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Abstract

Aim: Intrauterine growth retardation (IUGR) is a prevalent problem in

mammals. The present study was conducted to unveil the alterations in

intestinal microbiota in IUGR piglets.

Methods and Results: We identified the alterations of small intestinal

microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA

sequencing. The results showed that IUGR piglets had a decreased alpha

diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances

of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age,

Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at

21 days of age; whereas they had higher abundances of Proteobacteria and

Pasteurella in the ileum at 21 days of age and Escherichia–Shigella in the

jejunum at 28 days of age. Correlation analysis showed that Bacteroides,

Oscillibacter and Ruminococcaceae_UCG-002 compositions were positively

associated with the body weight (BW) of IUGR piglets, nevertheless

Proteobacteria and Escherichia–Shigella relative abundances were negatively

correlated with the BW of IUGR piglets. Gene function prediction analysis

indicated that microbiota-associated carbohydrate metabolism, lipid

metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and

xenobiotics biodegradation and metabolism were downregulated in the IUGR

piglets compared to control piglets.

Conclusions: The present study profiled the intestinal microbiota of newborn

piglets with IUGR and the newborn IUGR piglets have lower diversity and

different taxonomic abundances. Alterations in the abundances of Bacteroidetes,

Bacteroides, Proteobacteria Escherichia–Shigella and Pasteurella may be involved

in nutrient digestion and absorption, as well as the potential mechanisms

connecting to the growth and development of IUGR in mammals.

Significance and Impact of the Study: The small intestinal microbiota were

highly shaped in the IUGR piglets, which might further mediate the growth

and development of IUGR piglets; and the gut microbiota could serve as a

potential target for IUGR treatment.
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Introduction

The reproductive performance of sows directly determi-

nes the production efficiency and economic benefits in

the modern swine industry. Although the reproductive

performance can be improved by dietary nutrients, feed-

ing strategies and genetic breeding, low-birth weight

widely occurs in newborn animals (Milligan et al. 2002;

Quiniou et al. 2002; Campos et al. 2012; Matheson et al.

2018). Intrauterine growth restriction (IUGR) has been

defined as the impaired growth and development of the

mammalian embryo/fetus or its organs during pregnancy,

which seriously affects animal production and health

(D’Inca et al. 2010). For example, IUGR animals gener-

ally have a reduced neonatal survival rate, gut dysfunc-

tion, a low efficiency of nutrient utilization and postnatal

long-term growth limitation (Wu et al. 2006). Previous

studies confirmed that the impaired development and

functions of the intestine in IUGR piglets result from

changes in the developmental pattern of the intestinal

structure, and transcriptomic and proteomic profiles

(Wang et al. 2008; D’Inca et al. 2011; Dong et al. 2016).

The mammalian gastrointestinal tract harbours a com-

plex and diverse microbial community, which plays cru-

cial roles in host digestion, metabolism, immune function

and redox balance (Turnbaugh et al. 2009; Hooper et al.

2012; Karlsson et al. 2013; Zhang et al. 2013; Yin et al.

2018). Early life colonization and development of the gut

microbiota in neonates highly shapes the host’s metabo-

lism and health (Ottman et al. 2012; Matamoros et al.

2013). This process can be influenced by various factors,

such as the ways of delivery, diet composition during

infancy, antibiotic usage and the host’s health status

(Vaishampayan et al. 2010; Nicholson et al. 2012; Liu

et al. 2018b). The microbial composition varies along the

different regions of the gastrointestinal tract. For exam-

ple, the composition of the microbiome is markedly dif-

ferentiated among the small intestine, large intestine, and

faeces, whereas the microbial profile of the large intestine

is more similar to that of faeces (Zhao et al. 2015). In

addition, the microbial community in the small intestine

has a lower diversity and abundance than the colonic

microbiota (Donaldson et al. 2016). Li et al. (2018)

showed that low birth weight piglets have a different fae-

cal microbial community structure and metabolite pro-

files, suggesting the gut microbial potentially associated

with the impaired growth and development of these pig-

lets. However, the composition of the small intestinal

microbiota in IUGR piglets still remains unknown.

The small intestine is the major organ involved in

digestion, absorption, metabolism and immune function.

