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Functional brain networks related 
to individual differences in human 
intelligence at rest
Luke J. Hearne1, Jason B. Mattingley1,2 & Luca Cocchi1,3

Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its 
importance in defining human behaviour, the neural networks responsible for intelligence are not well 
understood. The dominant view from neuroimaging work suggests that intelligent performance on a 
range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. 
Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or 
emerge from more widespread associations in a task-free context. First we undertook an exploratory 
mapping of the existing literature on functional connectivity associated with intelligence. Next, to 
empirically test hypotheses derived from the exploratory mapping, we performed network analyses 
in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a 
novel contribution of across-network interactions between default-mode and fronto-parietal networks 
to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the 
resting state was associated with higher intelligence scores. Our findings highlight the need to broaden 
the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and 
context-specific network dynamics.

Human intelligence can be broadly defined as the capacity to understand complex ideas, adapt effectively to the 
environment and engage in complex reasoning1. Measures of intelligence can be related to performance on vir-
tually any cognitive task, from sensory discrimination2 to challenging cognitive tasks such as the identification 
of patterns in the Raven’s Progressive Matrices test3. Importantly, scores on intelligence tests can accurately pre-
dict various life outcomes, including academic success4, job performance5, and adult morbidity and mortality6. 
Brain imaging studies have suggested that neural activity in frontal and parietal cortices during the execution 
of cognitive tasks is related to individual differences in intelligence7,8. These findings have been formalised in 
the influential Parieto-Frontal Integration Theory of intelligence (P-FIT)9, and have been proposed to extend to 
intrinsic networks of the brain10,11. By contrast, recent work investigating brain activity at rest (i.e., in the absence 
of any specific cognitive task) has suggested intelligence is underpinned by communication between widespread 
brain regions including, but not limited to, parieto-frontal areas12–14. Here we asked whether the P-FIT extends to 
intrinsic brain networks by undertaking an explorative summary of recent literature and conducting an empirical 
analysis using a dataset of 317 unrelated participants from the Human Connectome Project15.

Functional magnetic resonance imaging (fMRI) has been used to examine the relationship between individual 
differences in intelligence and brain activity during the engagement of cognitive abilities such as working memory16  
and reasoning17,18. Typically, in these studies regions associated with intelligence are isolated by subtracting fMRI 
signals between two conditions with different ‘intelligence-loadings’ (e.g., easy versus difficult reasoning prob-
lems)17,18. Local changes in brain activity are then correlated with standard intelligence scores to identify regions 
that are related to individual differences in intelligence. Although this approach has been useful for identifying 
functionally segregated neural correlates of intelligence, it is insensitive to the integration of information pro-
cesses across spatially and functionally segregated brain regions (e.g., functional connectivity).

Recent studies have investigated the relationship between individual intelligence scores and patterns of func-
tional connectivity during resting state scans10,14,19. One hypothesis to emerge from this work is that resting state 
functional connectivity associated with intelligence should recapitulate the functional topology of frontal-parietal 
networks10. Attempts to test this prediction, however, have so far produced inconclusive findings. For example, 
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individual differences in intelligence have been related to changes in resting state connectivity in neural networks 
broadly involved in self-referential mental activity (default-mode network), attentional control processes (dorsal 
attention network) and task-set maintenance (cingulo-opercular network)12,20–24.

Here we used convergent approaches to assess whether the P-FIT can be extended to task-free (resting state) 
contexts. We started by conducting an exploratory mapping of previous findings from studies that had investi-
gated the relationship between resting state functional connectivity and measures of intelligence. Specifically, 
we mapped significant pairwise connections from four previous studies (see Table 1) into a validated topologi-
cal characterisation of resting state brain networks25. We found that the previously reported functional connec-
tions associated with intelligence were not restricted to the fronto-parietal system (Fig. 1). We next tested this 
qualitative observation by mapping brain-intelligence relationships using a large and independent set of neu-
roimaging and behavioural data from the Human Connectome Project (HCP)15. Within the HCP data, general 
intelligence is defined as individual scores on a shortened version of the Raven’s Progressive Matrices and the 
Picture Vocabulary test. According to a context-invariant interpretation of the P-FIT10, intelligence should be 
related to connectivity within a fronto-parietal network as assessed during task performance and in the resting 
state. Conversely, absence of overlap between task and resting state networks would be more consistent with a 
context-specific neurophysiological model of intelligence.

