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ABSTRACT The advent of next generation sequencing technologies has made whole-genome and whole-population sampling
possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe
molecular evolution “in action” via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to
locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes
large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In
this article, we propose a method—composition of likelihoods for evolve-and-resequence experiments (CLEAR)—to identify signatures
of selection in small population E&R experiments. CLEAR takes whole-genome sequences of pools of individuals as input, and properly
addresses heterogeneous ascertainment bias resulting from uneven coverage. CLEAR also provides unbiased estimates of model
parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations
show that CLEAR achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation
of coverage. We applied the CLEAR statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila
melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection
with genome-wide significance.
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NATURAL selection is a key force in evolution, and a
mechanism by which populations can adapt to external

“selection” pressure. Examples of adaptation abound in the
natural world (Fan et al. 2016), including classic examples
like lactose tolerance in Northern Europeans (Bersaglieri
et al. 2004), human adaptation to high altitudes (Simonson
et al. 2010; Yi et al. 2010), but also drug resistance in pests
(Daborn et al. 2001), HIV (Feder et al. 2016), cancer
(Gottesman 2002; Zahreddine and Borden 2013), malarial
parasite (Nair et al. 2007; Ariey et al. 2014), and others

(Spellberg et al. 2008). In these examples, understanding
the genetic basis of adaptation can provide valuable informa-
tion, underscoring the importance of the problem.

Experimental evolution refers to the study of the evolution-
ary processes of a model organism in a controlled (Hegreness
et al. 2006; Bollback and Huelsenbeck 2007; Barrick et al.
2009; Lang et al. 2011; Orozco-ter Wengel et al. 2012; Lang
et al. 2013; Oz et al. 2014) or natural (Barrett et al. 2008; Reid
et al. 2011; Denef and Banfield 2012; Winters et al. 2012;
Daniels et al. 2013; Maldarelli et al. 2013; Bergland et al.
2014) environment. Recent advances in whole-genome se-
quencing have enabled us to sequence populations at a reason-
able cost, even for large genomes. Perhaps more important for
experimental evolution studies, we can now evolve and rese-
quence (E&R) multiple replicates of a population to obtain
longitudinal time-series data, to investigate the dynamics of
evolution at the molecular level. Although constraints such
as small sizes, limited timescales, and oversimplified labora-
tory environments may limit the interpretation of E&R results,
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these studies are increasingly being used to test a wide range
of hypotheses (Kawecki et al. 2012) and have been shown to
be more predictive than static data analysis (Sawyer and Hartl
1992; Boyko et al. 2008; Desai and Plotkin 2008). In partic-
ular, longitudinal E&R data are being used to estimate
model parameters including population size (Pollak 1983;
Waples 1989; Williamson and Slatkin 1999; Wang 2001;
Terhorst et al. 2015; Jónás et al. 2016), strength of selection
(Bollback et al. 2008; Illingworth and Mustonen 2011;
Illingworth et al. 2012; Malaspinas et al. 2012; Mathieson
and McVean 2013; Steinrücken et al. 2014; Terhorst et al.
2015), allele age (Malaspinas et al. 2012), recombination
rate (Terhorst et al. 2015), mutation rate (Barrick and Lenski
2013; Terhorst et al. 2015), quantitative trait loci (Baldwin-
Brown et al. 2014), and for tests of neutrality hypotheses
(Burke et al. 2010; Bergland et al. 2014; Feder et al. 2014;
Terhorst et al. 2015).

While many E&R study designs are being used (Barrick
and Lenski 2013; Schlötterer et al. 2015), we restrict our
attention to the adaptive evolution due to standing variation
in fixed-size populations. This regime has been considered
earlier, typically with Drosophila melanogaster as the model
organism of choice, to identify adaptive genes in longevity
and aging (600 generations) (Burke et al. 2010; Remolina
et al. 2012), courtship song (100 generations) (Turner et al.
2011), hypoxia tolerance (200 generations) (Zhou et al.
2011), adaptation to new laboratory environments (59 gen-
erations) (Orozco-ter Wengel et al. 2012; Franssen et al.
2015), egg size (40 generations) (Jha et al. 2015), C-virus
resistance (20 generations) (Martins et al. 2014), and dark-
fly (49 generations) (Izutsu et al. 2015).

The taskof identifying selection signatures canbeaddressed
at different levels of specificity. At the coarsest level, iden-
tification could simply refer to deciding whether some ge-
nomic region (or a gene) is under selection or not. In the
following, we refer to this task as detection. In contrast, the
task of site identification corresponds to the process of find-
ing the favored mutation/allele at the nucleotide level. Fi-
nally, estimation of model parameters, such as strength of
selection and dominance at the site, can provide a compre-
hensive description of the selection process.

