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Abstract

Background: There are different and complicated associations between genes and diseases. Finding the causal
associations between genes and specific diseases is still challenging. In this work we present a method to predict
novel associations of genes and pathways with inflammatory bowel disease (IBD) by integrating information of
differential gene expression, protein-protein interaction and known disease genes related to IBD.

Results: We downloaded IBD gene expression data from NCBI’s Gene Expression Omnibus, performed statistical
analysis to determine differentially expressed genes, collected known IBD genes from DisGeNet database, which were
used to construct a IBD related PPI network with HIPPIE database. We adapted our graph-based clustering algorithm
DPClusO to cluster the disease PPI network. We evaluated the statistical significance of the identified clusters in the
context of determining the richness of IBD genes using Fisher’s exact test and predicted novel genes related to IBD. We
showed 93.8% of our predictions are correct in the context of other databases and published literatures related to IBD.

Conclusions: Finding disease-causing genes is necessary for developing drugs with synergistic effect targeting many
genes simultaneously. Here we present an approach to identify novel disease genes and pathways and discuss our
approach in the context of IBD. The approach can be generalized to find disease-associated genes for other diseases.

Keywords: Disease gene, Inflammatory bowel disease, Gene expression, Protein-protein interaction

Background
Inflammatory bowel disease (IBD) causes chronic inflam-
mation of some or all part of the digestive tract. There
are two major subtypes of IBD: ulcerative colitis (UC) and
Crohn’s disease (CD). Both types usually involve severe
diarrhea, pain, fatigue and weight loss. IBD can bring
severe situations and can lead to life-threatening compli-
cations. IBD is still not curable since there are no suitable
drugs and targets for curing the disease.
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IBD is an idiopathic, chronic and often disabling inflam-
matory disorders of the gastrointestinal tract character-
ized by dysregulated mucosal immune response. IBD
can result in life threatening bleeding, sepsis and bowel
obstruction. The pathogenesis of IBD is still elusive and
therefore needs to be understood for developing cure for
IBD. Genome-wide association studies (GWAS), have sig-
nificantly advanced our understanding on the importance
of genetic susceptibility in IBD. The GWAS performed
to date together with a meta-analyasis of several GWAS
have identified a total of 163 IBD loci [1]. These studies
mainly focused on the common genetic variants (single
nucleotide polymorphisms (SNPs)). These risk loci are
asscciated to a handful of candidate genes which have
small contributory effects in IBD.
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Significant interest has been developed for inventing
new methods based on integrating omics data for iden-
tifying disease causal genes. For example, network-based
classification approaches have been developed to integrate
gene expression and protein interaction data to predict
breast cancer metastasis [2, 3], multiple sclerosis relapse
and remissions [4] and autoimmune disease [5]. Other
studies also identified subnetwork modules from inte-
grating protein interaction data with GWAS signals for
complex diseases [6].
During the past decade, a huge pile of biological data has

been generated from various large-scale omics studies,
prompting the scientific community to gain deeper insight
into underlying biological mechanisms of different dis-
eases. One of the interesting topics is to find disease-gene
associations. Broadly speaking, a disease-gene associa-
tion can be a connection reported in the literature, such
as a genetic association (i.e., mutations in a given gene
may lead to a specific disease), or inferred from other
sources [7]. Similarities between disease symptomes and
gene functions could be used to predict disease-causing
genes by text mining [8]. The human diseasome was
constructed by connecting diseases to shared disease-
causing genes [9]. Understanding of disease relationships
has been explored using different types of omics data such
as biological pathways [10], transcriptome data [11, 12],
biomedical ontologies [13, 14], and genome-wide associ-
ation study (GWAS) data [14–17]. Recently, large-scale
biological data have been analyzed based on networks,
and network topology has been utilized to provide insights
into diseases and their associations with genes [9, 18–20].
Because the interactions between bio-molecules play cru-
cial roles in the cell, the topology of biological networks is
likely to have various biological and clinical applications
[21, 22].
Cellular functions rely on the coordinated actions of