Results
Exploratory mapping: resting state functional connectivity related to intelligence. Results 
from our mapping of studies (Table 1) assessing the relationship between resting state functional connectivity and 
intelligence scores are presented in Fig. 1. Significant patterns of pairwise functional connectivity positively asso-
ciated with intelligence (Fig. 1a) suggest a key role for connections between prefrontal and frontal cortices com-
prising the dorsal attention network (dark green). Significant brain-behaviour associations were also observed for 
the posterior cingulate/precuneus (red, default-mode network), the superior parietal cortex (yellow, fronto-pari-
etal network) and the occipital cortices (dark blue, visual network). Resting state functional connectivity between 
bilateral prefrontal cortices encompassing the dorsal attention network and the right insula (salience network, 
black) was also associated with intelligence scores.

Correlations between lower resting state functional connectivity (i.e., reduced positive correlations and/or 
increased anticorrelations) and higher intelligence scores (Fig. 1b) involved connections within cortical areas 
comprising the default-mode network (red) as well as functional interactions between these areas and regions 
within the dorsal attention network, including the visual, cingulo-parietal and somatosensory (both hand and 
mouth) regions.

Empirical analysis of resting state functional networks supporting human intelligence using 
HCP data. Though suggestive, the above results represent merely the overlap of findings from a small number 
of studies with varying sample sizes and regions of interest. Thus, to empirically test the hypothesis that resting 
state connectivity correlates of intelligence extend beyond the fronto-parietal network, we utilized resting state 
data from the Human Connectome Project. Specifically, we assessed positive and negative linear relationships 
between whole-brain resting state functional connectivity and intelligence scores of 317 unrelated participants 
(i.e., participants did not have the same mother or father).

Functional connectivity in a concentrated resting state network comprising regions of the fronto-parietal 
(yellow), default-mode (red), and cortex not associated with any specific network (aqua; note that these regions 
have been labeled as default-mode in other parcellations26) showed a significant positive relationship with intelli-
gence scores (p =  0.045/0.032 familywise error corrected at network level for extent and intensity effects, respec-
tively; see Methods for details, Fig. 2). Specifically, the resulting regions included the bilateral superior medial 
frontal cortex, superior orbital gyrus and temporal cortex, as well as the left middle cingulate cortex and right 
middle frontal and supramarginal gyrus (details in Table 2). No other networks were implicated in the anal-
ysis. Connections within the default-mode and fronto-parietal networks accounted for the majority of edges 
detected (Fig. 2b). A follow-up correlation between the mean connectivity value of all implicated edges and 

Author

Sample

Behavioural measure
Brain-behaviour 
relationship Analysis type Regions of interestN Males

Age 
(M ± SD)

Song et al. 59a 49% 24.6 ±  3.5 WAIS (Chinese) Correlation Seed to voxel-wise 
whole-brain analysis Bilateral DLPFC 

Song et al. 59a 49% 24.6 ±  3.5 WAIS (Chinese) Correlation Multi-region pairwise 
analysis

13 default-mode regions 
defined by seeding the PCC

Pamplona et al. 29 52% 26.8 ±  5.8 WAIS (Portuguese-Brazil) Correlation Multi-region pairwise 
analysis. 82 AAL atlas regionsb