In the effort to analyze E&R selection experiments, many
authors chose to adapt existing tests that were originally used
for static data, pairwise comparisons (two time points), and
single replicates to perform a null scan. For instance, Zhou
et al. (2011) used the ratio of the estimated population size
of case and control populations to compute a test statistic
for each genomic region. Burke et al. (2010) applied the
Fisher exact test to the last observation of data on case and
control populations. Orozco-terWengel et al. (2012) used the
Cochran–Mantel–Haenszel (CMH) test (Agresti and Kateri
2011) to detect SNPs whose read counts change consistently
across all replicates of two time-point data. Turner et al.
(2011) proposed the diffstat statistic to test whether the
change in allele frequencies of two populations deviate from
the distribution of change in allele frequencies of two drifting

populations. Bergland et al. (2014) calculated Fst to popu-
lations throughout time to signify their differentiation from
ancestral (two time-point data) as well as geographically
different populations. Jha et al. (2015) computed a test
statistic of generalized linear-mixed model directly from
read counts.

Alternatively, direct methods have been developed to an-
alyze time-series data by taking a likelihood approach, and
estimating population genetics parameters. Bollback et al.
(2008) proposed a hidden Markov model (HMM) to esti-
mate the selection coefficient s and population size by using
a diffusion approximation to the Wright–Fisher process.
Steinrücken et al. (2014) proposed a general diploid selec-
tion model which takes into account dominance of the
favored allele and approximates likelihood analytically. Re-
cently, Schraiber et al. (2016) proposed a Bayesian frame-
work to estimate parameters using Markov chain Monte
Carlo sampling. Mathieson and McVean (2013) adopted
HMMs to structured populations and estimated parameters
using an expectation maximization procedure on a discre-
tized allele frequency. Feder et al. (2014) modeled incre-
ments in allele frequency with a Brownian motion process,
proposed as the frequency increment test (FIT). More re-
cently, Topa et al. (2015) proposed a Gaussian process
(GP) for modeling single-locus, time-series, whole-genome
sequencing of pools of individuals (pool-seq) data. Terhorst
et al. (2015) extended GP to compute joint likelihood of
multiple loci under null and alternative hypotheses. Finally,
Levy et al. (2015) proposed a Bayesian model to handle
sequencing, amplification, and growth noise in a large pop-
ulation of barcoded lineages.

Among the methods specifically designed for time-series
data, many make assumptions which may not hold in E&R
studies. One common assumption is that the underlying pop-
ulation size is large, so it is reasonable to model dynamics of
allele frequencies using continuous-state models (Bollback
et al. 2008; Feder et al. 2014; Terhorst et al. 2015). Second,
many existing methods were originally designed to process
the wider time spans seen in ancient DNA studies, an assump-
tion that does not hold for E&R experiments (Steinrücken
et al. 2014; Schraiber et al. 2016). Finally, many E&R analysis
tools assume that allele frequencies in the input data are un-
biased (e.g., Bollback et al. 2008), which may not be valid for
shotgun sequencing experiments.

Here, we consider an HMM, similar to Williamson and
Slatkin (1999) and Bollback et al. (2008) but under a “small-
population-size” regime. Specifically, we use a discrete state
(frequency) model. We show that for small population sizes,
discrete models can compute likelihood exactly, which im-
proves statistical performance, especially for short time-span
experiments. Additionally, we add another level of sampling
noise to the traditional HMM model, allowing for heteroge-
neous ascertainment bias due to uneven coverage among var-
iants. We show that for a wide range of parameters, CLEAR

provides higher power for detecting selection, estimatesmodel
parameters consistently, and localizes the favored allele more
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accurately compared to the state-of-the-art methods, while
being computationally efficient.

Materials and Methods

Consider a panmictic diploid population with fixed size of N
individuals. Let n ¼ fntgt2T be the frequencies of the derived
allele at generations t 2 T for a given variant, where at gen-
erations T ¼ fti : 0# t0 , t1 . . . , tTg samples of n individ-
uals are chosen for pooled sequencing. The experiment is
replicated R times. We denote allele frequencies of the R
replicates by the set fngR: To identify the genes and variants
that are responding to selection pressure, we use the follow-
ing procedure:

1. Estimating population size: The procedure starts by esti-
mating the effective population size, N̂; under the assump-
tion that much of the genome is evolving neutrally.

2. Estimating selection parameters: For each polymorphic
site, selection and dominance parameters s; h are esti-
mated so as to maximize the likelihood of the time-series
data, given N̂:

3. Computing likelihood statistics: For each variant, a log-
odds ratio of the likelihood of selection model ðs.0Þ to
the likelihood of neutral evolution/drift model is com-
puted. Likelihood ratios in a genomic region are combined
to compute the CLEAR statistic for the region.

4. Hypothesis testing: An empirical null distribution of the
CLEAR statistic is calculated using genome-wide drift
simulations, and used to compute P-values and thresholds
for a specified false discovery rate (FDR). We perform
single-locus hypothesis testing within selected regions to
identify significant variants and report genes that intersect
with the selected variants.

These steps are described in detail below.

Estimating population size

Methods for estimating population sizes from temporal
neutral evolution data have been developed (Williamson
and Slatkin 1999; Anderson et al. 2000; Bollback et al.
2008; Terhorst et al. 2015; Jónás et al. 2016). Here, we
aim to extend these models to explicitly model the sam-
pling noise that arise in pool-seq data. Specifically, we
model the variation in sequence coverage over different
locations, and the noise due to sequencing only a subset
of the individuals in the population. In addition, many
existing methods (Bollback et al. 2008; Feder et al. 2014;
Terhorst et al. 2015; Topa et al. 2015) are designed for
large populations, and model frequency as a continuous
quantity. We observed that using Brownian motion to
model frequency drift may be inadequate for small popu-
lations, low starting frequencies, and sparse sampling (in
time); factors that are common in experimental evolution
(see Results, Figure 3, A–C, and Figure 2). To this end, we
model the Wright–Fisher Markov process for generating
pool-seq data (Supplemental Material, Figure S1 in File

S3) via a discrete HMM (Figure 1B). We start by comput-
ing a likelihood function for the population size given neu-
tral pool-seq data.