multiple genes, proteins, and metabolites. Therefore,
organizing biological information in the context of net-
works is important for deep understanding of biological
systems. Discovery of modules in biological networks
helps isolate systems with disease related properties and
reduces interactome complexity [23]. Proteins rarely act
alone as their functions tend to be regulated. Manymolec-
ular processes within a cell are carried out by molec-
ular machines that are built from a large number of
protein components organized by their protein-protein
interactions (PPIs). The disease proteins (the product of
disease genes) are not scattered randomly in the inter-
actome but tend to interact with each other. Because
of incompleteness of disease genes and PPI data, the
known disease genes usually fail to form observable mod-
ules in PPI networks. Out of 299 diseases only 20% of
the respective known disease gene from some type of
modules [24]. To compensate for such gaps to a certain

extent, In the present work we focus on finding novel
IBD associated genes and pathways by integrating IBD
gene expression, PPIs, and known IBD genes by adapting
the DPClusO network clustering algorithm we published
previously.

Results and Discussion
The method adopted in the present work has been illus-
trated in Fig. 1. Based on the IBD gene expression
data downloaded from NCBI’s Gene Expression Omnibus
(GSE57945) [25], we got 1197 and 4315 differentially
expressed genes (DEGs) (with false discovery rate (FDR)
< 0.05) between control and Crohn’s disease (CD) as well
as control and ulcerative colitis (UC) samples, respec-
tively. The venn diagram of the overlapping genes between
these two sets is shown in Fig. 2. CD and UC are closely
related diseases, hence, the differentially expressed genes
are largely overlapped (1035 overlapped genes). As our
focus is to find novel IBD genes and pathways by system
level analysis, we took the union set of the differentially
expressed genes from these two comparisons, and com-
bined these genes to a single set consisting of 4477 genes.
The differentially expressed genes are the potential candi-
dates to be relevant to IBD.

Construction of a disease relevant PPI network
We initially downloaded 866 genes reported in DisGeNet
database [26] as IBD genes. We found that 318 of the
866 IBD genes are out of the 4477 differentially expressed
genes (DEGs) we identified from gene expression analysis.
Let us name these 318 genes as IBD related differen-
tially expressed genes (IDEGs) and the rest 4159 as only
differentially expressed genes (ODEGs). In this work we
consider these 318 genes as known IBD genes.
We constructed a disease related PPI network based

on Human Integrated Protein-Protein Interaction rEf-
erence (HIPPE) database [27]. In HIPPE database
each interaction is reported with a confidence score.
We first extracted the interactions involving ODEGs
with a score greater than 0.7, which included 4135
ODEGs. We then retrieved the interactions involving
all 318 IDEGs with a score greater than 0.1. Thus we
retrieved a total of 38,500 interactions involving IDEGs,
ODEGs and other genes (OGs). From these interac-
tions, we empirically selected interactions to construct
the final PPI network according to following crite-
rion: IDEG-IDEG:0.1, IDEG-ODEG:0.1, IDEG-OG:0.72,
ODEG-IDEG:0.1, ODEG-ODEG:0.1, ODEG-OG:0.85. In
summary, we gave the highest priority to interactions
involving IDEGs (genes that are both known IBD genes
and differentially expressed genes according to the expres-
sion data we used). Also, most priority was given to
interactions for which both genes are ODEGs (only dif-
ferentially expressed genes). These genes are likely to
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Fig. 1 Flowchart demonstrating the major steps of the proposed approach

contain system level information of molecular mecha-
nism of IBD. The HIPPIE database recommend 0.72 as
a good score which we used for IDEG-OG interactions
and finally adjusted 0.85 for ODEG-OG interactions to
roughly keep similar number of DEGs (IDEGs + ODEGs)

Fig. 2 The venn diagram showing overlapping between differentially
expressed genes in case of CD and UC

and OGs (Other Genes) in the PPI network for the sake of
balance and thus extracted unbiased information. Finally
we selected 16,429 interactions involving 5056 genes with
291 IDEGs, 2072 ODEGs and 2693 OGs. The degree dis-
tribution of the network is shown in Fig. 3. As many
other typical PPI networks, the degree distribution of
our constructed network followed power law. Some other
global network properties of the network include average
path length 4.18, clustering co-efficient 0.1 and diameter
11. For such a big network the clustering coefficient of
0.1 is substantialy enough indicating presence of densely
connected clusters in the network.