Santarnecchi 
et al. 119 50% 33 ±  13 WASI

Between-group: high and 
low comparison defined 
by median split

Seed to voxel-wise 
whole-brain analysis

Six seed regions defined by 
prior VHMC analysis

Table 1.  Characteristics of studies included in the resting state explorative mapping. Note: aThe samples used  
in the indicated studies were not independent. bMNI centroids were used as regions of interest. WAIS =  Wechsler  
Adult Intelligence Scale, WASI =  Wechsler Abbreviated Scale of Intelligence, DLPFC =  dorsolateral prefrontal 
cortex, PCC =  posterior cingulate cortex, AAL =  Automated Anatomical Labeling, VHMC =  voxel-mirrored 
homotopic connectivity.
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general intelligence (as measured by the average of z-scored fluid and crystallized intelligence measures) showed 
that higher positive connectivity values were associated with higher intelligence scores (r =  0.38).

No associations were found between increased intelligence and decreased resting state functional connectivity. 
Considering the large sample size this is unlikely to be related to a lack of statistical power. Nevertheless, we per-
formed the NBS again with two lower exploratory statistical thresholds (t =  3.0 and t =  2.5). No networks showed 
significant negative associations between intelligence and functional connectivity using these lower statistical 
thresholds.

Discussion
We assessed whether the dominant parieto-frontal integration theory of intelligence (P-FIT)9 can be extended 
to networks supporting intelligence in task-free contexts (i.e., at rest) by conducting a functional connectivity 
analysis of Human Connectome Project data. Specifically, we tested whether resting state functional connectivity 
within frontal and parietal brain regions, and between these regions and the rest of the brain, can account for 
individual variability in intelligence scores. While our findings confirm a key role for fronto-parietal networks in 
supporting intelligence, they also highlight the importance of connectivity between regions associated with the 
fronto-parietal, default-mode and regions not strongly associated with homogeneous networks (although these 
regions have been identified as comprising the default-mode network before26), particularly in the prefrontal 
cortex. More broadly, our results suggest that interactions between fronto-parietal and default-mode networks 
are important for explaining individual differences in intelligence in a state of rest.

Recent evidence suggests that the default-mode and frontal-parietal networks represent overarching systems 
of the brain, composed of several sub-networks that dynamically interact27,28. Engaging in demanding external 
tasks has traditionally been associated with increased activity and functional connectivity in fronto-parietal net-
works, on the one hand, and reduced activity and connectivity in default-mode areas on the other29. The opposite 
functional relationship between these two systems has also been observed during the resting state30,31. Likewise, 
during cognitive tasks, it has been shown that individuals with higher and lower intelligence tend to activate 
these networks differentially32,33. Specifically, individuals with higher intelligence deactivate the default-mode 
network less (i.e., a smaller task-induced decrease in the BOLD signal32) and activate fronto-parietal and 
cingulo-opercular network regions more than individuals with lower intelligence16,17,32. Evidence for the second 
claim, however, is mixed34,35.

Figure 1. Pairwise functional connections associated with intelligence at rest from previous literature.  
(a) Connections in which higher functional connectivity was associated with higher intelligence. (b) Connections 
in which lower functional connectivity (i.e., reduced positive correlations and/or increased anticorrelations) was 
associated with higher intelligence. Edges are weighted by level of correlation reported in the original studies. In 
the case where no r-value was provided (i.e., in between-group contrasts) edges were weighted at the minimum 
value for visualization purposes (±0.25).
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Somewhat at odds with this functional dichotomy between fronto-parietal and default-mode network activity, 
our analyses suggest that greater cooperation (i.e., greater positive correlations) between distinct brain regions 
comprising default-mode and fronto-parietal networks in the resting state are associated with higher intelligence 
scores. This pattern of connectivity-intelligence associations is consistent with other findings suggesting that higher 
global network efficiency is related to higher general intelligence measures14 and that the across-network connec-
tivity of the fronto-parietal network is critical for fluid intelligence36. More broadly, our findings are compatible 
with recent conceptualisations of default-mode network function as critical in maintaining a large “dynamic reper-
toire” of possible neural states at rest37,38, facilitating the flexible emergence of task-specific dynamics39–41.

