due to oxidative stress, while
penetrating blood borne molecules such as cytokines may ini-
tiate inflammatory responses (Schmidt et al., 2004; Graber and
Dhib-Jalbut, 2009).

Diffuse axonal injuries are the hallmark of mild and moderate
TBI and are caused by a combination of rapid tension and shear
deformations in the white matter of the brain (Smith and Meaney,
2000; Stys, 2005; Johnson et al., 2012; Tang-Schomer et al., 2012).
DAI is believed to be present in all mTBI injuries accompanied
with a loss of consciousness (Meythaler et al., 2001), yet each year
more than 1.5 million Americans sustain mTBI with no loss of con-
sciousness and no need for hospitalization (DeKosky et al., 2010).
The mechano-biological mechanisms of axonal injury are not well
understood and are an active research area (Tsutsui and Stys,2012).
Mechanical reasoning indicates that large and rapid forces to an
axonal bundle can cause primary axotomy, as in the breaking of
a fiber in a rope under large tension, while other axons may only
experience partial damage to some of its structures (membrane,
cytoskeleton, ion channels). These “partially damaged” axons may
further undergo complex and prolonged biophysical and meta-
bolic responses (see secondary injury below) leading to either the
axonal repair or cause an irreversible axonal damage, i.e., forma-
tion of retraction bulbs. It should be mentioned that secondary
effects following non-mechanical injury, e.g., ischemia or neuro-
inflammation can display some of the same traits as DAI (Tsutsui
and Stys, 2012). The mechanical integrity of the axonal plasma
membrane, a critical barrier between intra- and extra-cellular
environments, is essential for neuronal function and survival. Even
intermittent membrane mechanoporation may result in axonal
electrical depolarization which may cause rapid electrochemi-
cal and osmotic “fluxing” of ions and water resulting in axonal
swelling (Tang-Schomer et al., 2012). Mechanical forces may also
disrupt a network of axonal cytoskeleton responsible for structural
integrity and intra-axonal two way traffic of various cargo (Fer-
nandez and Pullarkat, 2010). For the neuron to recover from these
mechanical derailments it will have to initiate a metabolic “over-
drive”(hypermetabolism) needed for electrochemical and osmotic
repolarization, and membrane and cytoskeleton repair. Unfortu-
nately, increased hypermetabolism can also be also damaging via
oxidative stress.

Primary mechanical damage to axonal tracks, often present
in the parasagittal white matter of the cerebral cortex, corpus

callosum, and the brain stem, initiates a cascade of secondary
axonal injury and repair mechanisms (Smith and Meaney, 2000;
Stys, 2005; Pullarkat et al., 2006; Wieloch and Nikolich, 2006; Tang-
Schomer et al., 2012; Tsutsui and Stys, 2012). Axonal fibers with
damaged myelin and plasma membrane suffer large current leaks
and exhibit increased metabolic requirements to support conduc-
tion. Action potential propagation under these conditions exacts
a high metabolic price for energy-consuming ion movements,
which in turn places increased demands on energy-consuming
Na–K ATPase ion exchangers. This, combined with a potentially
impaired metabolic ability of mitochondria, may produce a state
of chronic axonal hypoxia, deregulation of Ca++ homeostasis and
ultimately structural failure of the fiber, manifested as spheroid
formation and finally transection in the form of microbeads,
retraction bulb, and axonal transection formation (Stys, 2005;
Kilinc et al., 2009; Tang-Schomer et al., 2012).

Diffuse synaptic and dendritic spine injuries are also poten-
tially significant secondary injury and repair sites. These TBI
mechanisms have not been reported in the open literature, prob-
ably because of lack of viable in vivo experimental measure-
ment modalities at such small scales. Synapses are tiny structures
(∼1 µm in diameter and ∼20-nm spacing) precisely packed in
the CNS at an incredibly high density (estimates range from ∼
2× 108 to 4× 109 in rat’s brains) (McAllister, 2007). Synaptic
terminals are mechanically very dense structures composed of
a remarkably large number of proteins, transsynaptic adhesion
molecules, and scaffolding. Its proper function strongly depends
on its morphology because mechanical deformations may cause
malfunction. It is likely that mechanical tension and shear waves
cause temporary disconnects and microdamage of synapses and
dendritic spines which in turn result in temporary cognitive mal-
function (Monnerie et al., 2010; Gao et al., 2011). It is also likely
that a large number of deformed synapses in mild injury may
be “repaired” by electrokinetic and biomechanical mechanisms –
a process of synaptic neuroplasticity and cognitive recovery. The
proposed mechanism of synaptic injury has been recently observed
in in vitro neuronal cultures (Ferenc et al., 2009; Monnerie et al.,
2010) exposed to shock waves. These results suggest that shock-
waves emanating from explosive devices may specifically affect
synaptic plasticity in the brain. Further, in vitro and in vivo experi-
ments and mathematical modeling studies should be conducted to
elucidate these injury mechanisms and to determine whether the
diffuse synaptic injury plays a prominent etiological role in mTBI.

MULTISCALE, MULTI-DISCIPLINE MODELING OF BLAST TBI
MULTISCALE MODEL OF BLAST TBI – OVERALL APPROACH
A comprehensive computational model of blast TBI should
involve several disciplines including: blast wave gas dynamics,
human body dynamics, body/head/brain biomechanics, physio-
logical responses, and a host of biophysical and neuro-biological
mechanisms of secondary injury and repair. The complexity of
a mathematical model of blast wave TBI is magnified by a wide
spectrum of length and time scales:

• Length – from meters for a blast scene, to centimeters for the
brain, to micrometer for neurons and axons, to nanometer for
neuronal synapses
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• Time – from microsecond for blast wave transition over the head,
to millisecond for brain biomechanical responses, to min/h/days
for secondary injury and repair cascade.