Clustering of the PPI network
After creating the disease related PPI network we deter-
mined clusters in the network by DPClusO algorithm.
DPClusO generates overlapping clusters and ensures cov-
erage. For example, each node goes to at least one cluster.
We hypothesize that clustering of a disease relevant PPI
network helps isolate systems with disease related proper-
ties and therefore statistically significant clusters enriched
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Fig. 3 Degree distribution of the IBD related PPI network follows the power law

with known IBD genes can be used to predict novel IBD
genes and pathways based on the associations determined
by combined information of IBD gene expression and
protein-protein interactions.
We generated 9 sets of clusters from the PPI network

by DPClusO algorithm using density values of 0.1, 0.2, 03,
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Table 1 shows characteristics,
i.e. the number of clusters, size of the biggest cluster and
average cluster size, related to the clusters generated by
the 9 different density values. As expected, smaller den-
sity value resulted in larger and fewer number of clusters

Table 1 Characteristices of the clusters generated with different
input densties using the DPClusO algorithm based on the IBD
related PPI network

density #ofcluster maxsize avgsize

0.1 827 70 18.52

0.2 1229 42 10.69

0.3 1779 31 7.18

0.4 2219 21 5.74

0.5 2790 16 4.61

0.6 3597 13 3.53

0.7 4425 11 2.59

0.8 4534 9 2.50

0.9 4775 7 2.31

generated. To assess the enrichment of IDEGs in each of
the identified clusters we determined Fisher’s exact test
p-values. In this work we proposed to consider statisti-
cally significant clusters for predicting novel IBD related
genes and pathways. Therefore we assigned a score called
SScore (Significance Score) to each gene as a measure of
confidence of prediction based on the p-values of the clus-
ters they belong to. The definition of SScore is provided in
the Methods section. Based on these scores we performed
ROC analysis to determine which set of clusters should be
used for predicting novel IBD genes.

ROC analysis
In our disease relevant PPI network there are total 5056
genes out of which 291 genes are IDEGs which are among
the 318 genes considered as known IBD genes in the
present work. We predicted the degree of relevance of
the rest 4765 genes with IBD based on SScore. We col-
lected well curated and well studied IBD genes from 3
databases as follows, The Comparative Toxicogenomics
Database (CTD) [28], DisGeNet [26], HuGENet [29]
and published literatures on results of GWAS [30–33].
The venn diagram of the reported IBD genes in these
4 databases is shown in Fig. 4. It is noticeable that IBD
genes listed by these 4 sources are substantially different,
indicating the need for finding comprehensive set of
potential IBD genes. Although these four sources are not
the complete list of IBD genes, they can be used to assess
the effectiveness of SScore. The ROC curves correspond-
ing to the 9 sets of clusters are very similar, which imply
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Fig. 4 Venn diagram showing overlapping between IBD genes
collected from four different sources

the underlying signal in the carefully constructed PPI
network is very strong and DPClusO algorithm has been
successful to catch the signal for across a wide range of
the input parameter. Figure 5 shows the Area Under the
Curve (AUC) for the 9 ROC curves. The AUCs are not
very high, which may be due to incomplete information
of known good quality IBD genes. We observed that the
highest AUC was obtained in the case of the cluster set
generated using density = 0.5. So we selected the genes
included in the statistically significant clusters of this set,
adjusted the corresponding p-values for multiple testing
[34] and selected the genes having adjusted p-values less
than 0.05 as predicted IBD genes.