Likelihood for the neutral model: We model the allele
frequency counts 2Nnt as being sampled from a binomial
distribution. Specifically,

n0�p;
2Nntjnt21� binomialð2N; nt21Þ;

where p is the global distribution of allele frequencies in
the base population. Note that p depends on the demo-
graphic history of the founder lines and can be estimated
from the site-frequency spectrum (see Figure S2 in File S3) of
the initial population. For notational convenience, henceforth
we omit the dependence of likelihoods to the parameter p.

To estimate frequency after t transitions, it is enough to
specify the 2N3 2N transition matrix PðtÞ; where PðtÞ½i; j� de-
notes probability of change in allele frequency from i=2N to
j=2N in t generations:

Pð1Þ½i; j� ¼ Pr
�
ntþ1 ¼ j

2N

����nt ¼ i
2N

�

¼
 
2N

j

!
sn j

t ð12ntÞ2N2j;

(1)

PðtÞ ¼ Pðt21ÞPð1Þ: (2)

Furthermore, in an E&R experiment, n#N individuals are
randomly selected for sequencing. The sampled allele fre-
quencies, fytgt2T ; are also binomially distributed:

2nyt � binomialð2n; ntÞ: (3)

We introduce the 2N3 2n sampling matrix Y, where Y ½i; j�
stores the probability that the sample allele frequency is j=2n
given that the true allele frequency is i=2N:

We denote the pool-seq data for that variant as
fxt ¼ hct; dtigt2T ; where dt and ct represent the coverage
and the read count of the derived allele, respectively. Let
fltgt2T be the sequencing coverage at different generations.
Then, the observed data are sampled according to

dt � PoissonðltÞ; ct � binomialðdt; ytÞ: (4)

The emission probability for an observed tuple xt ¼ hdt; cti is

eiðxtÞ ¼
�
dt
ct

��
i
2n

�ct�
1 2 

i
2n

�dt2ct
: (5)

For 1# t#T; 1# j# 2N; let at; j denote the probability of
emitting x1; x2; . . . ; xt and reaching state j at tt: Then, at

can be computed using the forward procedure (Durbin
et al. 1998):

aT
t ¼ aT

t21P
ðdtÞdiag½YeðxtÞ�; (6)
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where dt ¼ tt 2 tt21: The joint likelihood of the observed
data from R independent observations is given by

LðNjfxgR; nÞ ¼
QR
r¼1

L
�
NjxðrÞ; n

�
¼ PrðfxgRjN; nÞ

¼
QR
r¼1

P
i
a
ðrÞ
T;i

(7)

where x ¼ fxtgt2T : The graphical model and the generative
process for which data are being generated is depicted in
Figure 1B and Figure S1 in File S3, respectively.

Finally, the last step is to compute an estimate N̂ that
maximizes the likelihood of all M variants in the whole ge-

nome. Let xðrÞi denote the time-series data of the ith variant in
replicate r. Then,

N̂ ¼ arg max
N

YM
i¼1

YR
r¼1

L
h
NjxðrÞi

i
: (8)

Estimating selection parameters

Likelihood for the selection model: Assume that the site is
evolving under selection constraints s 2 ℝ and h 2 ℝþ;where
s and h denote selection strength and dominance parameters,
respectively. By definition, the relative fitness values of geno-
types 0|0, 0|1, and 1|1 are given by w00 ¼ 1; w01 ¼ 1þ hs;

Figure 1 E&R selection experiments on D. melanogaster. (A) Typical configuration in which time-series data are collected for D. melanogaster. A
small set of founder lines ðF ¼ 200Þ is selected from a large population ðNo ¼ 106Þ; and used to create a subpopulation of isofemale lines. Multiple
replicates of the population are evolved and resequenced to collect time-series genomic data. For sequencing, n individuals are randomly sampled
and sequenced with coverage l. (B) Graphical model showing dependence of the random variables in the single-locus model used to compute
CLEAR statistics. Observed variables c (derived allele read count) and d (total read count) are shaded. The variables n; y; and l denote allele
frequency, sampled allele frequency, and mean sequencing coverage, respectively. (C) Mean and 95% confidence intervals of the (i and iii)
theoretical and (ii and iv) empirical trajectories of the favored allele for (i and ii) hard- and (iii and iv) soft-sweep scenarios and N ¼ 1000: The first
50 generations are shaded in gray to represent the sampling span of sampling in short-term experiments, illustrating the difficulty in predicting
selection at early stages of selective sweep.
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and w11 ¼ 1þ s: Then, ntþ ; the frequency at time tt þ 1 (one
generation ahead), can be estimated using:

n̂tþ ¼ E½ntþ js; h; nt� ¼
w11n

2
t þ w01ntð12 ntÞ

w11n
2
t þ 2w01ntð12 ntÞ þ w00ð12ntÞ2

¼ nt þ
sðhþ ð12 2hÞntÞntð12 ntÞ
1þ snt½2hþ ð12 2hÞnt�

:

(9)

The machinery for computing likelihood of the selection
parameters is identical to that of population size, except for
transition matrices. Hence, here we only describe the defini-
tion transition matrix Qs;h of the selection model. Let QðtÞ

s;h ½i; j�
denote the probability of transition from i=2N to j=2N in
t generations, then (see Ewens 2004, p. 24, equations
1.58–1.59):

Qð1Þ
s;h ½i; j� ¼ Pr

�
ntþ ¼ j

2N

����nt ¼ i
2N

; s; h;N
�

¼
 
2N

j

!
n̂
j
tþð12n̂tþÞ2N2j

(10)

QðtÞ
s;h ¼ Qðt21Þ

s;h Qð1Þ
s;h : (11)

The maximum likelihood estimates are given by

ŝ; ĥ ¼ arg max
s;h

YR
r¼1

L
�
s; hjxðrÞ; N̂

�
: (12)

Using grid search, we first estimate N (Equation 8), and
subsequently, we estimate parameters s and h (Equation
12, Figure S3 in File S3). By broadcasting and vectoriz-
ing the grid search operations across all variants, the
genome scan on millions of polymorphisms can be done
in a significantly smaller time than iterating a numerical
optimization routine for each variant (see Results and
Figure 6).

Empirical likelihood-ratio statistics

The likelihood-ratio statistic for testing directional selection,
to be computed for each variant, is given by

H ¼22log
	
Lð�s; 0:5jfxgR; N̂Þ
Lð0; 0:5jfxgR; N̂Þ



; (13)

where �s ¼ arg max
s

QR
r¼1Lðs; 0:5jxðrÞ; N̂Þ: Similarly, we can

define a test statistic for testing if selection is dominant
by

Figure 2 Comparison of empirical distributions of allele frequencies (red) vs. predictions from Brownian motion (green), and Markov chain (blue).
Comparison of empirical and theoretical distributions under neutral evolution (A–F) and selection (G–M) with different starting frequencies
n0 2 f0:005;0:1g and sampling times of T ¼ f0; tg; where t 2 f1; 10; 100g and N ¼ 1000: For each panel, the empirical distribution was computed
over 100,000 simulations. Brownian motion (Gaussian approximation) provides poor approximations when initial frequency is far from 0.5 (A) or
sampling is sparse (B, C, E , and F). In addition, Brownian motion can only provide approximations under neutral evolution. In contrast, Markov chain
consistently provides a good approximation in all cases.
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D ¼22log
	
Lð̂s; ĥjfxgR; N̂Þ
Lð�s; 0:5jfxgR; N̂Þ



: (14)

While extending the single-locus Wright–Fisher model to
multiple linked loci can improve the power of the model
(Terhorst et al. 2015), it is computationally and statistically
expensive to compute exact likelihood. In addition, comput-
ing linked-loci joint likelihood requires haplotype resolved
data, which pool-seq does not provide. Here, similar to
Nielsen et al. (2005), we calculate the composite-likelihood-
ratio score for a genomic region,

H ¼ 1
jLj
X
ℓ2L

Hℓ; (15)

where L is a collection of segregating sites and Hℓ is the
likelihood-ratio score based for each variant ℓ in L. The
optimal value of the hyper-parameter L depends upon a num-
ber of factors, including initial frequency of the favored allele,
recombination rates, linkage of the favored allele to neigh-
boring variants, population size, coverage, and time since the
onset of selection (duration of the experiment). In File S3, we
provide a heuristic to compute a reasonable value of L, based
on experimental data.

We work with a normalized value of H; given by

H*
i ¼

Hi 2mC
sC

; "i 2 C; (16)

where mC and sC are the mean and standard deviation of H
values in a large region C: We found different chromosomes
have different distributions of Hi values, and therefore de-
cided to use single chromosomes as C:

Hypothesis testing

Single-locus tests: Under neutrality, log-likelihood ratios can
be approximated by x2 distribution (Williams and Williams
2001), and P-values can be computed directly. However,

Feder et al. (2014) showed that when the number of inde-
pendent samples (replicates) is small, x2 is a crude approxi-
mation to the true null distribution and results in more false
positives. Following their suggestion, we first compute the
empirical null distribution using simulations with the esti-
mated population size (see Figure S1 in File S3). The empir-
ical null distribution of statisticH is used to compute P-values
as the fraction of null values that exceed the test score. Fi-
nally, we use the method of Storey and Tibshirani (2003) to
control for FDR in multiple testing.

Composite likelihood tests: Similar to single-locus tests, we
compute the null distribution of theH* statistic using whole-
genome simulations with the estimated population size, and
subsequently compute the FDR. The simulations for generat-
ing the null distribution of H* are described next.

Simulations

Weuse the same simulation procedure for twopurposes. First,
we use the simulations to test the power of CLEAR against other
methods in small genomic windows. Second, we use them to
generate the distribution of null values for the statistic to com-
pute empirical P-values. We mainly chose parameters that are
relevant to D. melanogaster experimental evolution (Kofler
and Schlötterer 2013). See also Figure 1A for illustration.

