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ABSTRACT
CENP-A (Centromere protein A) is a histone H3 variant that epigenetically determines the centromere
position, but the mechanism of its centromere inheritance is obscure. We propose that CENP-A
ubiquitylation, which is inherited through dimerization between rounds of cell division, is a candidate for
the epigenetic mark of centromere identity. KEYWORDS
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Centromere protein A (CENP-A) is a centromere-specific
histone H3 variant that plays an essential role in ensuring
kinetochore assembly for proper chromosome segregation.
CENP-A nucleosomes are required for active centromeres that
recruit a constitutive centromere-associated network (CCAN)
and the other kinetochore proteins in a DNA sequence–inde-
pendent manner.1 In most species, except budding yeast, cen-
tromere identity relies not on the DNA sequence but on the
presence of a special nucleosome that contains CENP-A.1

CENP-A nucleosomes in human chromosomes localize to the
inner kinetochores and bind to the 171-bp a-satellite DNA.1

Therefore, CENP-A is proposed to be the epigenetic mark of
centromere identify. The key question is how human CENP-A
functions as the epigenetic mark at the molecular level. Our
previous studies showed that CUL4A (Cullin 4A)-RBX1 (Ring-
box 1)-COPS8 (COP9 signalosome complex subunit 8) E3
ligase activity is required for ubiquitylation of lysine 124
(K124) in CENP-A and centromere localization of CENP-A
during the M and G1 phases.2

In our recent article published in Cell Reports,3 we demon-
strated that CENP-A K124 ubiquitylation is epigenetically
inherited through dimerization between rounds of cell division.
Our results of in vivo and in vitro ubiquitylation assays using a
constitutively ubiquitylated CENP-A mutant clearly showed
that ubiquitylated CENP-A is required for ubiquitylation of
nonubiquitylated CENP-A. Therefore, the heterodimer (i.e., a
dimer of old CENP-A and new CENP-A) is presumably recog-
nized by the CUL4A complex, and the new CENP-A is ubiqui-
tylated and maintained at the centromeres.2 Based on these
results, we provide a model of epigenetic inheritance of
CENP-A ubiquitylation for the control of CENP-A deposition

and maintenance at centromeres (Fig. 1). CENP-A–containing
nucleosomes are formed with canonical histones H2A, H2B,
and H4 at the active centromeres, but the current model of
interconversion between tetrameric and octameric CENP-A
nucleosomes in the cell cycle remains controversial1 Here, we
have provided an octamer model of epigenetic inheritance of
CENP-A ubiquitylation for simplicity (Fig. 1). H3.3 is depos-
ited at centromeres during S phase as a placeholder for
CENP-A that is newly assembled during G1 phase4 (Fig. 1, S
phase). In this octamer model, 2 CENP-A dimers in one nucle-
osome are split/diluted between the 2 daughter centromere-
DNA sequences, and one CENP-A molecule is either replaced
with one H3 molecule or leaves a molecule-free gap during rep-
lication/S phase (Fig. 1, S phase). Evidence from our studies
and others3 supports our proposed model in which Holliday
junction recognition protein (HJURP) preferentially binds to
ubiquitylated, preassembled “old” CENP-A, which resides pre-
dominantly in nucleosomes (Fig. 1, (1), anaphase/telophase).
During this process, newly synthesized, free CENP-A targets
ubiquitylated centromeric CENP-A through its attraction to
HJURP (Fig. 1, (1), telophase/early G1). Subsequently, new
CENP-A is ubiquitylated in the proximity of the nucleosome
and/or inside the nucleosomes in a heterodimerization-depen-
dent manner (old CENP-A–new CENP-A) (Fig. 1, (1),
telophase/early G1), and HJURP partly contributes to ubiquity-
lation. Thus, in these models ubiquitylation and the location of
the centromere are inherited epigenetically (Fig. 1, (1)).