The microbiota in small intestine are critical transducers

of dietary signals that allow the host to adapt to

variations in lipid digestion and absorption (Martinez-

Guryn et al. 2018). The jejunum has a unique acute role

in the gut response to luminal microbe—diet interplay,

and microbiota in the jejunum strongly affects glucose

and energy metabolism (El Aidy et al. 2013). Therefore,

the small intestine microbiota also have a profound

impact on host. He et al. (2011) confirmed that IUGR

piglets have a distinctive metabolism in jejunum which

contributes to impaired growth and jejunal function. But

this study did not investigate the microbial profiles. Thus,

we hypothesize that there are differences in microbial

community in the small intestine between IUGR piglets

and normal birth weight (NBW) piglets, which is associ-

ated with the impacted growth performance. The present

study was conducted to characterize the microbiota pro-

files of the small intestine between IUGR piglets and con-

trol subjects in order to identify intestinal bacterial

makers associated with IUGR.

Materials and methods

Ethical approval

This study was carried out in accordance with the Chi-

nese guidelines for animal welfare and experimental pro-

tocols and was approved by the Animal Care and Use

Committee of Institute of Subtropical Agriculture, Chi-

nese Academy of Sciences, No. ISA-2017-016.

Experimental design and sampling

In the present study, Large White 9 Landrace piglets

were obtained from sows of an experimental herd

located in Yong’an Town, Liuyang City, Hunan Pro-

vince, China. Piglets with a birth weight higher than the

mean birth weight were classified as NBW piglets, and

piglets within the 10% lower mean birth weight were

classified as IUGR piglets (Bauer et al. 1998). A total of

48 piglets were obtained from 24 litters, in which each

contained one NBW piglet and one IUGR piglet. All

suckling piglets were kept in a warm thermal container

and fed by sows freely. The commercial creep feed was

supplied from 5 days after birth. The piglets were

weaned at 21 days of age and transferred into the nurs-

ery pens. The pigs had 24 h access to commercial wean-

ing diet and water. No antibiotics were used during the

entire experimental period. At 7 (7 days), 21 (21 days)

and 28 (28 days) days after birth, 16 piglets (eight pairs

of one NBW piglet and one IUGR littermate) were

weighed and killed for sample collection 2 h after the

last suckling. Briefly, the piglets were killed by exsan-

guination after general anaesthesia (intravenous injection

of 4% sodium pentobarbital solution, 40 mg kg�1 BW),
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and then, the luminal contents of the jejunum (10 cm

below the flexura duodenojejunalis) and ileum (10 cm

above the ileo-caecal junction) were sampled. The lumi-

nal content samples were stored at �80°C for subse-

quent analysis of gut microbial composition.

DNA extraction and pyrosequencing

Microbial DNA was extracted from jejunum and ileum

content samples using a HiPure Stool DNA Kit (Magen,

Guangzhou, China) following the manufacturer’s instruc-

tions. The final DNA concentration and purification were

determined using a NanoDrop 2000 UV-vis spectropho-

tometer (Thermo Fisher Scientific, Waltham, MA), and

DNA quality was checked by 1% agarose gel elec-

trophoresis. The V3–V4 hypervariable regions of the bac-

terial 16S rRNA gene were amplified with the primers

338F (50-ACTCCTACGGGAGGCAGCAG-30) and 806R

(50-GGACTACHVGGGTWTCTAAT-30) using a thermo-

cycler PCR system (GeneAmp 9700; Thermo Fisher Sci-

entific), as described by Yin et al. (2017). The PCR

reactions were conducted using the following programme:

3-min denaturation at 95°C; 27 cycles of 30 s at 95°C,
30-s annealing at 55°C, and 45-s elongation at 72°C and

a final extension at 72°C for 10 min. PCR reactions were

performed in a 20 ll mixture containing 4 ll 59 FastPfu

buffer, 2 ll 2�5 mmol l�1 dNTPs, 0�8 ll each primer

(5 lmol l�1), 0�4 ll FastPfu Polymerase and 10 ng tem-

plate DNA, in triplicate. The resultant PCR products

were extracted from a 2% agarose gel and further purified

using the AxyPrep DNA Gel Extraction Kit (Axygen Bio-

sciences, Union City, CA) and quantified using

QuantiFluorTM-ST (Promega, Madison, WI) according to

the manufacturer’s protocol. Purified amplicons were

pooled in equimolar amounts and paired-end sequenced

(2 9 300) on an Illumina MiSeq platform (Illumina, San

Diego, CA) at Shanghai Majorbio Bio-pharm Technology

Co., Ltd (Shanghai, China).