1. Creating initial founder line haplotypes: Using msms
(Ewing and Hermisson 2010), we created neutral popu-
lations for F founding haplotypes with command $./msms
hFi 1 2t h2mWNoi 2r h2rWNoi hWi, where F ¼ 200 is the
number of founder lines, No ¼ 106 is the effective founder
population size, r ¼ 23 1028 is the recombination rate,
and m ¼ 231029 is the mutation rate. The window size
W is used to compute u ¼ 2mNoW and r ¼ 2NorW: We
chose W = 50 kbp for simulating individual windows for
performance evaluations, andW= 20 Mbp for simulating
D. melanogaster chromosomes for P-value computations.

2. Creating initial diploid population: An initial set of F ¼ 200
haplotypes was created from step 1, and duplicated to

Figure 3 Power calculations for detec-
tion of selection. Detection power for
CLEAR ðHÞ; FIT, GP, and CMH under
(A–C) hard- and (D–F) soft-sweep scenar-
ios. l and s denote the mean coverage
and selection coefficient, respectively. Or-
ange hexagons represent the performance
of CLEAR when the maximum of the single-
locus statistic is used to make a decision
for the genomic region, while the red •
corresponds to the performance of CLEAR

when single-locus statistics are averaged
over the region. The y-axis measures
power—sensitivity with false-positive rate
ðFPRÞ#0:05—for 2000 simulations with
N ¼ 1000 and L ¼ 50 kbp: The horizon-
tal line reflects the power of a random
classifier. In all simulations, three replicates
are evolved and sampled at generations
T ¼ f0;10;20;30;40;50g.
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create F homozygous diploid individuals to simulate gener-
ation of inbred lines. N diploid individuals were generated
by sampling with replacement from the F individuals.

3. Forward simulation: We used forward simulations for
evolving populations under selection. We also consider
selection regimes in which the favored allele is chosen
from standing variation (not de novo mutations). Given
initial diploid population, position of the site under selec-
tion, selection strength s, number of replicates R ¼ 3; re-
combination rate r ¼ 23 1028; and sampling times
T ¼ f0; 10; 20; 30; 40; 50g; simuPop (Peng and Kimmel
2005) was used to perform the forward simulation and
compute allele frequencies for all of the R replicates. For
hard sweep (respectively, soft sweep) simulations we ran-
domly chose a site with an initial frequency of n0 ¼ 0:005
(respectively, n0 ¼ 0:1Þ to be the favored allele. For gen-
erating the null distribution with drift for P-value compu-
tations, we used this procedure with s ¼ 0:

4. Sequencing simulation: Given allele frequency trajecto-
ries we sampled depth of each site in each replicate iden-
tically and independently from Poisson (l), where
l 2 f30; 100; 300g is the coverage for the experiment.
Once depth d is drawn for the site with frequency n, the
number of reads c carrying the derived allele are sampled
according to binomialðd; nÞ: For experiments with finite
depth the tuple hc; di is the input data for each site.

Data availability

The source code and running scripts for CLEAR are publicly
available at https://github.com/airanmehr/clear.

D. melanogaster data was originally published (Orozco-ter
Wengel et al. 2012; Franssen et al. 2015). The data set of the

D. melanogaster study, until generation 37, is obtained from
the Dryad digital repository (http://datadryad.org) under
accession DOI: 10.5061/dryad.60k68. Generation 59 of the
D. melanogaster study is accessed from the European Se-
quence Read Archive (http://www.ebi.ac.uk/ena/) under
the project accession number PRJEB6340. The data set con-
taining the experimental evolution of yeast populations
(Burke et al. 2014) is downloaded from http://wfitch.bio.uci.
edu/�tdlong/PapersRawData/BurkeYeast.gz (last accessed
January 24, 2017). University of California, Santa Cruz browser
tracks for D. melanogaster and yeast data analysis are found in
File 1 and File 2, respectively.

Results

Modeling allele frequency trajectories in
small populations

We first tested the goodness of fit of the discrete vs. Brownian
motion (a continuous-state model) in modeling allele fre-
quency trajectories, under general E&R parameters. For this
purpose, we conducted 100 K simulations with two time
samples T ¼ f0; tg where t 2 f1; 10; 100g is the parameter
controlling the density of sampling in time. In addition, we
repeated simulations for different values of starting fre-
quency n0 2 f0:005; 0:1g (i.e., hard and soft sweep) and se-
lection strength s 2 f0; 0:1g (i.e., neutral and selection).
Then, given initial frequency n0; we computed the expected
distribution of the frequency of the next sample nt under two
models to make a comparison. Figure 2, A–F, shows that
Brownian motion (continuous model) is inadequate when n0
is far from 0.5, or when sampling times are sparse ðt. 1Þ: If
the favored allele arises from standing variation in a neutral
population, it is unlikely to have a frequency close to 0.5, and

Figure 4 Ranking performance for 1003 coverage. Cumulative distribution function (CDF) of the distribution of the rank of the favored allele in
1000 simulations for CLEAR (H), GP, CMH, and FIT, for different values of selection coefficient s and initial carrier frequency. Note that the individual
variant CLEAR score (H) is used to rank variants. The area under the curve is computed as an overall quantitative measure to compare the performance of
methods for each configuration. In all simulations, three replicates with N ¼ 1000 are evolved and sampled at generations T ¼ f0;10; 20; 30; 40;50g.
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the starting frequencies are usually much smaller (see Figure
S2 in File S3). Moreover, in typical D. melanogaster experi-
ments, for example, sampling is sparse. Often, the experiment
is designed so that 10# t# 100(Zhou et al. 2011; Orozco-ter
Wengel et al. 2012; Kofler and Schlötterer 2013; Franssen
et al. 2015).