Prediction and validation
We predicted 909 genes (with adjusted p − value < 0.05 )
included in the clusters selected from the set correspond-
ing to the highest AUC as our predicted IBD genes. These
909 genes are other than the genes considered as known
IBD genes (IDEGs) in this work. The list of the 909 pre-
dicted IBD genes and corresponding adjusted p-values
are shown in Additional file 1. To validate our results
we initially searched how many of the predicted genes
are exactly matched with well curated known IBD genes.
We found 83, 8, 54, 22 of the predicted genes matched
with reported IBD genes in (1) HuGeNet, (2) CTD, (3)
DisGeNet databases and (4) GWAS results respectively.
After considering overlapping between databases, 14.5%
of our predicted genes matched with good quality known
IBD genes. Given the fact that we made predictions based
only on a specific gene expression data and a limited
set of known IBD genes, the 14.5% matching with good
quality data is significant (p − value < 3.45 × 10−12,
p-value determined based on hypergeometric ditsribu-
tion assuming total number of human genes as 20000).
However, our approach is a computational approach. So,

it is rational to compare our result also with computa-
tionally predicted IBD genes. In CTD database other than
the good quality curated set there is a big set of genes
inferred as IBD genes by various methods. When we com-
pare our result with this big set, we find that 93.8% of
the genes we predicted matched with reported IBD genes
(p− value < 9.8× 10−14). As we have predicted the genes
by wisely integrating the information of gene expression
and protein-protein interaction, it is very likely that they
are truely related to IBD. One of the predicted genes IL12B
is supported by all four above-mentioned sources as an
IBD related gene. IL12B and IL23R have been identified as
susceptibility genes for IBD by recent genome-wide asso-
ciation studies [35]. Each of the three genes CCR5, IL1R2
and LTA is mentioned as IBD related gene in three of the
above mentioned sources. High expression of CCR5 has
been reported in active IBD [36]. Epithelial IL1R2 takes
part in homeostatic regulation during remission of ulcer-
ative colitis [37]. It has been reported that LTA elicits a
strong inflammatory reaction controlled by intestinal den-
dritic cells [38]. Thus we have found IBD relevance of
many other predicted genes by literature review. The pro-
posed method, however is a computational one and the
role of the newly predicted genes in IBD pathogenesis
should be clarified by further studies.
The degree of relevance of the 909 genes (shown in

Additional file 1) predicted by the proposed approach can
be evaluated by the corresponding p-values. The top 20
predicted novel IBD genes (not reported in any of the four
sources of Fig. 4) based on p-values are IKBKG, BIRC3,
BCL10, RNF31, RBCK1, CCRL1, LAMC3, CARD11,
KISS1, THBS2, TRAF2, TRAF1, PYCARD, MIS12, ALB,
AR, RIPK1, SHARPIN, SNAPIN and ITGA2B. Many of
these 20 top IBD risk genes we identified from this
study have been found to be associated with IBD. In
human, the IKBKG gene encodes NF-κB essential mod-
ulator (NEMO) which is an inhibitor of nuclear factor
κB kinase subunit gamma (IKK-γ ) [39]. NEMO (IKK-
γ ) is the regulatory subunit of the inhibitor of the I-κB
kinase (IKK) complex, that activates NF-κB causing acti-
vation of genes involved in inflammation, immunity, cell
survival, and other pathways. IBD-like immunopathology
can be developed by IKBKG [40]. BIRC2 and BIRC3 are
important genes in regulating the expression of proin-
flammatory cytokines, such as TNF-α, through NF-κB
and MAPK pathways [41]. BCL10 is an adaptor protein
which is assumed to play role in the PAF-induced inflam-
matory pathway in human intestinal epithelial cells [42].
RNF31 and HOIL-1L complex functions in linear ubiqui-
tination of proteins in the NF-κB pathway in response to
proinflammatory cytokines [43]. CCRL1 acts as a func-
tional receptor for the monocyte chemoattractant protein
family of chemokines; elevated chemokine expression is
associated with many inflammatory diseases such as IBD,
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Fig. 5 AUCs corresponding to 9 sets of clusters