To develop such a mathematical model of TBI, a coordi-
nated effort is needed integrating various disciplines including:
neuroimaging, neuroanatomy, geometry/mesh generation, com-
putational fluid dynamics (CFD), finite element method (FEM)
structures, biomechanics, and computational neurophysiology
and neurobiology. A coupling between primary injury models
(biomechanical) and the secondary mechanism models (neuro-
biology) is also required. Development of complex and compu-
tationally expensive high-fidelity 3D models for a human and
an animal (rat, pig) should be accompanied with the develop-
ment of “reduced” (compact) but computationally fast models
using approximate anatomic/geometric representation, yet afford-
ing advanced models of neurobiology. The model development
effort should be paralleled with model-guided experiments on
neural cells and brain tissue cultures, animal models, physical sur-
rogates, and to some extent on humans to generate benchmark
quality data for model validation and scaling.

Computational models of blast wave physics and human
body/head/brain biomechanics, have been developed over the last
few decades for military/aerospace and automotive safety applica-
tions (Takhounts et al., 2003, 2008; Anderson, 2004; Kleiven, 2007;
Horgan and Gilchrist, 2008; Needham, 2010; Zhang et al., 2011).
For modeling blast TBI, further improvements are needed in:
high strain rate tissue material properties, coupled fluid-structures
interaction (FSI) of intracranial biomechanics, micromechanics of
brain tissue damage, and coupling between the brain macro- and
micro-scale biomechanics. Computational models of brain sec-
ondary injury and repair mechanisms have not been established
yet, mainly because of complexity and incomplete understanding
of the processes involved and partially because of lack of sup-
porting benchmark quality in vitro and in vivo experimental data.
There are however, several mathematical models of neurophysi-
ology and neurobiology which could be used as a starting point
for the development of a comprehensive model of the secondary
mechanisms (Cooley and Dodge, 1966; Koch and Segev, 1998;

Ursino et al., 2000; Lakin et al., 2003; Wakeland and Goldstein,
2005; Ascoli, 2006; Carnevale and Hines, 2006; Aubert et al.,
2007; Gleeson et al., 2007; Humphrey et al., 2007; Savtchenko
and Rusakov, 2007; Cloutier et al., 2009; Linninger et al., 2009;
Mangia et al., 2009; Kozloski and Wagner, 2011; Liang et al., 2011;
Mohan et al., 2011). The schematic in Figure 6 shows a potential
functional layout of such a modeling platform. It could set the
standard for comparison of alternative model components and
establish a benchmark framework for model calibration and val-
idation against experimental data. Following is a brief overview
of key model components, existing models in selected disciplines
and suggestions for further development.

MULTISCALE MODEL OF PRIMARY TBI
Anatomy/geometry/mesh
Accurate simulations of blast wave interaction with a human
or animal body requires 3D anatomical/geometric models that
could be used to generate computational meshes for CFD and
FEM biomechanics models. Anatomical models can be gener-
ated using neuroimaging data of brain and skull structures and
the whole body imaging data, e.g., “Visible Human” (Spitzer and
Whitlock, 1998; Spitzer and Scherzinger, 2006; Tang et al., 2010).
Reasonable resolution models of a rat and mouse whole body
anatomic geometries are also available (Segars et al., 2004; Bai
et al., 2006; Khmelinskii et al., 2011). Improved resolutions of
rodent brain functional zones as well as body/cerebral vascular
anatomy have to be established. The anatomic geometry models
are used to generate computational meshes outside and inside the
body for blast and biomechanics simulations. To simulate whole
body bio-dynamics (movement in air induced by blast loads) the
anatomical/geometric models need to be “articulated,” i.e., indi-
vidual body parts should be connected by joints to enable their
relative motion (Wilkerson and Przekwas, 2007; Arepally et al.,
2008; Zhou and Przekwas, 2011; Tan et al., 2012).

Several anatomical/geometry models have been developed to
study human body/head impact injury biomechanics (Zhang et al.,
2001; Levchakov et al., 2006; Mao et al., 2006, 2010; Kleiven, 2007;
Horgan and Gilchrist, 2008; Ramirez, 2010; Gayzik et al., 2011;
Yasuki, 2011) and rat head and body injury (Liang et al., 2011;

FIGURE 6 | Schematic of the simulation framework, tools and interfaces, and expected results.
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Przekwas et al., 2011). Until recently brain injury models focused
on the inertial and impact (crash) injury for which the skull and
brain geometry were sufficient. Because the blast loads are spa-
tially and temporally distributed over the entire head and neck, the
anatomical model should include the head’s skin, facial structures
including ocular and nasal cavities, cranium, and neck geometry.
Such anatomical geometries are currently being developed (Chafi
et al., 2009; Moore et al., 2009; Przekwas et al., 2009, 2011; Nyein
et al., 2010; Ortega, 2011; Zhang et al., 2011; Sundaramurthy et al.,
2012). Since blast loads occur at very fast rates, the brain injuries
tend to be spatially distributed loci of micro-injuries, e.g., DAI.
The current models of whole brain biomechanics do not have
the proper resolution to model the micro-scale injuries that result
from a primary blast exposure. Furthermore, to the best of our
knowledge, none of the existing models can properly simulate the
physics of the brain-CSF interaction or the head-neck movement.

Experimental in vitro tests of brain tissue slices and neuronal
cell cultures may enable validation of mathematical models by pro-
viding detailed correlation between the primary injury dynamics
and the resultant secondary mechanisms (Morrison et al., 2006,
2011; Chen et al., 2009; Frieboes and Gupta, 2009; Yu and Mor-
rison, 2010; Johnson et al., 2012; Tang-Schomer et al., 2012). It
is important to develop protocols and tools for the generation of
3D morphological geometries of in vitro cell and tissue cultures
and their dynamic responses to mechanical or shock wave loads.
Ideally, such models should register mechanical, electrokinetic,
and biochemical spatiotemporal responses of axonal, synaptic and
sub-cellular structures to controlled mechanical insults.