In contrast to the Brownian motion approximation, dis-
crete Markov chain predictions (Equation 11) are highly
consistent with empirical data for a wide range of simulation
parameters (Figure 2, A–M). Moreover, the discrete Markov
chain can bemodified tomodel the case when the the allele is
under selection.

Detection power

We compared the performance of CLEAR against other meth-
ods for detecting selection. For each method we calculated
detection power as the percentage of true positives identified
with a false-positive rate # 0:05: For each configuration
(specified with values for selection coefficient s, starting allele
frequency n0; and coverage l), the power of each method is
evaluated over 2000distinct simulations, half ofwhichmodeled
neutral evolution and the rest modeled positive selection.

We compared the power of CLEAR with GP (Terhorst et al.
2015), FIT (Feder et al. 2014), and CMH (Agresti and Kateri

2011) statistics. FIT and GP convert read counts to allele
frequencies prior to computing the test statistic. CLEAR shows
the highest power in all cases and the power stays relatively
high even for low coverage (Figure 3 and Table S1 in File S3).
In particular, the difference in performance of CLEAR with
other methods is pronounced when starting frequency is
low. The advantage of CLEAR stems from the fact that the

Figure 6 Running time. Box plots of running time per variant (CPU sec-
onds) of CLEAR ðHÞ; CMH, FIT, and GP with 1, 3, 5, 7, and 10 loci over
1000 simulations conducted on a workstation with Intel Core i7 proces-
sor. The average running time for each method is shown on the x-axis. In
all simulations, three replicates are evolved and sampled at generations
T ¼ f0;10; 20; 30; 40;50g.

Figure 5 Distribution of bias for 1003
coverage. The distribution of bias ðs2 ŝÞ
in estimating selection coefficient over
1000 simulations using GP and CLEAR

(H) is shown for a range of choices for
the selection coefficient s and starting car-
rier frequency n0; when coverage l ¼ 100
(A and B). GP and CLEAR have similar vari-
ance in estimates of s for soft sweep, while
CLEAR provides lower variance in hard
sweep. Also see Table S2 in File S3 (C and
D). The variance in the estimation of h is
shown. In all simulations, three replicates
are evolved and sampled at generations
T ¼ f0;10;20; 30; 40; 50g.
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favored allele with a low starting frequency might be
missed by low coverage sequencing. In this case, incorpo-
rating the signal from linked sites becomes increasingly
important. We note that methods using only two time
points, such as CMH, do relatively well for high selection
values and high coverage. However, the use of time-series
data can increase detection power in low coverage exper-
iments or when the starting frequency is low. Moreover,
time-series data provide means for estimating selection
parameters s and h (see below). Finally, as CLEAR is robust
to change of coverage, our results (Figure 3, B and C)
suggest that taking many samples with lower coverage
is preferable to sparse sampling with higher coverage.
For comparison purposes, we also tested CLEAR using the
single-locus statistic ðL ¼ 1Þ: For the most part, CLEAR

showed an improvement over other methods even with
L ¼ 1; or showed similar performance. The performance
improved with higher L.

Site identification

In general, localizing the favored variant using pool-seq data
is a nontrivial task due to extensive linkage disequilibrium
(LD) (Tobler et al. 2014). To measure performance, we
sorted variants by their H scores and computed rank of the
favored allele for each method. For each setting of n0 and s,
we conducted 1000 simulations and computed the rank of
the favored mutation in each simulation. The cumulative
distribution of the rank of the favored allele in 1000 simula-
tions for each setting (Figure 4) shows that CLEAR outper-
forms other statistics.

An interesting observation is revisiting the contrast be-
tween site identification and detection (Long et al. 2013;
Tobler et al. 2014).When selection strength is high, detection
is easier (Figure 3, A–F), but site identification is harder, due
to the high LD between flanking variants and the favored
allele (Figure 4, A–F). Moreover, site identification becomes
more difficult whenever the initial frequency of the favored
allele is low; i.e., at the onset of selection, LD between a
favored allele and its nearby variants is high. For example,
when coverage l ¼ 100 and selection coefficient s ¼ 0:1; the

detection power is 75% for hard sweep, but 100% for soft
sweep (Figure 3, B–E). In contrast, the favored site was
ranked as the top in 14% of hard sweep cases, compared to
95% of soft sweep simulations.