rheumatoid arthritis and asthma [44, 45]. As a compo-
nent of the LUBAC complex, RBCK1 conjugates linear
(Met1-linked) polyubiquitin chains to substrates and thus
plays imoportant role in NF-κB activation and inflam-
mation regulation [46]. RBCK1-deficiency is associated
with autoinflammatory syndrome and immunodeficiency
[46]. LAMC3 is expressed saliently at significantly dif-
ferent proportions in low and high coherence expression
profiles of IBD patients [47]. The elevated stromal pro-
tein thrombospondin-2 (THBS2) has been reported to
be a part of a fibroblast-specific inflammation signa-
ture [48]. It has been shown that TRAFs are important
mediators of innate immune receptor signaling [49]. IBD
and IBD recurrence is associated with the overexpres-
sion of TRAF2 [50–52]. TRFA1 is reported to be highly
expressed in IBD patients [53]. To form the basic Inflam-
masome subunit, the adaptor protein ASC (encoded by
the PYCARD gene) links theNLR sensor to caspase-1 [54].
TNF-α-induced necroptosis is associated with two mem-
bers of the receptor-interacting protein (RIP) family of
kinases – RIPK1 and RIPK3 [55]. Tumor necrosis factor-
α (TNF-α) can bind to one of two receptors, TNFR1
or TNFR2; TNFR activation results in the activation
of NF-κB leading to the induction of proinflammatory
cytokines [55].

Comparison with ToppGene
It has been demonstrated that ToppGene [56] performs
better than several other methods such as SUSPECTS
[57], PROSPECTOR [58], ENDEAVOUR [59] in candidate
gene prioritization. From the ToppGene suite [60] we used

ToppGenet which is a web based tool that can take input a
set of seed genes and can return a list of genes with closely
related roles with a prioritization score. In our work, based
on gene expression data and DisGeNet database we con-
sidered 318 genes as known IBD genes and based on
those we predicted 909 other genes as IBD related genes.
We assigned the same 318 genes to ToppGenet and from
the output we selected the highest ranking 909 genes
which we compared with the 909 genes determined by
our approach. For both sets, we determined the number
of genes matched with the union of reported IBD genes in
4 sources of Fig. 4. Also we determined the AUCs using
prioritization score and SScore in case of ToppGenet
and our approach respectively. In case of ToppGenet,
we selected network based approach as our approach
is also network based. Furthermore, we used 3 avail-
able options for ToppGenet as follows: (i) K-Step Markov,
(ii) Page rank with priors and (iii) Hits with priors. The
comparison results are shown in Table 2. The results
show that performance of our approach is comparable
in terms of the number of identified genes and better in
terms of AUC.

Gene ontology and pathway analysis
As a group the top 20 predicted genes (names mentioned
in the previous section) are enriched in some important
BP(Biological Process) related GO terms, such as I-κB
kinase/NF-κB signaling, positive regulation of immune
response, regulation of tumor necrosis factor-mediated
signaling pathway and MF(Molecular Function) terms,
such as ubiquitin protein ligase binding, identical protein
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Table 2 Results of comparison with ToppGene

Parameter of comparison ToppGenet Our Method

K-step Markov Page rank with priors Hits with priors

Number of match 163 > 169 > 102 < 132

AUC 0.4969 < 0.4339 < 0.4831 < 0.5826

binding. We also performed enrichment analysis for all
of the 909 genes. Some significant BP related GO terms
enriched in these genes are nitrogen compoundmetabolic
process, response to stimulus, immune system process,
cell surface receptor signaling pathway, response to stress,
response to lipid, positive regulation of leukocyte cell-
cell adhesion and MF terms are enzyme regulator activity,
kinase activity, protein complex binding, histone deacety-
lase binding, transcription factor activity, protein bind-
ing, protein C-terminus binding. NF-κB pathway mediate
events including the activation of genes encoding inflam-
matory molecules and is found to be chronically active
in IBD [61]. All the above mentioned GO terms asso-
ciated to a group of genes were searched by using the
enrichment analysis tool [62] provided in the web page of
Gene Ontology Consortium.