If K124 ubiquitylation does not occur on newly synthesized
CENP-A (Fig. 1, (2), first telophase/early G1), non-ubiquitylated
CENP-A would occupy one of the duplicated/split nucleosomes
when old CENP-A is distributed during the S phase (Fig. 1, (2), S
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phase). This non-ubiquitylated CENP-A nucleosome does not
recruit HJURP at the centromere because the affinity of non-ubiq-
uitylated CENP-A to HJURP is low (Fig. 1, (2), second telophase).
Subsequently, this loss of localization of HJURP at the centromere
leads to a failure to target new CENP-A to ubiquitylated centro-
meric CENP-A via HJURP, and eventually to the failure of new
CENP-A deposition (Fig. 1, (2), second telophase/early G1). There-
fore, CENP-A ubiquitylation is necessary for epigenetic inheritance
of the centromere location in humans.

More than 100 neocentromeres in human clinical samples
have been described.5 They form on diverse DNA sequences
and are associated with CENP-A localization but not with
a-satellite arrays. These findings provide strong evidence that
human centromeres result from DNA sequence-independent
epigenetic mechanisms. However, human neocentromeres have
not yet been created experimentally; overexpression of CENP-
A induces mislocalization of CENP-A but not the formation of
functional neocentromeres.6 Identification and analysis of

Figure 1. Models of epigenetic inheritance of centromere protein A (CENP-A) ubiquitylation. In the octamer model, 2 CENP-A dimers in one nucleosome are split/diluted
between the 2 daughter centromere-DNA sequences, and one CENP-A molecule is either replaced with one H3 molecule or leaves a molecule-free gap during replica-
tion/S phase. HJURP (Holliday junction recognition protein) preferentially binds to ubiquitylated, preassembled “old” CENP-A, which resides predominantly in nucleo-
somes. A new CENP-A monomer targets ubiquitylated centromeric CENP-A via preassembled HJURP. Note that histone H4 is omitted for simplicity. (1) New CENP-A is
properly ubiquitylated in a heterodimerization-dependent manner (i.e., dimers of old CENP-A with new CENP-A). In this way, both ubiquitylation and the location of the
centromere are inherited epigenetically. (2) If K124 ubiquitylation does not occur on newly synthesized CENP-A, the non-ubiquitylated CENP-A nucleosome distributed
during the S phase does not recruit HJURP to the centromere because the affinity of non-ubiquitylated CENP-A to HJURP is low. Subsequently, this loss of localization of
HJURP at the centromere leads to the failure of new CENP-A targeting to ubiquitylated centromeric CENP-A via HJURP, and eventually to the failure of new CENP-A
deposition.
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factors essential for the generation of human neocentromeres is
important to clarify the mechanism of epigenetic inheritance of
centromeres. In our study,3 overexpression of the monoubiqui-
tin fusion protein Flag-CENP-A K124R-Ub (K48R) led to suffi-
cient recruitment of HJURP and central-outer kinetochore
components to noncentromeric chromatin regions, and SKA1-
positive putative neocentromeres were replicated and inherited
epigenetically between rounds of cell division.

CENP-A has been proposed to be the epigenetic mark of
the centromere identity in many studies.1 However, we have
shown that overexpression of CENP-A itself is not sufficient
for the creation of a neocentromere at a noncentromeric
region (Fig. 1) and that ubiquitylation of CENP-A is necessary
for the formation of neocentromeres and for epigenetic inheri-
tance of the centromere location in humans.3 Considering that
histone post-translational modifications are traditionally
defined as “epigenetic marks”, we propose that CENP-A ubiq-
uitylation is a candidate for the epigenetic mark of centromere
location, i.e., the centromere identity.

Overexpression of CENP-A and addition of neocentromere
to a chromosome with an endogenous centromere results in
aneuploidy, which can lead to cancer.7-9 Thus, revealing the
mechanism that controls quantitative amounts of CENP-A and
neocentromere formation will contribute to our understanding
of the mechanism of “cancer evolution” that results in resis-
tance to cancer therapy.
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