Bioinformatics and statistical analysis

Raw FASTQ files were demultiplexed, quality-filtered using

Trimmomatic (Bolger et al. 2014) and merged using

FLASH (Magoc and Salzberg 2011) with the following crite-

ria: (i) the reads were truncated at any site with an aver-

age quality score <20 over a 50 bp sliding window; (ii)

primers were matched allowing for two nucleotides to

mismatch, and reads containing ambiguous bases were

removed; (iii) sequences with an overlap longer than

10 bp were merged according to their overlap sequence.

Operational taxonomic units (OTUs) were clustered with

a 97% similarity cut-off using UPARSE (ver. 7.1) (Edgar

2013), and chimeric sequences were identified and

removed using UCHIME (Edgar 2010). The taxonomy of

each 16S rRNA gene sequence was analysed using RDP

Classifier algorithm (http://rdp.cme.msu.edu/) against the

Silva (SSU123) 16S rRNA database using confidence

threshold of 70%. The alpha diversity analysis included

analysis of the Shannon index, Simpson index, Chao1

richness estimator and abundance-based coverage estima-

tor (ACE) metric. A beta diversity analysis was performed

to investigate the structural variation in the microbial

communities across samples using principal coordinate

analysis (PCoA) based on unweighted UniFrac distance.

Partial least squares discriminant analysis (PLS-DA) based

on unweighted UniFrac distance was also introduced as a

supervised model to reveal the microbiota variation

among groups. Taxonomic composition was investigated

at the phylum and genus levels. The functional profiles of

the microbial communities were predicted using Phyloge-

netic Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt) (Langille et al. 2013). All

of these analyses were performed on the free online plat-

form of Majorbio I-Sanger Cloud Platform (www.i-sange

r.com).

Mann–Whitney U test was used to test for significant

differences among all data. Differences between the IUGR

and NBW groups were considered significant at P < 0�05.
Data were presented as means � SEM. SPSS 22.0, Excel

2010, R package ggplot2, and GraphPad Prism ver. 6.0

(San Diego, CA) were used for data analysis and graph

preparation.

Results

Body weight and average daily gain

The birth weight of IUGR piglets was significantly lower

(by 39%, P < 0�05) than that of NBW piglets (Fig. 1a).

The BW of IUGR piglets at 7, 21 and 28 days of age was

significantly lower (P < 0�05) by 36, 27 and 36%, respec-

tively, than that of NBW piglets. In addition, the average

daily gain was reduced (P < 0�05) by 32, 23 and 35%,

respectively, compared to NBW piglets (Fig. 1b).

Metadata and sequencing

In general, high-throughput sequencing of 96 samples

(including 48 jejunum content and 48 ileum content

samples from piglets 7, 21 and 28 days of age) generated

4 842 943 high-quality reads. A total of 1724 OTUs were

obtained by clustering nonrepetitive sequences (excluding

single sequences) based on 97% similarity, including 23

phyla, 42 classes, 79 orders, 140 families, 436 genera and

824 species. Each sample contained 47 047 OTUs and

50 447 sequences on average. The rarefaction curve
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(Fig. 2a) reached a plateau and the Good’s coverage for

observed OTUs was 99�59 � 0�02% (range of 99�26–
99�88%, Table S2), which indicated a near-complete sam-

pling of the community.

Microbial community diversity in the small intestine

Alpha diversity was measured using the Shannon, Simp-

son, ACE and Chao1 indexes (Fig. S1). There were no

significant differences between Simpson indexes or ACE

indexes of both the jejunum and ileum samples from the

two groups. However, the IUGR group had a significantly

lower (P < 0�05) Chao1 index for the jejunum than the

NBW group at 7 days of age (Fig. 2b and Fig. S1), and

the Shannon index of the jejunum was significantly lower

than that of the NBW group at 21 days of age (Fig. 2c

and Fig. S1). In addition, there was no significant differ-

ence in the diversity of the small intestine microbiota at

28 days of age between the two groups.

The dissimilarity of the bacterial community structure

in the small intestine of the IUGR and NBW groups was

measured by PCoA at OTU level. There was no obvious

separation between the two groups (Fig. 3a). This was

further investigated using PLS-DA performed as a super-

vised analysis suitable for high-dimensional data. The

microbial community structure in both the jejunum and

ileum was clearly separated and clustered into two groups

at 7, 21 and 28 days of age, indicating significant differ-

ences in the small intestinal microbiota between the

IUGR and NBW piglets (Fig. 3b).