As examples we arbitrarily select and show 6 of the
statistically significant clusters in Fig. 6(a)-(f). In these
clusters 4, 5, 4, 4, 3, 5 genes are IDEGs respectively and 3,
2, 3, 2, 2, 2 genes are reported to be IBD genes by 4 reliable
sources asmentioned in Fig. 4.Many of the genes included
in these clusters are related to IBD. It has been reported
that SOCS deficient mice develop severe colitis (similar
to human ulcerative colitis) depending on some factors
[63]. Expression of IGF1R in submucosal fibroblast-like
cells, subserosal adipocytes and hypertrophic plexus has
been confirmed to be CD specific, indicating relations
between IGF1R and chronic inflammation [64]. It has
been reported that the deficit of PTPN11 is related to
the severity of colitis [65]. IRF8 promotes the produc-
tion of IL12 and IL23 in the development of experi-
mental autoimmune encephalomyelitis and inhibits the

Fig. 6 (a)-(f) Examples of statistically significant clusters

af
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production of IL27, and thus forms a cytokine environ-
ment suitable for differentiation and maintenance of Th1
cells and Th17 cells and also, IRF8 exacerbates inflamma-
tion by activating microglia [66]. C-C motif chemokine
receptors, CCR1 and CCR3 are membrane proteins that
particulaly bind and respond to cytokines of the CC
chemokine family [67, 68].
Based on significant p-values, we empirically selected

some enriched BP and MF terms for these clusters. Some
important BP related GO terms enriched in these clus-
ters (a)-(f ) are as follows: (a) cell surface receptor sig-
naling pathway, regulation of cellular response to insulin
stimulus, cellular response to hormone stimulus, (b) neg-
ative regulation of programmed cell death, response to
endogenous stimulus, cell differentiation, (c) regulation
of cytokine production, intracellular signal transduction,
regulation of type I interferon production, (d) toll-like
receptor signaling pathway, activation of innate immune
response, inflammatory response, (e) regulation of tran-
scription from RNA polymerase II promoter, negative
regulation of transcription, DNA-templated, negative reg-
ulation of nitrogen compound metabolic process, (f )
chemotaxis, inflammatory response, positive regulation of
MAPK cascade and MF related GO terms are as follows:
(a) phosphatidylinositol 3-kinase binding, insulin receptor
binding, receptor binding (b) transcription factor bind-
ing, regulatory region DNA binding, chromatin binding,
(c) transcription factor activity, sequence-specific DNA
binding, chromatin binding, (d) signal transducer activity,
Toll-like receptor binding, (e) SUMO transferase activity,

ubiquitin-like protein ligase binding, (f ) G-protein cou-
pled receptor binding, cytokine receptor activity.
We hypothesize that clustering disease related PPI net-

work helps isolate systems with disease related properties.
Therefore, we selected 442 statistically significant clusters
(p − value < 0.05). We use these statistically significant
clusters to determine IBD related pathways.We separately
mappled the genes included in each of the statistically
significant clusters to KEGG pathway [69]. For each clus-
ter we determined the top three pathways based on the
association of majority number of genes. Additional file 2
shows the selected pathways and enriched GO terms for
these clusters. Frequencies of these selected pathways
are shown in histograms of Fig. 7. The top 10 path-
ways with the highest frequency are : (1) MAPK signaling
pathway, (2) Chemokine signaling pathway, (3) Cytokine-
cytokine receptor interaction, (4) Pathways in cancer, (5)
Toll-like receptor signaling pathway, (6) Cell cycle, (7)
NOD-like receptor signaling pathway, (8) Apoptosis, (9)
Endocytosis, (10) Focal adhesion. Particularly interested
pathways associated with IBD in these results are MAPK,
Chemokines, Cytokines, Toll-like receptors, and NOD-
like receptor pathway. Previous studies have shown that
these predicted pathways are highly relevant to IBD.
MAPK signaling pathway are evolutionarily conserved

kinase modules whose fanctions are to transmit extra-
cellular signals to various machinery inside the cell that
manage fundamental cellular processes such as growth,
differentiation, migration, proliferation and apoptosis.
Activation of ERK1/2 by growth factors depends on