How the brain self-reorganizes to achieve optimal configurations of functional networks across individuals 
with varying levels of intelligence is an open question. Recent neuroimaging work has suggested that transient 
cooperation between different neural systems, including fronto-parietal, cingulo-opercular and default-mode 
networks, is integral to complex cognitive tasks such as reasoning42,43, memory recollection44 and working mem-
ory performance39,45. Future studies should test the notion that individual differences in intelligence rely on 
dynamic, context-specific, reconfigurations of local activity and connectivity within a diffuse system comprising 
fronto-parietal, cingulo-opercular and default-mode regions46.

A strength of the current work is the use of a statistically robust network-based method to isolate 
brain-intelligence associations at rest. While sensitive to network-level associations between functional con-
nectivity and intelligence, our approach may have overlooked edge-specific associations detected in previous 
work (see Fig. 1). For example, we found no significant negative association between differences in individual 

Figure 2. Network-intelligence analysis on 317 independent HCP participants. (a) Pairwise functional 
connections associated with intelligence scores [p =  0.045 (extent), p =  0.032 (intensity), both FWE corrected 
at the network level]. Cortical colours reflect their network allegiance, and edge weights reflect the uncorrected 
edge t-statistics. Note that the light blue regions in (a) were not linked to a specific network by Gordon and 
colleagues25. (Panel b) shows the same results as those depicted in (panel a), but outside of anatomical space. 
Here the edge t-statistics are represented by colour. Circles represent network nodes comprising the default-
mode and fronto-parietal and non-affiliated networks. Pie charts show the percentage of significant connections 
that were within (white) or across (coloured) different networks. (c) Scatterplot of the average functional 
connectivity (FC) values in the whole implicated network (panel a) as a function of general intelligence scores 
(r =  0.38), DMN =  default-mode network, FPN =  fronto-parietal network.
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functional connectivity strength and intelligence, despite two previous studies included in our explorative map-
ping reporting such a relationship10,24. To enhance comparability, we attempted to keep the current analysis as 
similar to previous work as possible. In fact, both our study and previous work used similar data for calculating 
functional connectivity (i.e., Z-normalised pairwise Pearson correlations on data without global signal regres-
sion). One possible explanation for the discrepancy between our work and earlier results may relate to the use 
of different statistical methods to infer connectivity-intelligence associations. Previous work used edge-specific 
correlations with intelligence scores. In contrast, our analysis focused upon significant relationships at the level 
of whole brain networks. It is possible our approach was less sensitive to circumscribed negative associations 
between functional connectivity and intelligence. Finally, while our study assessed the functional relationship 
between pairwise changes in connectivity and intelligence, other studies assessed the link between intelligence 
and more complex measures of functional connectivity patterns (see Supplementary Table 2). However, we note 
that these analyses broadly validated the current results by implicating key default-mode regions and other brain 
areas (see Supplementary Fig. 1).

In summary, our study provides a novel characterization of large-scale networks that explain individual dif-
ferences in intelligence in a state of rest. Our results suggest that intelligence is supported by activity within 
a diffuse neural system comprised of brain regions encompassing fronto-parietal and default-mode networks. 
Consistent with these findings, we propose the influential parieto-frontal intelligence theory (P-FIT) may need 
to be extended to address context-specific network interactions. The functional links between transitions from 
diffuse resting state dynamics and more segregated task dynamics and intelligence will be an important topic for 
ongoing research.

