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Evidence is emerging that shows taste receptors serve functions outside of taste sensation of the tongue. Taste receptors have
been found in tissue across the human body, including the gastrointestinal tract, bladder, brain, and airway. These extraoral taste
receptors appear to be important inmodulating the innate immune response through detection of pathogens.This review discusses
taste receptor signaling, focusing on the G-protein–coupled receptors that detect bitter and sweet compounds in the upper airway
epithelium. Emphasis is given to recent studies which link the physiology of sinonasal taste receptors to clinical manifestation of
upper airway disease.

1. Introduction

Recent evidence suggests that the role of taste receptors
extends beyond mere taste sensation that drives our prefer-
ences for foods. In fact, taste receptors have been found in
extra-oral tissues throughout the body, including the airway,
gastrointestinal tract, pancreas, bladder, and ventricles of the
brain [1–4]. These extra-oral taste receptors have demon-
strated importance in modulating local innate immunity [1–
4]. In this expanded functional paradigm, taste receptors
serve as the sentinels of pathogenic detection and, therefore,
are thought to mediate the balance between commensalism
and pathogenicity [5, 6].

This review will focus on the function of bitter and sweet
taste receptors in the human airway andwill highlight studies
demonstrating how taste receptors trigger innate immune
responses. Emphasis will also be given to recent literature
implicating bitter and sweet taste receptor function in the
clinical manifestation of human upper airway inflammation.
We will conclude with future directions that are emerging
around the diagnostic and therapeutic potential of taste
receptors.

2. Bitter and Sweat Taste Receptor Signaling

Bitter and sweet taste receptors, unlike ion-stimulated taste
receptors for saltiness and sour sensation, are G-protein
Coupled Receptors (GPCRs) [7, 8]. In the human tongue,
perception of sweet molecules is mediated through a family
of GPCRs, Taste Receptor Family 1 (T1R), within which
there are two isoforms called T1R2 and T1R3 [9–12]. T1R2/3
are stimulated by sugars, including glucose, sucrose, and
fructose [9, 13, 14]. On the other hand, bitter perception
is detected by approximately 25 different isoforms of Taste
Receptor Family 2 (T2R), the collective profile of which has
been referred to as the “bitterome” [15, 16]. This larger and
more heterogenous family of T2Rs responds to an assortment
of bitter compounds [17], including sesquiterpene lactones,
strychnine, and denatonium [18]. A single bitter agonist
can stimulate multiple T2R isoforms, and a single receptor
isoform can respond to multiple agonists, thereby creating
a redundant pattern of encoding [19]. Furthermore, among
the 25 T2Rs, the collective receptive range of 19 receptors
accounts for approximately 80% of the established bitter
library; the handful of remaining “orphan” receptors have
ligands that are yet to be identified [19].
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The mechanisms involved in taste receptor activation
are relatively conserved and follow similar pathways in the
tongue and extra-oral tissues. When a ligand binds to a taste
GPCR, associated G-proteins initiate a downstream cascade.
Chief among taste-associated G-proteins is gustducin, which
comprises G𝛼 and G𝛽𝛾 subunits. In addition, inhibitory
alpha subunits calledG𝛼i are capable of attenuating the signal
transduction cascade. While cascade activation via 𝛼 gust-
ducin is well described, characterization of inhibitory G𝛼i
signaling has not been as well studied. Nevertheless, murine
models in which gustducin is knocked out still demonstrate
residual taste function, which has led to the belief that other
G-proteins, namely, G𝛼14, G𝛼15, G𝛼q, G𝛼s, G𝛼i-2, and G𝛼i-
3, may also play a role in taste signal transduction [20–22].