Fig. 7 Frequencies of pathways related to statistically significant clusters



Eguchi et al. BMC Bioinformatics  (2018) 19:264 Page 9 of 12

the MAPKKK c-Raf, but other MAPKKKs may activate
ERK1/2 in response to pro-inflammatory stimuli [70].
Small chemoattractant peptides called Chemokines pro-
vide directional cues for the cell trafficking and there-
fore are important for protective host response. They
are soluble factors which play key roles in regulating
immune cell recruitment during inflammatory responses
and defense againsst foreign pathogens. Soluble extra-
cellular proteins or glycoproteins known as Cytokines
are crucial intercellular regulators and mobilizers of cells
involved in inherent as well as adaptive inflammatory host
defenses, cell death, cell growth, angiogenesis, differen-
tiation and development and repair processes targeting
the restoration of homeostasis. It has been reported that
cytokines/chemokines are engaged in not only the initia-
tion but also the persistence of pathologic pain by activat-
ing nociceptive sensory neurons. There are inflammatory
cytokines engaged in nerve-injury/inflammation-induced
central sensitization, and are associated to the devel-
opment of contralateral hyperalgesia/allodynia [71, 72].
Toll-like receptors (TLRs) are a family of pattern recog-
nition receptors that are best-known for their role in
host defence from infection. It has been reported that
TLRs play important role in maintaining tissue home-
ostasis by regulating the inflammatory responses to injury
[73]. The intracellular NOD-like receptor (NLR) family
contains more than 20 members in mammals and plays
a pivotal role in the recognition of intracellular ligands.
The activated state of caspase-1 regulates maturation of
the pro-inflammatory cytokines IL-1B, IL-18 and drives
pyroptosis [74].

Conclusions
We presented a method for predicting IBD related genes
and pathways by integrating the information of IBD gene
expression and protein-protein interactions and a set of
known IBD genes from DisGeNet database. We deter-
mined differentially expressed genes (DEGs) based on
IBD gene expression data and constructed a IBD rele-
vant PPI network using DEGs and known IBD genes.
We extracted high density modules from the PPI net-
work using our graph clustering algorithm DPClusO. We
determined modules enrichment with known IBD genes
by Fisher’s exact test and used those statistically signifi-
cant modules to predict novel IBD genes and pathways.
We compared our results with several other databases and
published literatures. We found 93.8% of our predictions
are found in these published results. Specially we found
our results substantiallymatchedwith IBD genes collected
in curated databases and high-profile publications.
Furthermore, based on our ranking score, we selected

top 20 predicted novel IBD genes and by literature survey
we observe thatmost of these genes are really substantially
related to IBD. As a group these 20 genes are enriched in

the GO term I-κB kinase/NF-κB signaling. NF-κB path-
way mediates events including the activation of genes
encoding inflammatory molecules and is found to be
chronically active in IBD. Also, based on statistically sig-
nificant clusters we identified top 10 IBD related pathways
which include MAPK signaling pathway, Chemokine sig-
naling pathway, Cytokine-cytokine receptor interaction
etc. These pathways play roles in inflammation related
diseases including IBD.
Finding disease-causal genes is the part of the pro-

cess to understand disease mechanism and develop
drugs that can provide synergistic effects targeting many
genes/proteins simultaneously. This study discussed a
computational approach to reach these goals in the con-
text of IBD. The proposed method can also be applied to
find disease-causal genes related to other diseases.

Methods
Data collection and preprocessing
We downloaded the IBD gene expression data from
NCBI’s Gene Expression Omnibus (GSE57945) [25]. The
gene expression data was generated using TopHat [75].
The samples were collected for three biological groups:
healthy control, Crohn disease and ulcerative colitis [24].
We removed genes with expression values equaling to zero
across all samples. The final expression data set included
14664 genes and 322 samples, which included 42 con-
trol samples, 218 CD samples, and 62 UC samples. We
also downloaded reported IBD genes from several other
databases, such as The Comparative Toxicogenomics
Database (CTD) [28], DisGeNet [26], HuGENet [29]. The
protein-protein interaction data was downloaded from
HIPPE database [27].