Blast wave gas dynamics and intracerebral fluid mechanics
Computational fluid dynamics models have been successfully used
to simulate blast wave dynamics over a human body and head
(Imielinska et al., 2006; Przekwas, 2008; Moore et al., 2009; Taylor
and Ford, 2009; Needham et al., 2011) and to calculate pressure
and shear forces for subsequent modeling of human body biody-
namic and biomechanical responses. Figure 7 shows examples of
CFD model predictions of blast wave interaction with a human
body, head, and with a rat body. Reported simulations have shown
that such a sequential modeling approach is well justified as the
inertial body movement starts well after the blast wave traverses
the body (Needham et al., 2011; Tan and Przekwas, 2011). Accu-
rate simulation of moving shock waves and their interaction with
solid objects without “smearing” of the shock front discontinu-
ities requires small time steps, very fine computational mesh in
the entire flow domain and long computing times. Fine mesh is
essentially only needed in the regions of high gradients, e.g., shock
front, and much coarser grids could be used elsewhere. One way to
solve this problem is to use a solution adaptive mesh refinement.

Computational fluid dynamics models could also be used to
simulate the responses of intracranial fluids, including CSF-brain
interaction and cerebral blood interaction with brain tissue. Since
the movement of intracranial fluids is strongly coupled to mechan-
ical displacements of the skull and the brain, the intracranial
fluids should be simulated using a FSI model. Direct numerical
simulations of the FSI in a closed intracranial cavity is a non-
linear and computationally very challenging problem, as small
cranial displacements cause large variations in the ICP. To the best

FIGURE 7 | 3D Anatomical/geometric models of a human body and head, and a virtual rat.
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of our knowledge, the intracranial FSI problem has not been con-
vincingly solved, yet. Reported simulation results exhibit negative
absolute pressures (Moore et al., 2009; Moss et al., 2009; Taylor and
Ford, 2009; Przekwas et al., 2011), trap predicted fluid pressures
to a prescribed value (e.g., absolute zero or vapor saturation) or
show large cavitation volumes (Wardlaw and Goeller, 2010). In
most reported models, CSF is treated as compressible deforming
“solid” attached to brain and skull, an assumption valid only for
the first few millisecond when there is no significant flow of CSF.
However, if longer time scales need to be simulated, such as for
shear waves, brain rotation, and brain swelling during edema, a full
FSI model may have to be used. Such an approach has been used
for high fidelity and reduced order modeling of hydrocephalus
(Kurtcuoglu et al., 2007) but has not been well established in 3D
TBI models, yet.

An FSI model, coupling whole body biomechanics, elasto-fluid
dynamics of thoracic/cerebral vascular system, and brain biome-
chanics could be used to evaluate the “thoracic” or “vascular”
hypothesis of TBI (Cernak et al., 2001; Chavko et al., 2011). This
hypothesis states that a thoracic/abdominal vascular system, com-
pressed by a blast wave, may induce an elastic wave propagation
from the thorax along the vascular system to the brain. This may
cause brain tissue damage and BBB injury. Since vascular elastic
waves propagate relatively slowly (12–15 m/s), these injury events
occur much later than primary blast events. Figure 8 shows a
computational model of a human vascular system coupled to

the body/brain biomechanics, currently under development to
evaluate the above hypothesis (Przekwas et al., 2011).

An FSI model may be also required to study brain-vascular
coupling during vasogenic edema, hemorrhage, and vasospasm,
all associated with brain injury (Armonda et al., 2006; Armin
et al., 2008; Alford et al., 2012). Mechanical microdamage to the
BBB causes an increase of vascular permeability and inflow of
osmoles and water to the brain causing volumetric expansion
of the brain and increase of the ICP – a consequence of the
so-called Monroe–Kellie doctrine. This in turn results in compres-
sion of the vascular (venous in particular) system and potentially
brain herniation. In such a case, mathematical models of brain
poro-visco-elastic biomechanics need to be coupled to CSF flow,
vascular fluid mechanics as well as to electrochemistry of solutes
and ion transport and osmotic pressure developments.

Head and brain biomechanics
Computational modeling of human head injury biomechanics has
been investigated since the 1970s, first using approximate analyt-
ical and spring-mass-damper (SMD) models (Slattenschek and
Tauffkirchen, 1970; Alem, 1974) and in 1990s using FEM (Ruan
et al., 1993; King et al., 1995). Today FEM tools are routinely
used to simulate impact biomechanics and primary brain injury
problems, particularly in the automotive occupant safety appli-
cations (Miller, 2011). Advanced 3D FEM models of head/brain
anatomy and biomechanics and injury have been pioneered at

FIGURE 8 | Whole body cardiovascular system model “embedded” in the tissue biomechanics model used to study blast-induced elastic waves.
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the Wayne State University resulting in the well-known WSUBIM
(Wayne State University Brain Injury Model) FEM human head
model (Ruan et al., 1993; Zhou et al., 1996; Al-Bsharat et al.,
1999). This model of a 50th percentile male human head cur-
rently includes scalp, cranium, falx cerebri, tentorium, sagittal
sinus, transverse sinus, bridging veins, CSF, and the brain struc-
tures as separate anatomical segments (Zhang et al., 2001, 2011; Hu
et al., 2007). Svein Kleiven’s group at the Royal Institute of Tech-
nology in Stockholm, Sweden has developed a human head/neck
FEM model with improved resolution of the subarachnoid CSF
and 11 pairs of parasagittal bridging veins (Ho and Kleiven, 2007;
Kleiven, 2007). A neck model including spinal column, spinal cord,
dura mater, and neck muscles was incorporated allowing the brain
stem to be extended to the spinal cord. Other FEM head/brain bio-
mechanics and injury models include: Simulated Injury Monitor
(SIMon) FEM human head model developed by a team lead by
Takhounts at the National Highway Traffic Safety Administration
(NHTSA) (Takhounts et al., 2003, 2008), the University College
Dublin Brain Trauma Model (UCDBTM) (Horgan and Gilchrist,
2008; Colgan et al., 2010), and the Strasbourg University Finite Ele-
ment Head Model (SUFEHM) (Willinger et al., 1999; Raul et al.,
2008; Meyer et al., 2013) as well as others. All of these models,
in spite of successes in modeling head impact and inertial transla-
tion/rotation accelerations, still need improvements in anatomical
geometry, physics, and numerics, e.g., high strain rate material
properties, modeling the CSF flows, accounting for the presence of
vasculature, adequately model the micro-scale injuries, addressing
numerical stiffness, and long computing times.