Microbial community composition in the small intestine

The microbial communities of all the samples were anal-

ysed at the phylum and genus taxonomic levels (Fig. 4).

Firmicutes was the dominant phylum in both the jejunum

and ileum among the age groups. In the jejunum, Firmi-

cutes, Proteobacteria and Bacteroidetes were the top three
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dominant phyla in the IUGR group at 7, 21 and 28 days

of age, as well as in the NBW group at 7 and 21 days of

age. The relative abundance of Actinobacteria increased

and became one of the dominant phyla in the NBW

group at 28 days of age. The relative abundance of Bac-

teroidetes and Actinobacteria increased continuously with

the ages in the two groups. The relative abundance of

Proteobacteria increased from 7 to 21 days of age, but

then decreased at 28 days of age in the two groups. The

relative abundance of Firmicutes decreased continuously

with the ages in the two groups but increased at 28 days

of age in the NBW group (Fig. 4a). Similarly, Firmicutes,

Proteobacteria and Bacteroidetes were the top three abun-

dant phyla in the ileum of the two groups. The abun-

dance of Firmicutes decreased with age in the two groups.

In addition, the relative abundance of Proteobacteria in

the IUGR group and of Bacteroidetes in the NBW group

both increased continuously with the age. The relative

abundance of Bacteroidetes in the IUGR group and of

Proteobacteria in the NBW group increased from 7 to

21 days of age but decreased at 28 days of age (Fig. 4b).

At the genus level, the bacterial distribution among

samples was displayed as a heat map (Fig. 4c). In the

jejunum, Lactobacillus was the most abundant genus in

the IUGR and NBW groups at 7, 21 and 28 days of age,

followed by Veillonella and Clostridium_sensu_stricto_1 in

the IUGR group, and Veillonella and Moraxella in the

NBW group at 7 days of age; Veillonella and Moraxella in

the IUGR and NBW groups at 21 days of age; and Olse-

nella and unclassified Peptostreptococcaceae in the IUGR

group, and Olsenella and Bacteroides in the NBW group,

at 28 days of age respectively. In the ileum, Lactobacillus

was the dominant genus in the IUGR and NBW groups

at 7 days of age, followed by Veillonella and unclassified

Peptostreptococcaceae; at 21 days of age, Actinobacillus,

unclassified Peptostreptococcaceae and Lactobacillus were

the top three abundant genera in the IUGR group, and

unclassified Peptostreptococcaceae, Lactobacillus and Veil-

lonella were the dominant genera in the NBW group; at

28 days of age, Escherichia–Shigella was the most abun-

dant genus in the IUGR group, followed by Lactobacillus

and Actinobacillus, and Megasphaera, Lactobacillus and

unclassified Peptostreptococcaceae were the top three

abundant genera in the NBW group.

Differences in microbial communities between IUGR

and NBW piglets

To identify differences in microbial composition between

the IUGR and NBW groups, Wilcoxon signed-rank test

was conducted. At the phylum level, the abundance of

Bacteroidetes in the jejunum of the IUGR group was sig-

nificantly lower than that in the jejunum of the NBW

group (P < 0�05) at 7, 21 and 28 days of age (Fig. 5a–c),
whereas the abundance of Proteobacteria was significantly

higher (P < 0�05) in the ileum of the IUGR group than

that in the ileum of the NBW group at 21 and 28 days of

age (Fig. 5f,g). In addition, the relative abundances of

Firmicutes in the ileum at 21 days of age and of Spiro-

chaeta in the jejunum at 28 days of age were significantly

lower (P < 0�05) in the IUGR group than the NBW

group (Fig. 5d,e).

At the genus level, when compared to the NBW group,

nine genera in the jejunum were less (P < 0�05) abundant
in the IUGR group, including Bacteroides, no rank-Erysi-

pelotrichaceae, Helcococcus, Flavobacterium and Parvi-

monas; whereas the relative abundance of Sharpea in the

IUGR group was higher (P < 0�05) at 7 days of age in the

IUGR than the NBW group (Fig. 6a). The relative abun-

dances Bacteroides, Leptotrichia, unclassified Prevotellaceae,

Porphyromonas and Bergeyella were significantly lower

(P < 0�05) in the IUGR group than the NBW group at

21 days of age (Fig. 6b). However, the abundance of

Escherichia–Shigella in the IUGR group was significantly

higher (P < 0�05), and that of 77 genera, such as Prevotel-

laceae_NK3B31_group, Bacteroides, Alloprevotella, Prevotel-

laceae_UCG-003 and Ruminococcaceae_UCG-005, was

significantly lower (P < 0�05) in the IUGR group than the

NBW group at 28 days of age, (Fig. 6c).