Estimating parameters

CLEAR estimates effective population size N̂ and selection
parameters, ŝ and ĥ, as a byproduct of the hypothesis test-
ing. We computed bias of selection fitness ðs2 ŝÞ and dom-
inance ðh2 ĥÞ for CLEAR and GP for 1000 simulations in each
setting. The distribution of the error (bias) for 1003 cover-
age is presented in Figure 5 for different configurations.
Figures S4 and S5 in File S3 provide the distribution of
estimation errors for 303 and 3003 coverage, respectively.
For hard sweep, CLEAR provides estimates of s with lower
variance of bias (Figure 5A and Figure S6 in File S3). In soft
sweep, GP and CLEAR both provide unbiased estimates of s
with low variance (Figure 5B). Figure 5, C and D, shows that
CLEAR provides unbiased estimates of h as well when
h 2 f0; 0:5; 1; 2g and s ¼ 0:1: We also tested if CLEAR pro-
vides unbiased estimates of N by estimating population size
on 1000 simulations when N 2 f200; 600; 1000g: As shown
in Figure 7A and Figure S9, A–C, in File S3 maximum likeli-
hood is attained at the true value of the parameter.

Running time

As CLEAR does not compute exact likelihood of a region (i.e.,
does not explicitly model linkage between sites), the com-
plexity of scanning a genome is linear in the number of poly-
morphisms. Calculating the score of each variant requires an
OðTRN3Þ computation for H: However, most of the opera-
tions are can be vectorized for all replicates to make the
effective running time for each variant faster. We conducted
1000 simulations andmeasured running times for computing
site statistics H, FIT, CMH, and GP with different numbers of
linked loci. Our analysis reveals (Figure 6) that CLEAR is or-
ders of magnitude faster than GP, and comparable to FIT.
While slower than CMH on the time per variant, the actual
running times are comparable after vectorization and broad-
casting over variants (see below).

Figure 7 Estimating population size. (A) Distribution of bias in estimating N, computed on 1000 neutral simulations for each N 2 f200; 600;1000g
when W ¼ 10 Mbp and r ¼ 231028: (B) Estimates of population size for data from a study of adaptation of D. melanogaster to alternating
temperatures. For each case, the distribution of estimator is computed by 100 bootstrap computations using 1000 variants each. The multiple modes
are an artifact of grid search used to speed up computation. (C) Distribution of the population size estimates on the yeast data set. Despite large census
population size ð106 2 107; Burke et al. 2014), this data set exhibits a much smaller effective population size ðN̂ ¼ 2000Þ:
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These timescanhaveapractical consequence.For instance,
to run GP in the single-locus mode on the entire pool-seq data
of the D. melanogaster genome from a small sample (�1.6-M
variant sites), it would take 1444 CPU hours (�1 CPU
month). In contrast, after vectorizing and broadcasting oper-
ations for all variant operations using the numba package,
CLEAR took 75 min to perform a scan, including precomputa-
tion; while the fastest method, CMH, took 17 min.

Analysis of Real Data

Analysis of a D. melanogaster adaptation to alternating
temperatures: We applied CLEAR to the data from a study of
the adaptation of D. melanogaster to alternating tempera-
tures (Orozco-ter Wengel et al. 2012; Franssen et al. 2015),
where three replicate samples were chosen from a population
ofD. melanogaster for 59 generations under alternating 12-hr
cycles of hot-stressful (28�) and nonstressful (18�) tempera-
tures, and sequenced. In this data set, sequencing coverage is
different across replicates and generations (see figure S2 of
Terhorst et al. 2015) which makes variant depths highly
heterogeneous (Figure S10 in File S3).

We first filtered out heterochromatic, centromeric, and
telomeric regions (Fiston-Lavier et al. 2010), and those var-
iants that have a collective coverage of .1500 in all 13 pop-
ulations: three replicates at the base population, two

replicates at generation 15, one replicate at generation 23,
one replicate at generation 27, three replicates at generation
37, and three replicates at generation 59. After filtering, we
ended up with 1,605,714 variants.

Next, we estimated genome-wide population size N̂ ¼ 250
(Figure 7B and Figure S9E in File S3), which is consistent
with previous studies (Orozco-ter Wengel et al. 2012; Jónás
et al. 2016). The likelihood curves of CLEAR are sharper
around the optimum compared to that of the method of
Bollback et al. (2008) (see figure S1 in Orozco-ter Wengel
et al. 2012). Also, chromosomes 3L and 3R appear to have
a smaller population size, N̂ ¼ 200; and 150; respectively.
Others have made similar observations on this data. In par-
ticular, Jónás et al. (2016) showed that the chromosome-wise
population size varies even more when it is computed for
each replicate separately (see table 1 in Jónás et al. 2016).
For instance, N̂ is 131 for chromosome 3R replicate 1, while it
is 328 for chromosome X replicate 2.

While it would be ideal to compute the CLEAR statistic for
each replicate and chromosome separately, computing em-
pirical P-values and significant regions become computa-
tionally intensive as the empirical null distribution of each
replicate and each chromosome needs to be computed.
Hence, we use a single genome-wide estimate N̂ ¼ 250 in
all analyses, but we normalize statistic H* separately for
each chromosome.