In the last few years, FEM head/brain biomechanics models
have been adapted for modeling the blast TBI by incorporating
head/face anatomical details and by coupling them to the blast
physics CFD solvers (Ziejewski et al., 2007; Mott et al., 2008; Przek-
was, 2008; Chafi et al., 2009, 2010; Moore et al., 2009; Moss et al.,
2009; Przekwas et al., 2009, 2011; Taylor and Ford, 2009; Nyein
et al., 2010; Zhang et al., 2011; Panzer et al., 2012a; Zhu et al.,
2013). Figure 9 presents example simulation results of a shock
wave reflection from and diffraction around a human head (coro-
nal cross section) and a resultant pressure wave within the brain.
In comparison to the blunt brain biomechanics model, the blast
injury model has a loading force that is much faster and is spatially
and temporally“distributed”over the entire head during the shock
wave propagation around the head. Moreover, the intracranial

loads, both compression and tension, and the strain rates are much
higher in the blast case. Coupled blast wave gas dynamics and
brain biomechanics simulations are needed to compute dynamic
response of the head, cranium, and the brain.

The main limitation of all existing FEM models is the treatment
of the CSF interaction with the brain and the cranium, particularly
modeling the shear waves and brain translation/rotation. Most of
the FEM models treat the CSF as a “solid with fluid-like prop-
erty” allowing a “contact with slip” interfaces between CSF and
skull and brain. This approach is inadequate for modeling larger
deformations and for modeling brain translation and rotation for
longer periods of time. For short duration head/brain primary
biomechanical events, lasting only tens of milliseconds, typically
the explicit FEM models are used to simulate brain responses.
However for longer duration events, such as propagation shear
waves, brain rotation, swelling, and CSF displacement, implicit
FEM schemes are required. These however require full matrix
inversion and are much more difficult to solve for fine meshes,
even using parallel computers.

Another very important and challenging problem is the devel-
opment of material properties for the skull and various anatomical
regions of the brain for high strain rates, typical in blast loads.
It is clear that different head/brain tissues will require tissue-
specific constitutive equations and parameterization. In spite of
decades of experimental testing and analytical studies of brain
mechanical properties, no universally accepted dataset exists and
the material property parameters vary by an order of magnitude
(Hrapko et al., 2008). Material models have been extracted from
both in vitro experimental data (Takhounts et al., 2003; Brands
et al., 2004; Miller, 2011; Prevost et al., 2011) as well as from in vivo
data (Gefen and Margulies, 2004; Atay et al., 2008; Clayton et al.,
2011). The results of different studies are difficult to compare,
due to the wide range of experimental protocols including the
species type/age (human, rodent, porcine), loading configurations
(compression, tension, shear, indentation), the loading histories
(cyclic, stress relaxation creep), and test regime (levels of strains
and strain rates, temperature, tissue hydration). The experimental
data have facilitated the development of a large variety of constitu-
tive models ranging from simple linear elastic, hyperelastic, linear
viscoelastic to non-linear viscoelastic, yet no consensus exists even
on the linear viscoelastic properties. No model has integrated
viscoelastic, stress relaxation, and large strain response into one

FIGURE 9 | Example coupled CFD-FEM simulation results of a blast wave diffraction around, and transmission through a human head. A sequence of
four time instances.
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single constitutive framework thus far. Before significant advance-
ments can be made, the modeling and testing communities must
come to a consensus on the material model formulations and
anatomical/geometric and numerical representations of the FEM
head/brain biomechanics and injury model.

Finite element method biomechanics models may also be used
to simulate brain tissue/cell damage at the micro-scale. Mathe-
matical models of mechanical damage to neuroaxonal structures
may be able to describe damage to cell membranes, cytoskele-
ton, ion channels, synaptic clefts, dendrites, and axons. These in
turn, could provide inputs for the secondary injury and repair
models, simulating electrophysiology and ion homeostasis, alter-
ations in metabolism, neuroexcitation, cytotoxic edema, oxidative
stress, apoptosis, and other injury and repair mechanisms. In the
last few years, the first FEM biomechanics simulations of very
simplified axonal structures have been reported (Karami et al.,
2009; Cloots et al., 2010; Przekwas et al., 2012). Future advance-
ments in micro-scale FEM can incorporate boundary conditions
from macro-scale simulations (Przekwas, 2008; Cloots et al., 2010;
LaPlaca and Prado, 2010). In vivo micro-imaging may also pro-
vide functional response data (electrophysiological,metabolic, and
biochemical) needed for the development and validation of math-
ematical models of secondary brain injury and repair mechanisms.
We envision that the next generation of in vivo and in vitro micro-
biomechanics models will be able to elucidate neuroaxonal injury
mechanisms and will help establish brain region and insult specific
injury criteria.

MULTISCALE MODEL OF SECONDARY INJURY AND REPAIR
MECHANISMS
The secondary brain injury and repair mechanisms start immedi-
ately after the primary insult and, depending on the injury severity,
may last for a long period of time (Graham et al., 2000; Margulies,
2000; Cernak et al., 2001; Cernak, 2010; Masel and DeWitt, 2010;
Meaney and Smith, 2011). Secondary mechanisms are multiple,
interacting cascades of local and systemic responses. Although
primary injury comprises the initial tear and shear of neuro-
tissue, secondary mechanisms can dramatically exacerbate the
initial injury, or conversely, participate in neuro-repair processes.