The abundance of four genera was higher (P < 0�05)
in the ileum of the IUGR group at 7 days of age than the

NBW group, including Moraxella, Rothia, Lach-

nospiraceae_NK4A136_group and Acidaminococcus

(Fig. 7a). Four genera had lower (P < 0�05) abundances:

Turicibacter, Cellulosilyticum, Succinivibrio and no rank-p-

2534-18B5_gut_group, and Pasteurella had a higher

(P < 0�05) abundance in the IUGR group than the NBW

group at 21 days of age (Fig. 7b). Five genera had higher

(P < 0�05) abundances: Escherichia–Shigella, Pasteurella,

Leptotrichia, unclassified Pasteurellaceae and Erysipelothrix;

and three genera: Sarcina, Corynebacterium_1 and Bifi-

dobacterium had lower (P < 0�05) abundances in the

IUGR group than the NBW group at 28 days of age

(Fig. 7c).

Correlations between microbial biomarkers and body

weight of newborn piglets

To understand the relationship between the intestinal

microbiota and BW of newborn piglets, the spearman

correlation between microbial relative abundance (based

on the abundance of different taxa) and BW was analysed

(Table 1). This showed that the abundance of 14 taxa

was positively correlated with the BW, such as Bac-

teroides, Bifidobacterium, Corynebacterium_1, Sharpea,

Ruminococcaceae_UCG-002, Turicibacter and
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Cellulosilyticum, whereas the abundance of five taxa was

negatively correlated with the BW: Proteobacteria, Escheri-

chia-Shigella, Pasteurella, Leptotrichia and Erysipelothrix.

Profiles of microbial functions in the small intestine

PICRUSt was used to estimate the functional capacity of

the small intestine microbiota of newborn piglets. At

7 days of age, six pathways were enriched in the IUGR

group compared to the NBW group: Parkinson’s disease,

endocytosis, ether lipid metabolism, three downregulated

pathways (stilbenoid, diarylheptanoid and gingerol biosyn-

thesis), glycosphingolipid biosynthesis and biosynthesis of

vancomycin group antibiotics (Fig. 8a,b). At 21 days of

age, 10 pathways were enriched in the IUGR group com-

pared to the NBW group, including the phosphotransferase
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phylum level. (a–c): The relative abundance of Becteroidetes of jejunum on 7, 21 and 28 days of age respectively; (d): The relative abundance of

Spirochaetae of jejunum on 28 days of age; (e): The relative abundance of Firmicutes of ileum on 21 days of age; (f, g): The relative abundance
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Figure 4 Microbial composition in small intestine of intrauterine growth retardation (IUGR) piglets and normal birth weight (NBW) piglets. The

relative abundant of taxa > 0�01% at phylum are shown, and the top 50 abundant taxa at genus level are shown. (a): Microbial composition in

jejunum of IUGR piglets and NBW piglets at phylum level ( Others; Gracilibacteria; SR1; Synergistetes; Tenericutes; Spirochaetae;

Saccharibacteria; Fusobacteria; Actinobacteria; Bacteroidetes; Proteobacteria; Firmicutes). (b): Microbial composition in ileum of
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nal contents of NBW piglets on 7, 21 and 28 days of age respectively. [Colour figure can be viewed at wileyonlinelibrary.com]
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system, bacterial toxins, RNA degradation, biosynthesis of

siderophore group nonribosomal peptides and pores ion

channels, and 27 pathways were downregulated, including

lipopolysaccharide biosynthesis, biosynthesis of sidero-

phore group nonribosomal peptides, alpha-linolenic acid

metabolism and N-glycan biosynthesis (Fig. 8c,d). At

28 days of age, eight pathways were enriched in the IUGR

group compared to the NBW group, including apoptosis,

synthesis and degradation of ketone bodies, bacterial inva-

sion of epithelial cells and pertussis, and 35 pathways were

downregulated, including carbohydrate metabolism,

protein digestion and absorption, galactose metabolism,

glycerolipid metabolism and linoleic acid metabolism

(Fig. 8e,f).