Stimulation of GPCRs via G𝛼 leads to downstream
activation of Phospholipase C isoform 𝛽2 (PLC𝛽2), which
in turn produces downstream inositol 1,4,5-trisphosphate
(IP3). Activation of the IP3 receptor on the endoplasmic
reticulum releases calcium into the cytosolic compartment
[23]. Simultaneously, there is also an activation of phosphodi-
esterases (PDEs) that attenuate cyclic adenosine monophos-
phate (cAMP) levels, in effect decreasing protein kinase
A (PKA) activity. Since PKA is an inhibitor of the IP3
receptor isoform, release of IP3 receptor inhibition allows for
further calcium efflux from the endoplasmic reticulum [24].
Cytosolic calcium activates the nonselective cation channel,
transient receptor potential cation channel subfamily M
member (TRPM5), causing plasma membrane depolariza-
tion, which activates voltage-gated sodium (Na+) channels,
resulting in action potential propagation that ultimately
causes ATP release through calcium homeostasis modulator
1 (CALHM1), a large pore channel [9, 24–26]. In the tongue,
ATP release activates receptors on taste cells and sensory
fibers that transmit sensations to the central nervous system
[9, 26]. As it pertains to airway taste receptor signaling,
the upstream activation of GPCRs results in a calcium
wave transmitted through airway epithelial gap junctions.
This calcium wave is critical for driving tissue-level innate
immune defenses, which we will discuss further below.

3. Taste Receptors in
Respiratory Innate Immunity

3.1. Overview of Airway Innate Immunity. The sinonasal tract
(i.e., nose and paranasal sinuses) represents one of the body’s
first points of contact with the external environment, which
is fraught with respiratory pathogens. Despite the continuous
onslaught, the upper airway innate immune defense is capa-
ble of preserving the sterility found in the lower airway and
lung parenchyma [27]. To accomplish this, the upper airway
featuresmultiple components aimed at combating pathogens.

The main arsenal of upper airway innate immunity is
mucociliary clearance (Figure 1). Mucus is a sticky gel com-
prised of cross-linked glycosylated mucin macromolecules
produced by airway goblet cells [28]. Inspired pathogens
and particles are trapped in mucus. Cilia on respiratory
epithelial cells beat in a spatially and temporally organized
pattern to clear the debris and pathogen-laden mucus out
of the paranasal sinuses and nasal cavity [28]. This system is

complemented with the production of nitric oxide (NO) and
other antimicrobial agents that are produced by respiratory
epithelial cells. Lastly, the respiratory epithelial cells have
been shown to secrete their own set of cytokines and
chemokines, such as interleukin 25 (IL-25), thymic stromal
lymphopoietin (TSLP), and interleukin 33 (IL-33), which
trigger downstream immune cascades [29–31]. Studies have
shown that taste receptors are at the front-line when it comes
to detecting pathogens andmodulating these innate immune
defense mechanisms.

3.2. Taste Receptors as Detectors of Pathogens. Bitter taste
receptors are expressed in upper respiratory epithelium and
respond to bitter molecules released by pathogens in the
mucosal environment [32–34]. A prime example of bitter
taste receptor detection of pathogens is demonstrated by
lactones, a class of bitter compounds, which includes acyl-
homoserine lactones (AHLs) that are produced by many
gram-negative bacteria [35, 36]. These lactones serve as
biofilm “quorum-sensing molecules;” bacteria will initiate
biofilm formation when a high enough concentration of
AHLs is reached in a localized area. Biofilms can provide
protection for bacteria from host innate immune defenses
as well as antibiotics [37]. It is hypothesized that bitter taste
receptors “eavesdrop” on these bacterial communications,
effectively detecting AHLs before a sufficient concentration
is reached for biofilm formation [5].The bitter taste receptors
themselves elicit innate immune responses that can eradicate
bacteria before pathogenic levels are achieved.

Once they are activated, bitter taste receptors engage
innate immune defenses to fight off pathogens. In particular,
bitter receptors expressed on ciliated cells have been found to
be stimulated by bacterial compounds and cause downstream
release of nitric oxide (NO), as shown in Figure 1 [38, 39]. NO
diffuses quickly into bacteria, where it destroys intracellular
components [32, 40]. Some bacteria, such as P. aeruginosa,
are highly sensitive to NO, while others are more resistant
[41]. In addition to this antimicrobial activity, NO also
activates protein kinase G (PKG) and guanylyl cyclase to
directly speed up ciliary beat frequency (CBF), increasing
mucociliary clearance (Figure 1) [42]. Rapid ciliary beating
can clear bacteria andmucus out of the paranasal sinuses and
nasal cavity into the throat, where they can be expectorated
or swallowed. Additionally, ciliary beating helps disperse
antimicrobial products, such as lactoferrin, lysozyme, and
defensins, across the surface of airway mucosa [28]. These
antimicrobial compounds act in concert with NO and other
reactive oxygen species to create a potent antipathogenic
response [40].