Development of a mathematical model integrating all sec-
ondary mechanisms is a formidable task. A mathematical model of
secondary brain injury and repair that couples biomechanics, cere-
bral perfusion, brain metabolism, and neurobiology does not exist
yet. At the same time several components of such a model have
been developed and reported including: cerebral perfusion, fluid
electrolyte balance, metabolism, cellular signaling pathways, elec-
trophysiology, edema, neuroexcitation, etc. (Yi et al., 2003; Wake-
land and Goldstein, 2005; Dronne et al., 2006; Gleeson et al., 2007;
Humphrey et al., 2007; Linninger et al., 2009; Østby et al., 2009;
Mohan et al., 2011). Traditionally, computational neurophysiol-
ogy and systems biology have been evolving as separate disciplines
and only recently has it become clear that their combination may
enable revolutionary progress in neurology (De Schutter, 2008).
Cerebral physiology, neurobiology, and secondary injury models
are typically formulated using a multi-compartmental modeling
approach linking cerebral vascular, interstitial, and intracellular
compartments. The next generation secondary brain injury and

repair models will have to combine compartmental or distrib-
uted models for the in vivo whole brain physiology coupled to
neuroaxonal and synaptic biophysics and neurobiology models.
From the brain injury modeling perspective it will be essential
to combine models of biomechanics and neurobiology, validate
them on in vitro experiments, and evaluate them on in vivo
animal/human data.

Models of head/brain biomechanics and cerebral hemodynamics
Mathematical modeling of brain biomechanics can be accom-
plished using both FEM models as well as much simpler but
computationally efficient SMD elements. SMDs can be adapted for
modeling both macroscopic biomechanical effects of secondary
mechanisms, such as cerebral arterial/venous elasticity, hemor-
rhage, edema and vasospasm, as well as microscopic biomechanics
of brain cell/tissue injury, e.g., BBB breakdown, axonal and synap-
tic injury (Di Bona et al., 2003). The mechanical model will have to
be coupled to models of CBF, brain perfusion, and volume shifts
between brain compartments. Similar SMD modeling approach
has been used for modeling blast lung injury (Przekwas, 2008;
Stuhmiller, 2008).

Reduced order fluid-network models have been used for mod-
eling CBF and tissue perfusion, autoregulation, and other aspects
of cerebral physiology (Ursino et al., 2000; Wakeland and Gold-
stein, 2005; Alastruey et al., 2007; Stevens et al., 2008; Linninger
et al., 2009; Liang et al., 2011). More elaborate models use networks
of blood vessels arranged to represent the topology of the circle of
Willis (COW) connected to the whole body circulation (Reymond,
2011). These models solve for time/space resolved intracranial
blood flow rate, pressure, and fluid/metabolite exchange between
vascular and brain tissue compartments. To simulate brain injury
the cerebral hemodynamics model may need to be coupled to a
brain biomechanical model via transmural pressure. Figure 10
shows examples of spatially distributed and multi-compartmental
models of the human body, cerebral vascular system, arterial COW
and anatomically distributed cerebral perfusion and venous return
(Przekwas et al., 2011). In that model, the vascular tree can dynam-
ically adjust its vessel radius to accommodate temporal changes in
the perfusion pressure and autoregulation as well as changes in
the ICP due to mechanical loads (e.g., blast wave). Ultimately,
the cerebral vascular model should provide inputs to several
other sub-models such as ischemia, hemorrhage, edema, hypoxia,
vasoregulation, vasospasm, and a full range of neurobiology mod-
els. Combining a spatially distributed whole body/brain-vascular
system model with the FEM body/head biomechanics models may
help in elucidating the thoracic/vascular TBI hypothesis.

Cerebral metabolism and injury neurobiology models
Secondary brain injury and repair is a multi-factorial process
involving a range of bio-electro-chemical events, but two compo-
nents are of key importance – alterations in metabolism and neu-
rotransmission (Rzigalinski et al., 1998; Magistretti and Pellerin,
1999; Aubert et al., 2007; Payne et al., 2009; Cernak and Noble-
Haeusslein, 2010; Peskind et al., 2011). Mathematical models of
neurometabolic mechanisms are typically derived from kinetic
pathways, involving a large number of kinetic parameters obtained
from in vitro experiments (Nicholson, 2001; Banaji et al., 2005;
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FIGURE 10 | Whole body multi-compartmental human cardiovascular system and the cerebral perfusion (circle of Willis) models.

Qutub and Hunt, 2005; Dronne et al., 2006; Descombes and
Dumont, 2008; Payne et al., 2009; Orlowski et al., 2011). Some of
these models already include key spatial compartments (vascular,
interstitial, glial, neuroaxonal, and synaptic), incorporating sev-
eral metabolic steps and are often linked to a glutamate-glutamine
cycle, the key element of neurotransmission and neuroexcitation.
As discussed in Section “Secondary Injury and Repair Mecha-
nisms,” the axonal potential propagation and synaptic neurotrans-
mission consume the majority of the available metabolic energy,
so perturbations of the energy supply may affect the function of
individual neurons and their network. An integrated model of
bio-energetics should combine models of tissue perfusion, energy
metabolism, related oxidative stress and neurotransmission. In
the last few years integrated models of glucose-lactate (Glc-Lac)
energy metabolism, synaptic neurotransmission and the neuron-
astrocyte glutamate-glutamine (Glu-Gln) cycle have been reported
(Aubert et al., 2007; Cloutier et al., 2009; Przekwas et al., 2009).
Such models should be able to simulate brain metabolic responses
to increased permeability of the injured BBB and show changes
in the intracranial volumes and pressure due to cytotoxic and

vasogenic edema. This in turn may cause compression of the vas-
cular system, reduction of the blood flow and development of
ischemic and hypoxic regions.