Methods
Explorative mapping of relationship between intelligence and resting state networks. For the 
explorative mapping of data on the relationship between intelligence scores and intrinsic neural activity we per-
formed a manual literature search of English-language peer-reviewed fMRI studies linking measures of pairwise 
resting state functional connectivity with behavioural measures of intelligence in healthy human adults (Table 1). 
The literature review was conducted using PubMed, Web of Science® (Thomson Reuter) and Scopus® (Elsevier), 
and was last updated the 9th of December 2015. Corresponding authors were contacted and asked to provide addi-
tional details or whole-brain results if these were not included in the published papers. Our final sample included 
data from 207 healthy adult participants. In one case10,12, the same participant cohort was used across two studies. 
However, in these studies orthogonal region-of-interest analyses were conducted. Conversely, a recent study was 
not included47 because it involved the same cohort and similar analyses as an already included study24. Note 
that we included studies that utilised both individual differences and group differences in intelligence (details in 
Table 1). We also conducted a summary of several studies that investigated global and local changes in functional 
connectivity (Supplementary Fig. 1 and Table 2). Due to the lack of overlap in analysis methods, the outcome was 
not included in the final analysis.

Cortical regions resulting from the above mapping were transposed into a common functional brain parcel-
lation comprising 333 cortical regions25. This brain parcellation was selected because it has been shown to be a 
more refined, homogeneous extension of widely used, functionally defined resting state parcellations26,48. It is 
important to note that some of the networks isolated in the adopted parcellation represent sub-networks of the 
fronto-parietal network defined by the P-FIT. Specifically, the fronto-parietal, cingulo-opercular/parietal and 
dorsal/ventral attention networks defined by the current brain parcellation are considered to be part of the same 

Gordon 
region

MNI Coordinates

Resting-state network Anatomyx y z

25 − 5.6 42.2 35.1 Default-mode Superior medial frontal gyrus

26 − 1.7 − 17.7 39.1 Default-mode Middle cingulate cortex

114 − 27.5 53.6 0 Default-mode Superior frontal gyrus

115 − 23.4 61 − 6.8 None Superior orbital gyrus

128 − 53.2 − 13 − 29.2 None Inferior temporal gyrus

150 − 6.5 54.7 18.1 Default-mode Superior medial frontal gyrus

151 − 15.7 64.7 13.7 Default-mode Superior frontal gyrus

165 11.9 21.9 59.9 Default-mode Posterior medial frontal gyrus

167 47.9 − 42.5 41.5 Fronto-parietal Supramarginal gyrus

277 28.4 57 − 5.1 Fronto-parietal Superior orbital gyrus

291 54.7 − 7.8 − 26.9 None Inferior temporal gyrus

321 16 61 19.8 Default-mode Superior medial frontal gyrus

322 8.2 53.8 14 Default-mode Superior medial frontal gyrus

327 42.4 19.5 48.2 Fronto-parietal Middle frontal gyrus

328 38.9 9.6 42.7 Fronto-parietal Middle frontal gyrus

Table 2.  Regions implicated in the analysis of the Human Connectome Project data. Note: In some cases 
the implicated parcels cross multiple anatomical boundaries, here we have simply tried to provide the most 
accurate anatomical description.
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fronto-parietal system in the P-FIT. Each region was then mapped into the adopted parcellation by generating 
5 mm radius spheres from the reported MNI coordinates and quantitatively assessing the spatial overlap with 
regions of the adopted parcellation. A parcel was defined as overlapping with the region(s) reported in a previous 
study when it covered at least 20 contiguous voxels (1 mm3) of the MNI sphere. In instances where several parcels 
were implicated from a single coordinate, only the parcel that overlapped the most was included. Edges were 
drawn between implicated parcels using their associated r-values from the original studies. Note that changing 
our criteria for an overlapping region, either by increasing or decreasing the voxel limit, or by increasing the 
sphere size to 10 mm, yielded very similar results to those reported below.