Discussion

The trillions of intestinal microbes harboured in the

mammalian gut profoundly influences the host’s health

and disease status (Vaarala 2012; Frese et al. 2015; Lin

et al. 2018). An increasing number of studies have shown

that the small intestinal microbiota has a profound

impact on host metabolism and growth (El Aidy et al.

2015; Burbach et al. 2017; Li et al. 2018). The present

study characterized the small intestinal microbiota pro-

files of newborn piglets with IUGR. Our findings showed

that the structure and function of the microbial commu-

nity were highly changed in the IUGR piglets compared

to the control subjects. In addition, the correlation
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analysis suggested that the abundance of 14 taxa was pos-

itively correlated with and that of five taxa was negatively

correlated with the BW of newborn piglets.

Microbial diversity is highly associated with host health

(Clarke et al. 2014; Batacan et al. 2017). A lower diversity

of intestinal microbiota is considered a marker of dysbio-

sis in the gut (Duca et al. 2014) and contributes to a

growing number of diseases, such as autoimmune dis-

eases, obesity, inflammatory bowel disease and recurrent

clostridium difficile-associated diarrhoea (Ott et al. 2004;

Chang et al. 2008). In the present study, the alpha diver-

sity of the jejunum microbiota in IUGR piglets was sig-

nificantly lower than that of control piglets at 7 and

21 days of age, which suggested that there is a dysbiosis

in the gut of IUGR piglets. The IUGR piglets had lower

relative abundances of Bacteroidetes, Firmicutes and Spiro-

chaeta. Bacteroidetes are increasingly regarded as special-

ists for the degradation of high molecular weight organic

matter, including proteins and carbohydrates (Thomas

et al. 2011). Gut Bacteroidetes generally produce butyrate,

which has antineoplastic properties and, thus, plays an

important role in maintaining gut health (Kim and Mil-

ner 2007). Furthermore, Bacteroidetes also contributes to

the host’s health, including by interacting with the

immune system to activate T cell-mediated responses

(Mazmanian et al. 2008; Wen et al. 2008) and limiting

the colonization of the gastrointestinal tract by potential

pathogenic bacteria (Mazmanian 2008). Schwiertz et al.

(2010) and Collado et al. (2008) demonstrated that over-

weight pregnant women and volunteers harboured signif-

icantly higher counts of the Bacteroidetes genus than

normal-weight pregnant women and lean volunteers. A

recent study found that the relative abundance of Firmi-

cutes is associated with energy intake from the diet

(Turnbaugh et al. 2009); a higher proportion of the Fir-

micutes phylum was found in obese children and adults

than lean individuals. In the present study, the lower rel-

ative abundance of Bacteroidetes and Firmicutes in IUGR

piglets than controls suggests that IUGR piglets are less

efficient at extracting energy from their diet and conse-

quently gain less weight (Matheson et al. 2018). In addi-

tion, Proteobacteria, which includes a wide variety of

pathogens (such as Escherichia, Salmonella, Vibrio, Heli-

cobacter and Yersinia), is associated with inflammation

(Cordonnier et al. 2016; Wang et al. 2019). In the present

study, the IUGR piglets had a higher proportion of Pro-

teobacteria, which increased continuously with age and

negatively correlated with BW. These findings suggest

that the IUGR piglets are more susceptible to disease.

At the genus level, we found more of a difference in

the abundance of bacterial taxa in the jejunum than in

the ileum between IUGR and NBW piglets. Bacteroides

populations have the ability to harvest milk glycans and

produce short-chain fatty acids to stimulate the growth

of intestinal epithelial cells, and thus, reduce the inva-

sion and colonization by pathogens in nursing pigs

(Marcobal et al. 2011; Marcobal and Sonnenburg 2012;