Neuronal, axonal, and synaptic neurobiology and injury models
Mechanical damage and metabolic impairments have direct
impact at the cellular level. Mathematical models of neuroaxonal
and synaptic mechanobiology can provide a framework for better
understanding of secondary injury and repair mechanisms. The
micro-biomechanical model should capture the biphasic elasto-
visco-plastic cellular response; the initial rapid primary damage
to synaptic clefts, axonal membrane or BBB, followed by a slow
mechanical recoil and recovery (e.g., membrane sealing, synap-
tic reconnection/plasticity, remyelination). The micromechanical
model could be coupled to cellular electrophysiology and neu-
robiology models to simulate various secondary events such as
solute, electrolytes and water shifts, cellular depolarization, local
cytotoxic edema, initial hypermetabolism needed for repolariza-
tion, loss of action potential signals due to damage to ion channels,
and current leaks, loss of synaptic transmission due to spillover
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of neurotransmitters outside of the synaptic cleft, synaptic plas-
ticity (LPT, LDT), and other mechanisms. The results of such a
model may be able to show that the exacerbated secondary mech-
anisms, not just the initial mechanical injury, may be responsible
for the long-term neurocognitive effects. This in turn could iden-
tify targets for neuro-interventions and optimal treatment strate-
gies. The development and validation of such models will require
detailed spatiotemporal experimental data from in vitro neuroax-
onal cell/tissue cultures, in vivo animal brain injury models and
ultimately in vivo conditions in animals and humans.

Mathematical modeling of coupled micro-biomechanics and
electrophysiology of neuronal injury has not been reported yet,
but has been identified as an important recommendation (LaPlaca
and Prado, 2010). Mathematical models of cellular electrophysi-
ology have been developed and used for modeling single neurons
and large neuronal networks (Kager et al., 2000; Calvetti and Som-
ersalo, 2011; Kozloski and Wagner, 2011). Typically, mathematical
models of neurons, such as neuron and genesis, combine the elec-
trical cable theory for modeling action potential propagation and
the Hodgkin–Huxley model to simulate ionic fluxes (Bhalla, 1998;
Carnevale and Hines,2006). Neuron models have been successfully
used for a wide range of problems including detailed neurophys-
iology of complex 3D neurons, propagation of action potentials
in myelinated axons and in neuronal synapses (De Schutter and
Bower, 1994; Gleeson et al., 2007; Savtchenko and Rusakov, 2007;
Lopreore et al., 2008; Brown et al., 2011; Kozloski and Wagner,
2011; Mohan et al., 2011). Significant progress has been achieved
in establishing an infrastructure of experimental databanks of
3D neuronal morphologies and neurobiology data that could be
used for the development and validation of mathematical models
(Ascoli, 2006; Eberhard et al., 2006; Gleeson et al., 2007; Martone
et al., 2008; He and Cline, 2011; Halchenko and Hanke, 2012;
Leergaard et al., 2012).

An integrated micro-biomechanics and electrophysiology
model could be developed based on in vitro neuronal cell/tissue
cultures with well-defined mechanical loads and spatiotempo-
ral measurements of cellular electrophysiological and biological
responses (LaPlaca et al., 1995; Rzigalinski et al., 1998; Morrison
et al., 2006, 2011; Lauret et al., 2009). This model could be validated
on benchmark quality in vitro data, and then used to study in vivo
neuroaxonal responses to brain injury loads. Figure 11 presents

an example of a 3D neuron model “embedded” in a tissue cul-
ture exposed to mechanical stretch injury. In this test simulation,
the FEM model of the tissue is coupled to a biomechanical-
electrokinetic model of a neuron. The model simulates changes
in the action potential propagation and metabolic support of
axonal repolarization in response to mechanical damage to the
neuroaxonal membrane.

MODEL VALIDATION CHALLENGES AND OPPORTUNITIES
MODEL VALIDATION AND TESTING APPROACH
The next generation TBI modeling framework will integrate sev-
eral components, some already well established, e.g., CFD gas
dynamics or FEM biomechanics, while others, such as tissue
damage and the neurobiology of cellular injury, will have to
be developed and validated. Among several challenges impeding
the development of such a modeling framework are: incomplete
understanding of injury mechanisms, limitations of existing com-
putational tools in solving multiscale/multiphysics problems, and
lack of benchmark quality test problems and experimental data
for model validation.

In the last few years experimental data directly related to the
blast wave head/brain biomechanics and injury have started to
emerge and could be used for model validation. To replicate the
free-field blast wave loading in laboratory conditions, test articles
such as head phantoms, animals (rats, mice, pigs), or cells/tissues
have been placed inside or in front of a shock tube (Bayly et al.,
2008; Säljö et al., 2008, 2011; Alley et al., 2011; Chavko et al., 2011;
Leonardi et al., 2011; Risling et al., 2011; Shoge et al., 2011; Varas
et al., 2011; Risling and Davidsson, 2012; Zhu et al., 2013). Shock
tubes have been designed to control the pressure-time profile and
impulse that replicate desired blast wave parameters (Reneer et al.,
2011; Ritzel et al., 2011; Varas et al., 2011). Compared to round
shock tubes, newer designs with square cross section allow bet-
ter visual access to the test article (Sundaramurthy et al., 2012).
Figure 12 shows a round shock tube with a conical exit section for
testing a human head phantom with a helmet and hearing protec-
tion devices (Przekwas et al., 2012). A conical exit section not only
allows more space for the test article, but also allows the formation
of a spherical shock wave front resembling a free-field blast wave.
It is also important to fully “expand” the wave to ensure a blast
wave (Friedlander type) pressure profile.