Analysis of intrinsic functional networks supporting human intelligence using HCP data. We 
next conducted an analysis of data from a large, independent sample of healthy adult participants, to examine 
associations between intelligence and functional connectivity across the whole brain in a task-free context. The 
relationship between measures of intelligence and neural activity was assessed using high quality resting state 
fMRI data from the HCP15. Specifically, we used data from 317 genetically unrelated participants included in 
the S900 data release (173 female, Mage =  28.43 years, SDage =  3.77, rangeage =  22–36 years). Two relevant behav-
ioural tasks were used as measures of general intelligence. The Penn’s Progressive Matrices (PMAT), a short-
ened version of Raven’s Progressive Matrices49, was used as a measure of fluid intelligence (M =  17.06, SD =  4.77, 
range =  4–24). In the Raven’s Progressive Matrices participants are presented with puzzles containing visual pat-
terns with a piece missing. They are instructed to ‘fill in the blank piece’ from a given selection of possible answers. 
The Picture Vocabulary Test, a component of the National Institutes of Health toolbox, was adopted as a measure 
of crystallized intelligence50 (M =  116.59, SD =  9.57, range =  92.84–153.09). In this task participants are presented 
with an audio recording of a word, and are shown four pictures. They are asked to select the picture that most 
closely matches the meaning of the spoken word. Individual scores on the PMAT and Picture Vocabulary Test 
were significantly correlated (r =  0.38, p <  0.0001).

HCP Data Preprocessing and Analysis. Data consisted of whole brain echo-planar images (EPIs) with sub-second 
temporal resolution (time repetition of 720 ms) and high spatial resolution (2 mm3 voxels)51,52. The data used 
for this study were downloaded as per the Human Connectome Project minimally preprocessed pipeline with 
denoising procedures (for details see53,54) and included both left-to-right and right-to-left acquisitions from the 
first resting state dataset (i.e., resting state fMRI 1 FIX-denoised package). The average time series from the voxels 
comprising each of the 333 regions in the adopted parcellation25 were extracted using the Matlab toolbox DPARSF 
V.355. As per the studies included in the resting state explorative mapping10,12,23,24, we calculated functional connec-
tivity per participant in each acquisition as a Pearson correlation between each pair of regions, which were subse-
quently Fisher-Z transformed. Each pair of Z-matrices (left-to right, and right-to-left) was then averaged resulting 
in a 333 ×  333 functional connectivity matrix for each of the 317 participants. Note that no global signal regression 
was performed for consistency with previously published studies included in the resting state explorative mapping.

To assess the relationship between resting state functional connectivity and individual intelligence scores we 
used the network based statistic (NBS56,57, https://sites.google.com/site/bctnet/comparison/nbs). The NBS is a 
powerful and sensitive statistical tool that controls for Type I error at the network-level. The use of NBS repre-
sents a distinct advantage in term of sensitivity over previous studies that corrected for multiple comparisons 
at the edge level10,23. Unthresholded functional connectivity matrices were first used as input into the NBS57. All 
possible pairs of connections (333 ×  332/2 =  55,278) were examined for putative associations with intelligence. To 
this end, Z-normalised fluid intelligence scores (PMAT) and crystalized intelligence scores (Picture Vocabulary 
Test) were used as separate variables of interest in the NBS. Age and gender were considered as covariates of 
no interest. Following this procedure, a matrix of brain-behaviour associations was obtained. The matrix was 
thresholded using an exploratory t-statistic of 3.5. A slightly higher final threshold (t =  3.7) was adopted because 
it allowed the detection of medium sized effects while discarding small or spurious effects57. Note that additional 
exploratory analyses showed that networks arising using higher or lower t-thresholds resembled the original 
results. Familywise error corrected (FWE) p-values were ascribed to the resulting networks using a null distribu-
tion obtained by 5000 permutations. Only components that survived a network-level threshold of p <  0.05 FWE 
were declared significant. Analyses were performed using both the extent criterion (number of connections in a 
network) and intensity criterion (sum of test statistic values in a network) in NBS, for both positive and negative 
associations with intelligence. It is important to note that the NBS is a network-sensitive method, and does not test 
for significance at the level of individual edges. Therefore, our analysis provides a network-level characterization of 
resting state functional connectivity correlates of intelligence that can guide further, and more local, investigations.

Figures were generated using BrainNet Viewer58, NeuroMArVL, (http://immersive.erc.monash.edu.au/neu-
romarvl/) and in-house Matlab scripts.
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