Figure 8 Scan of CLEAR statistic on data from a study of adaptation of D. melanogaster to alternating temperatures. (A) Manhattan plot of scan for H*
statistic using sliding window of size L ¼ 3000 over the genome. The dashed line represents cutoff for genome-wide FDR#0:05; and identifies five
contiguous intervals, I1–I5, which are shaded in blue. (B) Trajectories of the selected variants within intervals I1–I5.
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We used a heuristic calculation (see File S3) to choose the
sliding window size L as the distance where the LD between
the favored mutation and a site L=2-bp away remains strong.
For D. melanogaster parameters, we obtained L ¼ 30 kbp:
We computed the normalized test statisticH* on sliding win-
dows of size of 30 kbp and step size of 5 kbp over the genome
(see Figure 8A).

The empirical null distribution of H* was estimated by
creating 100 whole-genome simulations (400 K statistic val-
ues), as described inMaterial and Methods. Then, the P-value
of the test statistic in each region in the experimental data
was calculated as the fraction of the null statistic values that
are greater than or equal to the test statistic(see Figure S11 in
File S3). After correcting for multiple testing, we identified
five contiguous intervals (Figure 8) satisfying FDR# 0:05;
and covering 2829 polymorphic sites. We further performed
single-locus hypothesis testing on the 2829 sites to identify
174 individual variants with an FDR# 0:01 (Figure 8B).

The final set of 174 variants fall within 32 genes (Table S3
in File S3), including many serine inhibitory proteases (ser-
pins) and other genes involved in endocytosis. Recycling of
synaptic vesicles is seen to be blocked at high temperature
in temperature-sensitive Drosophila mutants (Kosaka and
Ikeda 1983). This is also supported by gene ontology (GO)-
enrichment analysis, where a single GO term “inhibition of
proteolysis” is found to be enriched (corrected P-value =
0.0041). To test for dominant selection, we computed the
D statistic on simulated neutral and experimental data, and
computed P-values accordingly. After correcting for multiple
testing, 96 variants were discovered with an FDR# 0:01 (Fig-
ure S12 in File S3).

Analysis of outcrossing yeast populations

We also applied CLEAR to 12 replicate samples of outcrossing
yeast populations (Burke et al. 2014), where samples were
taken at generations T ¼ f0; 180; 360; 540g We observed a
significant variation in the genome-wide, site-frequency spec-
trum of certain populations over different time points for
some replicates (Figure S13 in File S3). The variation does
not have an easily identifiable cause. Therefore, we focused
analysis on seven replicates r 2 f3; 7; 8; 9; 10; 11; 12g with a

genome-wide, site-frequency spectrum over the time range
(Figure S14 in File S3).

We estimated population size to be N̂ ¼ 2000 haplotypes
(Figure 7C and Figure S9F in File S3), and computed the ŝ; ĥ;
andH statistics accordingly. To compute P-values, we created
1-M single-locus neutral simulations according to the exper-
imental data’s initial frequency and coverage. By setting the
FDR cutoff to 0.05, only 18 and 16 variants show significant
signal for directional and dominant selection, respectively (Figure
9 S12 in File S3). Selected variants for directional selection are
clustered in two regions, which match two of the five regions
(regions C and E in figure 2A in Burke et al. 2014) identified by
Burke et al. (2014) in their preliminary analysis. UCSC browser
tracks for analysis of D.melanogaster and Yeast datasets are avail-
able as File S1 and File S2, respectively.

Discussion

We developed a computational tool, CLEAR, that can detect regions
and variants under selection E&Rexperiments. Using extensive sim-
ulations, we show that CLEAR outperforms existing methods in
detecting selection, locating the favoredallele, andestimatingmodel
parameters. Also, while being computationally efficient, CLEAR pro-
videsameans forestimatingpopulations sizeandhypothesis testing.

Many factors; such as small population size, finite coverage,
LD, finite sampling for sequencing, duration of the experiment,
and the small number of replicates; can limit the power of tools
for analyzing E&R. Here, by discrete modeling, CLEAR estimates
population size and provides unbiased estimates of s and h. It
adjusts for heterogeneous coverage of pool-seq data, and ex-
ploits the presence of linkage within a region to compute a
composite likelihood ratio statistic.

It should benoted that, even thoughwedescribedCLEAR for
small fixed-size populations, the statistic can be adjusted for
other scenarios, including changing population sizes when
the demography is known. For large populations, transitions
can be computed on sparse data structures, as for large N the
transition matrices become increasingly sparse. Alternatively,
frequencies can be binned to reduce dimensionality.

The comparison of hard- and soft-sweep scenarios showed
that the initial frequency of the favored allele can have a

Figure 9 Single-locus analysis of the yeast outcrossing populations. Manhattan plot of scan single-locus CLEAR statistic ðL ¼ 1Þ for testing (A) directional
selection and (C) dominant selection. The dashed line represents cutoff for genome-wide FDR#0:05: Trajectories of the selected variants are depicted
in panels (B) and (D).
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nontrivial effect on the statistical power for identifying selec-
tion. Interestingly, while it is easier to detect a region un-
dergoing strong selection, it is harder to locate the favored
allele in that region.

There are many directions to improve the analyses pre-
sented here. In particular, we plan to focus our attention on
other organisms with more complex life cycles, experiments
with variable population size, and longer sampling-time
spans. As E&R experiments continue to grow, deeper insights
into adaptation will go hand in hand with improved compu-
tational analysis.
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