FIGURE 11 | Integrated biomechanical, electrokinetic, and metabolic model of an in vitro neuron exposed to mechanical stretching.
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FIGURE 12 | A human head phantom in the shock tube for testing blast wave loading (Przekwas et al., 2011).

Validation using head phantoms, cadavers, and humans
To validate the primary blast impact model it would be beneficial to
establish benchmark anatomic/geometrical and material property
models of selected physical phantoms and human (cadaver) heads.
Several teams have used the HYBRID III head/neck phantoms as
well as custom human head phantoms to evaluate its mechanical
responses to shock tube loads (Bir et al., 2011; Leonardi et al., 2011;
Qidwai et al., 2011; Varas et al., 2011; Goeller et al., 2012; Przekwas
et al., 2012). Shock tube tests on a more anatomically accurate
human head/neck phantom with soft skin-like features, cranial
bone and brain tissue could become the basic validation test suite.
The test procedures and experimental data should be fully doc-
umented to ensure proper setup of computational models, e.g.,
completeness of boundary conditions, locations of instrumenta-
tion sensors, etc. From the model development perspective, head
phantoms offer several advantages including well-defined anatom-
ical geometry, material properties, and sensor locations as well as
reproducibility of tests and modularity of phantom setup, e.g.,
rigid vs. flexible neck. The benchmark data should include the
free stream shock tube pressure traces (total and static) and skin
pressures at several locations on the head and neck. If a brain
surrogate is used, additional data should include ICPs at selected
locations, preferably along three axes relative to the blast direc-
tion. Minimally intrusive time-accurate measurements of head
and brain displacements at several locations could be used directly
to compute strains, strain rates, tissue velocities and accelerations.

Experimental impact tests on human cadaver heads (Nahum
et al., 1977; Hardy et al., 2001; Bir et al., 2011) have been used as
benchmark data for the validation of FEM models. Cadaver tests
are much more challenging since it is difficult to generate precise
anatomical head and brain geometry of a specific specimen and to
recreate physiological conditions, e.g., vascular perfusion, water-
tight CSF space, etc. Compared to a live human, the surrogate
models have serious limitations including inadequate anatomy
and geometry, reproducibility, inadequate tissue properties, tis-
sue decay in cadavers, and lack of physiology. In the last few years
a new imaging technique, tagged MRI synchronized to periodic
mechanical excitation has been developed for measuring mechan-
ical deformations of human brain in vivo (Bayly et al., 2005; Atay
et al., 2008; Sabet et al., 2008; Feng et al., 2010). It has been used

to measure time/space accurate deformations of a human brain
in response to rotational and translational deformations as well
as loud sound waves in live human volunteers. The spatiotempo-
ral fields of brain deformations and derived strains and strain
rates could be used for the validation of a human head/brain
biomechanics for non-injurious loads.

Validation on animal models
Direct experimental evaluation of in vivo brain injury is only pos-
sible using animal models (Cernak, 2005; Thompson et al., 2005),
including rats (Dixon et al., 1987; Marmarou et al., 1994; Bayly
et al., 2006; Chavko et al., 2007; Long et al., 2009; Bolander et al.,
2011), mice (Carbonell et al., 1998; Cernak and Noble-Haeusslein,
2010; Rubovitch et al., 2011), pigs (Smith et al., 1997; Säljö et al.,
2008; Bauman et al., 2009), and primates (Lu et al., 2012). Exper-
imental tests on animal models provide a correlation between
known insult level to injury response measured by taking samples
from the brain for histochemistry analysis or by behavioral tests.
Traditionally, animal models of TBI were developed to reproduce
impact or acceleration loads such as the controlled cortical impact
(CCI), the fluid percussion injury (FPI), and head acceleration and
rotational models (Cernak, 2005; Morrison et al., 2011). Because
the CCI and LFP require craniotomy and cause focal injury, they
are not suitable to study blast brain injury, which typically is a
closed head, diffuse type injury. Similar to head models, to better
represent the blast brain injury in the open field, several teams have
exposed animals, including rats and pigs, to shock waves gener-
ated by various types of shock tubes (Chavko et al., 2007; Bauman
et al., 2009; Long et al., 2009; Risling et al., 2011; Sundaramurthy
et al., 2012). In spite of ongoing challenges with animal position,
orientation, and immobilization in the shock tube a method of
scaling the shock wave pressure profile to an equivalent human
dose needs to be developed. Shock tube animal tests may be able
to reproduce DAI representative of human mTBI, reveal the role
of head/neck movement in blast brain injury, and provide valu-
able data for the development and validation of mathematical
models of mTBI. Recent experimental tests of mice and primates
directly exposed to open field explosives detonation may pro-
vide additional information for calibration of shock tube models
(Rubovitch et al., 2011; Lu et al., 2012). The shock tube animal tests
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provide the intracranial, arterial, venous, and abdominal pressure
recordings that could be used for calibration of primary injury
(energy deposition) models.

At present, the injury neurobiology data can be collected only
from brain tissue necropsies at selected times from several anatom-
ical locations in the brain. The next generation optical imaging
with fluorescent labeling and microdialysis methods will enable
collection of real time electrophysiology, biochemistry, and phys-
iology injury data within the brain and the body. We believe that
correlated experimental and computational animal models of TBI
will be able to provide a link between the mechanical models and
secondary injury/repair neurobiology models for which human
only data will be too limited and too complex. Ultimately they
may be able to establish scaling and extrapolation of injury and
treatment protocols from animals to humans.