As shown in Figure 1, T2R38 is a bitter taste receptor
located on ciliated cells in humans, and it responds to at
least three AHLs produced by P. aeruginosa: N-butyrl-L-
homoserine lactone, N-hexanoyl-L-homoserine lactone, and
N-3-oxo-dodecanoyl-L-homoserine lactone [32]. In addition
to its response to bacterial compounds, T2R38 reacts in a sim-
ilar fashion to the bitter compounds, phenylthiocarbamide
(PTC), and propylthiouracil (PROP) [43]. In response to PTC
stimulation, sinonasal epithelial cells expressing a functional
T2R38 receptor demonstrate a substantial increase in NO



Journal of Pathogens 3

P. Aeruginosa biofilms
and other pathogens

Mucociliary
Clearance

AHLs (bitter
compounds)

T2R38

Goblet Cell

ClearanceT2R38

Increased
Ciliary Beating

NO

PKG

Ciliated Cells

NO is directly
Bactericidal

NO

Ca+ Wave

IP

PLC

Ca+

Figure 1: Bitter taste receptor, T2R38, is expressed on ciliated cell and mediates innate immune response to bitter compounds, such as AHLs
secreted by P. aeruginosa. Innate immune defences include nitric oxide (NO) production as well as increased ciliary beating.

production (Figure 1). Interestingly, the taste G-protein gust-
ducin does not appear to be involved [32].

The recognition of pathogens by taste receptors and
nearly immediate release of antipathogenic compounds high-
lights a unique physiologic characteristic. It is well estab-
lished that Toll-like receptors (TLRs) respond to pathogen-
associated molecular patterns (PAMPs), which include for-
eign cellular components. However, TLR signaling is gradual,
taking up to 12 hours to exert an immune response through
changes in expression of genes that play a role in innate
immunity [44]. Conversely, bitter taste receptors can detect
bacterial products, such as AHLs, and elicit downstream
increases in immune defense in a much more expedient
fashion—on the order of seconds to minutes.

3.3. Solitary Chemosensory Cells. Ciliated epithelial cells are
not the only cells to express bitter taste receptors in the
airway. Over a decade ago, a class of cells that is sparsely
scattered in rodent respiratory epithelium was shown to be
immunoreactive with alpha-gustducin, a component of taste
signaling [45]. Analogous “taster” cells are also found in
the human upper airway [30, 33]. These cells were named
“solitary chemosensory cells” (SCCs), and they share many
similarities with cells found in the taste buds of the tongue
[34]. In rodents and humans alike, approximately one out of
every hundred epithelial cells in the sinonasal cavity is an
SCC, and despite their rarity, studies have implicated their
function in innate immune responses [46].

In murine models, SCCs express sweet and bitter taste
receptors [33, 47], and they are capable of responding to
AHLs and other bitter agonists (Figure 2) [5, 48, 49]. While
SCCs show intracellular calcium responses in the presence
of AHLs [50], they differ from ciliated cells in that they
do not activate downstream NO production. Instead, when
mouse sinonasal SCCs are stimulated with AHLs or the
bitter agonist denatonium, the calcium response results in
acetylcholine (ACh) release that stimulates trigeminal nerve
peptidergic nociceptors, with downstream effects of breath
holding and inflammatory mediator release [5, 46, 48]. The
inflammatory response is intuitively antimicrobial, while the
breath holding responsemay also represent an adaptive reflex

to limit toxin or organism aspiration in the host. Calcitonin
gene related peptide (CGRP), substance P, and vasoactive
intestinal peptide (VIP) are known substances released in this
inflammatory cascade [51].

SCCs have been identified in human upper airway tissue
as well [33, 52], along with additional physiological function
beyond what has been elucidated in the rodent system.
T1R1, T1R2, T2R4, T2R10, and T2R47 are all expressed on
SCCs in the human nasal cavity [52, 53]. Denatonium, a
bitter compound that shows activity in the murine SCC,
also stimulates a Ca2+ response in human SCCs that spreads
to neighboring cells via gap junctions (Figure 2) [53]. Just
as in the NO response seen in ciliated cells, the calcium
signaling requires many known components of traditional
taste signaling, including gustducin, PLC𝛽2, the IP

3
receptor,

and TRPM5 [53]. Spread of calcium through gap junctions
causes immediate release of antimicrobial peptides (AMPs)
from the adjacent ciliated cells [33]. These AMPs include
beta defensin 1 (BD1) and beta defensin 2 (BD2), which
have potent antimicrobial effects on gram-positive and gram-
negative organisms, including methicillin-resistant S. aureus
and P. aeruginosa [51].