Identifying differentially expressed genes
We performed differential expression analysis using the
R package edgeR, which is based on negative binomial
models [76]. We implemented the exact test for a differ-
ence in mean between two groups of negative binomial
random variables by using edgeR after applying Trimmed
Mean of M-value(TMM) normalization [77, 78] to data.
False discovery rate (FDR) was estimated from unadjusted
p-values using Benjamini Hochberg multiple testing
method [34, 79].

Network clustering by DPClusO
DPClusO is a graph clustering algorithm [80], which is the
updated version of DPClus algorithm [81]. DPClusO can
extract densely connected nodes in a network as a cluster
or module. Particularly, it produces overlapping clusters
or modules since genes can be disease-causal genes in
multiple diseases or have multiple biological functions
and are involved in multiple pathways. This algorithm can
be applied to an undirected graphG = (N ,E) that consists
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of a finite set of nodes N and a finite set of edges E. Two
important parameters used in this algorithm are density
dk and cluster property cpnk . Density dk of cluster k is the
ratio of the number of edges present in the cluster (|E|)
and the maximum possible number of edges in the cluster
(|E|max). The cluster property cpnk of node n with respect
to cluster k is expressed by the follow equation:

cpnk = Enk
dk × Nk

Nk is the number of nodes in cluster k. Enk is the total
number of edges between the node n and each of the
nodes of cluster k.

Fisher’s exact test
We evaluated the enrichment of the known IBD genes
(referred to as IDEGs in the present work) in the clus-
ters from our PPI analysis using Fisher’s exact test. The
test is an alternative statistical significance test used in the
analysis of 2 × 2 contingency tables [82, 83].
To do this, for each cluster we determined the values

of a, b, c, and d as demonstrated in the following table:

IBD Genes Non-IBD Genes

In Cluster a b a + b
Not in Cluster c d c + d

a + c b + d n

Here n is the total number of genes in the network.

SScore
We assigned a score called SScore (Significance Score)
to each gene as a measure of confidence of prediction
based on the p-values of the clusters they belong to. By
definition SScore = −log(p − value). As DPClusO gener-
ates overlapping clusters, a gene may belong to more than
one clusters and thus may correspond to more than one
p-values. We used the lowest p-value corresponding to a
gene to calculate its SScore.

ROC Analysis
We evaluated the power of SScore to predict the known
IBD genes by performing receiver operating characteris-
tic (ROC) analysis [84, 85]. The ROC curve was created
by selecting a series of threshold SScore values to gener-
ate True Positive Rate (TPR) and False Positive Rate (FPR).
TPR is the proportion of true positive predictions out of
all the positive data and FPR is the proportion of false
positidve predictions out of all the negative data and can
be expressed by the following equations:

TPR = TP
TP + FN

FPR = FP
FP + TN

Corresponding to a certain threshold SScore th, false
positive (FP), true positive (TP), false negative (FN) and
true negative (TN) are defined as follows: TP is the num-
ber of reported IBD genes having SScore ≥ th, FP is the
number of non-IBD genes having SScore ≥ th, TN is the
number of non-IBD genes having SScore < th, and FN is
the number of reported IBD genes having SScore < th.
We observed the performance of SScore to identify

known IBD genes by using the Area Under the ROCCurve
(AUC) analysis [86]. In term of AUC analysis, we used
R package named ROCR [87]. We considered a predic-
tion as ’True’ prediction if a gene is reported as IBD gene
in any of the following four sources: (1) Human Genome
Epidemiology Network (HuGENet), (2) Comparative Tox-
icogenomics Database (CTD), 3) DisGeNet database and
(4) GWAS results [30–33]. Here, FP, TP, FN, TN were cal-
culated based on known information i.e. without having
knowledge of all IBD related and unrelated genes. There-
fore, the calculated TPR and FPR values were affected by
the unknown nature of the TN and FN genes.

Additional files

Additional file 1: List of predicted IBD genes. (XLSX 26 kb)

Additional file 2: Significant clusters with selected pathways and
enriched GO terms associated to them. (XLSX 31 kb)
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