Validation on in vitro cell/tissue cultures
The use of animal models for studying brain injury may be
restricted due to ethical and regulatory reasons. Furthermore,
while the external mechanical loads in animal models can be well
controlled, the internal cell/tissue biomechanics are difficult to
monitor and quantify. The analysis of injury outcomes at the tis-
sue/cell level requires animal sacrifices, tissue extraction, and may
be affected by animal-to-animal variability. On the other hand,
the in vitro cell cultures or brain tissue slices enable repeatable,
controllable environments with direct access for optical, and elec-
trophysiological measurements. The main requirement for in vitro
neuro-injury models is that they should replicate the in vivo tissue
biomechanics and post-injury sequelae. In vitro models of TBI
have been used to study several aspects of neuronal pathobiol-
ogy (Geddes and Cargill, 2001; Pfister et al., 2003; Lusardi et al.,
2004; LaPlaca et al., 2005; Kumaria and Tolias, 2008; Chen et al.,
2009; Lauret et al., 2009; Morrison et al., 2011), including meta-
bolic and signaling events, neuroexcitation, hypoxia, and various
targets for pharmacologic intervention (Kochanek, 2011). Con-
ventional experimental in vitro models induce the neuronal injury
by various methods such as direct deformation of the underlying
elastomeric substrate, application of a rapid compression, fluid
shear, mechanical transection, or direct micromechanical manip-
ulators. Unfortunately, none of these completely represent the
blast-induced biomechanical loads in a living brain, such as propa-
gation of a steep fronted pressure wave which causes compression,
tension, and shear waves. One way to achieve such conditions
is to place the cell/tissue culture in a shock tube (Sawyer et al.,
2011; Panzer et al., 2012b). One must be careful when perform-
ing in vitro shock tube tests that they are exposing the cell/tissue
cultures to the loading that is witnessed inside the head and not
in air. Compared to the in vivo brain, the in vitro neurotrauma
models also have other limitations such as considerable variabil-
ity in cellular morphology, lack of a vascular network, incomplete
axonal myelination, low synaptic density, and use of much higher
concentration of metabolites (Glc, O2) for culture maintenance.
Nevertheless, at this time the in vitro models are probably the
best platform to develop and validate mathematical models of
secondary brain injury. To the best of our knowledge, with the
exception of the primary biomechanics of the in vitro tissue,
limited work has been documented on mathematical models of

in vitro neurotrauma (LaPlaca et al., 2005; Morrison et al., 2006;
Kaster et al., 2011; Prevost et al., 2011). Development of mathemat-
ical models of in vitro cell/tissue neurotrauma combining primary
and secondary injury and repair models should be a priority for
future research.

POTENTIAL APPLICATIONS AND FUTURE OPPORTUNITIES
As in physics and engineering, mathematical modeling could play
a major role in advancing our understanding of brain injury mech-
anisms, and help in neurodiagnostics, treatment, and protection.
Development of a comprehensive mathematical model of brain
injury, including blast TBI, is certainly feasible and necessary.
Current state of the art models of blast waves and head/brain
biomechanics provide an excellent foundation for the develop-
ment of a primary brain injury model. More effort should focus
on the development of mathematical models of secondary injury
and repair mechanisms and on the link between the two. We
also believe that a prototype of an integrated primary-secondary
brain injury model can be developed within a few years, but it
may require a concerted collaborative effort between biophysicists,
neurobiologists, mathematicians, and experimentalists. Existing
head anatomical/geometry models and validated CFD tools could
be used to evaluate blast wave loading profiles on unprotected
and helmeted human heads for various exposures. It would allow
detailed analysis of loading pathways through anatomical regions
including the eyes, ears, nose, and the role of protective armor
(helmet, visors, hearing protection devices, and others). FEM
models of primary biomechanics, validated on head phantoms
and animal models, could provide a better understanding of
how the blast load is transmitted to the brain, where the blast
energy is deposited and how to design the protective armor to
minimize the blast energy transmission to the brain. Predicted
macroscopic tissue strains, strain rates and stresses may provide
“initial conditions” for modeling microscopic tissue damage that
could be correlated with injury thresholds from in vitro and
animal experiments. The most challenging step is to link the
models of the primary blast event with the resulting brain tis-
sue damage including the secondary mechanobiology of injury
and neuro-functional outcome. Such a modeling framework may
become a foundation for a rational study of neuroprotection,
diagnostics, and treatment. To achieve these goals future compu-
tational blast brain injury research should focus on the following
aspects:

• High resolution computational models of a human and rat
head/neck and articulated whole body models for blast wave and
biomechanics simulations, specifically improved morphologi-
cal resolution of brain structures such as CSF, sulci, gray/white
matter, and vascular system

• Anatomic geometry and morphology of selected brain tis-
sue structures such as cortical gray matter, dendritic/synaptic
structures, and axonal network in corpus callosum, to support
multiscale models of tissue micro-damage

• Benchmark quality, reproducible experimental models replicat-
ing blast injury mechanisms in animals, in in vitro cell/tissue
cultures and human head physical phantoms to provide data for
validation of blast biomechanics models
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• Constitutive material models of high strain rate brain tissues for
macro- and micro-biomechanics analysis of tissue damage and
cavitation

• Improved numerical methods for modeling FSI events (e.g.,
brain-CSF interaction), cavitation, presence of vascular struc-
tures and enable long-time simulations

• Calibrated reduced order models for fast simulations of cou-
pled primary injury biomechanics, cerebral hemodynamics, tis-
sue perfusion, secondary injury, and repair mechanisms and
structural and functional deficits

• Model based scaling of the injury and repair dynamics from
in vitro to animals to humans

• Model-guided development of load- and tissue-specific brain
injury criteria and thresholds and their effects on the neurolog-
ical outcome

• Effective use of brain injury models to support diagnos-
tics (e.g., biomarker kinetics), prescribed resting period and
return to duty, development of drug targets, exploration
of novel protection and treatment methods (e.g., hypother-
mia), and injury specific optimal pharmacology (pharma-
cokinetics, pharmacodynamics) and treatment (routes of
administration, optimal time window, drug combinations,
etc.)

• Support development of novel head (brain, ears, eyes) protective
armor.

DISCLAIMER
The views expressed in this paper are those of the authors and may
not necessarily be endorsed by the U.S. Army or U.S. Department
of Defense.
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