Interestingly, denatonium-induced calcium waves initi-
ated by SCCs are inhibited in a dose-dependent fashion by
sugars, such as glucose and sucrose (Figure 2) [53]. This
inhibition has also been observed with nonmetabolizable
artificial sweetener, sucralose, a potent T1R2/3 agonist [12,
13, 54]. The glucose or sucralose inhibition appears to
be reversed by T1R2/3 antagonists lactisole [10, 55] and
amiloride [56], but not by inhibitors of glucose transporters
such as phloretin and phlorizin [53]. Taken together, these
studies demonstrate that bitter and sweet signals have oppos-
ing effects on innate immunity, as illustrated in Figure 2.
Linking these findings to the overall paradigm, we posit that
as pathogens consume sugars as an energy source, increased
T1R2/3 signaling augments the calcium wave that is also
directly driven by T2R detection of bitter molecules secreted
by the pathogens, thereby eliciting an evenmore robust innate
immune response. In support of this, patients with diabetes
and prediabetes have been found to have elevated glucose
levels in nasal secretions [57] and are more likely to have
airway infections [58].
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Figure 2: Solitary chemosensory cells (SCCs) express counteracting sweet receptors (T1Rs) and bitter receptors (T2Rs) that can cause a
calcium wave leading to release of antimicrobial peptides. Solitary chemosensory cells have separately also been found to release innate
cytokine, IL-25, and epithelial cells produce IL-33 and TSLP in the setting of cellular damage.

More recently, human SCCs have also been found
to be the source of epithelial-derived cytokine, IL-25
[30, 31]. Unlike hematopoietic cytokines, epithelial-derived
cytokines, namely, IL-25, TSLP, and IL-33, are released when
airway epithelium is exposed to allergens, fungi, and viral
antigens (Figure 2) [59]. These cytokines act on resident
group-2 innate lymphoid cells which trigger an eosinophilic
type-2 inflammatory cascade [60]. While evidence demon-
strates that SCCs expand and increase production of IL-
25 in inflamed sinonasal tissue [30], it remains unknown if
bitter agonists such as AHLs and denatonium are capable
of triggering IL-25 release. Further studies are warranted to
elucidate how bitter agonists might play a role in triggering
epithelial-derived cytokines.

4. Genetics of Taste Receptors and
Clinical Correlates

While genetic variation in T2Rs giving rise to differential
tasting ability has been well studied, the link between genetic
polymorphisms of T2Rs and pathogenic susceptibility is just
now coming to light. The theory is that dysfunctional bitter
taste receptors will not allow patients to mount a robust
immune response against pathogenic infection, thereby leav-
ing them more vulnerable to sinonasal disease.

It is well established that the genetic locus for T2R38,
TAS2R38, has common polymorphisms that can render the
receptor nonfunctional. Individuals with a proline-alanine-
valine (PAV) amino acid sequence at a key portion of the taste
receptor are able to respond to T2R38 agonists, while indi-
viduals with an alanine-valine-isoleucine (AVI) sequence at
this same locus possess a nonfunctional receptor variant [19].
Cells isolated from individuals with an AVI/AVI genotype
show highly attenuated NO production in response to AHLs,
PTC, or PROP stimulation, compared to cells isolated from

individuals with a PAV/PAV genotype [32]. Downstream
reductions in mucociliary clearance and bacterial killing
are correspondingly observed [32]. As would be expected,
AVI/AVI individuals also do not taste PTC or PROP when
presented with an oral taste test challenge.