Liu et al. 2018a). Previous studies have demonstrated a

lower abundance of Bacteroides in obese than normal-

weight children (Sepp et al. 2013). In our study, Bac-

teroides was less abundant in the jejunum of IUGR than

NBW piglets at 7, 21 and 28 days of age, and the abun-

dance of Bacteroides positively correlated with BW. These

differences may be due to our samples obtained from

small intestinal contents instead of faeces. Therefore, the

abundance of Bacteroides in the small intestine is impor-

tant for the healthy growth of piglets. These findings are

similar to a study by Zeng et al. (2015), which showed

that low BW rex rabbits had a lower abundance of Bac-

teroides than controls. In addition, our study found that

the proportions of several bacterial taxa belonging to the

Ruminococcaceae family (e.g. Ruminococcaceae_NK4A214_

group, Ruminococcaceae_UCG-004, Ruminococcaceae_

UCG-005, Ruminococcus_2 and Oscillibacter) were lower

in the jejunum of IUGR than NBW piglets at 21 and

28 days of age. Previous studies have shown that the

presence of Ruminococcaceae is related to the mainte-

nance of gut health and the presence of numerous car-

bohydrate-active enzymes that share a role as active

plant degraders (Biddle et al. 2013). In addition, a

higher abundance of Ruminococcaceae was detected in

obese than normal weight mice (Kim et al. 2012). Bifi-

dobacteria has been shown to be involved in nutrient

metabolism and energy recycling, which play important

Table 1 Correlations between microbial biomarkers and body weight

of newborn piglets

Species q P values

Oscillibacter 0�76 0�001
Ruminococcaceae_UCG-002 0�74 0�001
norank Bradymonadales 0�74 0�001
Sharpea 0�69 0�004
unclassified Ruminococcaceae 0�68 0�004
Bacteroides 0�64 0�011
Bifidobacterium 0�63 0�009
norank ODP1230B8.23 0�60 0�014
norank Clostridiales_vadinBB60_group 0�55 0�027
Cellulosilyticum 0�52 0�037
Turicibacter 0�52 0�041
Corynebacterium_1 0�51 0�042
unclassified Family_XIII 0�51 0�046
Leptotrichia �0�52 0�040
Proteobacteria �0�57 0�020
Escherichia-Shigella �0�57 0�020
Erysipelothrix �0�57 0�021
Pasteurella �0�76 0�001
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roles in the trophic, metabolic and protective functions

of the host (Blais et al. 2015; Azad et al. 2018). Our

study showed that the abundance of Oscillibacter

decreased in the jejunum of IUGR piglets at 21 days of

age, as well as Bifidobacterium in the ileum of IUGR pig-

lets at 28 days of age. In addition, the correlation
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analysis also revealed that Oscillibacter and Bifidobac-

terium were positively associated with BW. These find-

ings suggest that IUGR piglets show low adaptability to

the diet shift from solely sow milk to a solid diet, result-

ing in loss of BW. Furthermore, the abundance of

Escherichia–Shigella and Pasteurella, opportunistic patho-

gens that causes a variety of infectious diseases in ani-

mals (Wilson and Ho 2013; Peng et al. 2016; Wang

et al. 2019), was higher in IUGR than in NBW piglets.

This suggested that these potential pathogens and oppor-

tunistic microbes might be related to the high suscepti-

bility of IUGR piglets to disease. In order to explain the

relationship between intestinal microbiota and host

growth performance, it is necessary to further determine

the intestinal health status.

Intrauterine growth retardation piglets had a lower

abundance of microbial pathways related to carbohydrate

metabolism, lipid metabolism, glycan biosynthesis and

metabolism, amino acid metabolism, terpenoid and

polyketide metabolism, xenobiotics biodegradation and

metabolism, and biosynthesis of other secondary metabo-

lites. The downregulated pathways of carbohydrate meta-

bolism, lipid metabolism, and glycan biosynthesis and

metabolism in IUGR piglets may be due to the presence

of a lower abundance of Bacteroidetes, Firmicutes and

Bacteroides, which can degrade high molecular weight

organic matter (including proteins and carbohydrates),

harvest milk glycans and produce SCFA (Marcobal et al.

2011; Thomas et al. 2011; Liu et al. 2018a). Stilbenoid,

diarylheptanoid and gingerol, which are plant sources of

phytoalexins, have natural anti-inflammatory activities

(Park et al. 1998; Yadav et al. 2003). The present study

showed that IUGR piglets had several downregulated

pathways related to xenobiotic biodegradation, including

DDT, benzoate, bisphenol, chloroalkane, chloroalkene

and naphthalene degradation. DDT is wildly contained in

many pesticides, benzoate is used as a preservative in

food and feed, and bisphenol is an endocrine-disrupting

chemical that exogenously interferes with the endocrine

system of humans and animals; the endocrine imbalance

of organisms exposed to bisphenol results in various

abnormalities, such as genital disorders, abnormal beha-

viour, decreased reproductive capacity and larval death.

The decreased abundance of xenobiotic biodegradation

pathways in IUGR piglets suggests that exogenous sub-

stances cannot be effectively degraded, thereby damaging

the host’s health.
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