This reduction in responsiveness observed in AVI-
expressing individuals has clinical consequences. Several
studies in the past five years have highlighted a potential
relevance of T2R38 in chronic rhinosinusitis (CRS). Indi-
viduals who express the fully functional, PAV/PAV, geno-
type are less likely to require surgical intervention for CRS
symptoms than patients with an AVI/AVI genotype [61–63].
Additionally, levels of gram-negative infection are lower in
PAV/PAV patients [55, 61, 62, 64–66], confirming that the
NO-dependent response of T2R38 acts as a critical defense for
this class of bacteria. A hallmark of chronic rhinosinusitis is
mucociliary stasis, in which bacteria are inadequately cleared.
At pathogenic levels of proliferation, bacterial toxins can
be destructive to cells and cilia, perpetuating the process
of impaired mucociliary function [67]. It is known that
sinonasal explants from patients with CRS have an attenuated
response to a variety of compounds (bitter and non-bitter)
that stimulate ciliary beating in control tissue. Other studies,
while part of an inconclusive set of literature, have shown
differences in NO levels in patients with airway diseases
[68]. Without the action of NO to kill bacteria and increase
ciliary beating in response to AHLs, it appears that the
nonfunctional T2R38 polymorphism has a phenotypic effect
on upper airway disease [32].

Other bitter taste receptors on ciliated cells, such as T2R4
and T2R14 [69], respond to different bitter agonists, such as
quinine hydrochloride. Quinine is an alkaloid derivative that
is isolated from the cinchona tree and is found in several
medicinal and commercial products [70]. Recent work shows
that quinine stimulates a rapid T2R-dependent NO response
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Figure 3: Potential targets for therapeutic intervention in the taste receptor pathway. Inhibitors of sweet receptors and agonists of bitter
taste receptors may potentiate innate immune responses from ciliated cells and SCCs. In addition, small molecular inhibitors are known
to block signal transduction but have only been used experimentally. Inhibitory monoclonal antibodies, such as anti-TSLP as well as anti-
IL-5 and IL-13, have also recently entered the market or are undergoing clinical investigation (U73122 inhibits Phospholipase C; TPPO =
triphenylphosphine oxide inhibits TRMP5).

from ciliated cells in the airway [71]. While quinine is a
more promiscuous bitter taste receptor agonist than PTC
or PROP, there are common genetic variants in bitter taste
receptor genes on chromosome 12 that strongly contribute to
perception of quinine taste intensity [72]. Quinine taste sen-
sitivity also has been selected independently in some world
populations, especially at low concentrations of quinine [73].
Concentrations of bitter microbial products in the airway
are also at low concentrations [32], and these differences in
taste perception of dilute quinine solutions may be reflective
of varying responses of these bitter taste receptors in both
the airway and on the tongue. Allele expression studies have
shown that patients with CRS differ from control patients at
several genetic loci for taste receptors, includingTAS2R14 and
TAS2R49 [64]. Indeed, further genetic studies elucidating
the relationship between the human “bitterome” and clinical
manifestations of upper airway disease are warranted.

5. Future Diagnostic and Therapeutic
Potential of Taste Receptors

Given that genetic variation in bitter taste receptors appears
to be correlated with disease status and severity, testing phe-
notypic function of taste receptors may have clinical utility.
Using subjective taste intensity scoring schema, patients with
chronic rhinosinusitis reported lower intensity of taste of
bitter compounds compared to matched healthy controls,
but these same, chronic rhinosinusitis patients reported
higher intensity of sucrose, a T1R agonist, compared to
their healthy counterparts [71, 74]. These subjective taste

differences also appear to be reflected at the physiologic
level; experiments have shown an inverse association between
in vitro biofilm formation and PTC taste intensity ratings
[75].

Oral taste tests are inexpensive to produce and adminis-
ter, and the ability to assess variations in airway taste receptor
functionality could help predict impaired innate immunity or
predisposition to respiratory disease. Bitter taste testing with
specific agonists, such as PTC, could potentially be used to
stratify surgical candidates or identify individualswho should
receive more aggressive management. Beyond the diagnostic
realm, bitter taste receptor agonists may have therapeutic
potential (Figure 3) in harnessing potent innate immune
defenses as an alternative to more conventional treatments,
such as antibiotics.

6. Conclusion

Extra-oral taste receptors in the nose and paranasal sinuses
serve to detect pathogens and modulate innate immune
responses. Bitter taste receptors can detect bacterial by-
products, while sweet receptors are thought to release inhi-
bition on the taste cascade when pathogens deplete glucose
on the apical microenvironment. The resulting downstream
calcium wave leads to rapid release of antipathogenic nitric
oxide and antimicrobial peptides. Human genetic polymor-
phisms in bitter taste receptors correlate with sinonasal
disease and can be evaluated through oral taste testing. Taste
receptors represent a new frontier when it comes to their
diagnostic and therapeutic potential.
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