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An equation of state for insect 
swarms
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Collective behaviour in flocks, crowds, and swarms occurs throughout the biological world. Animal 
groups are generally assumed to be evolutionarily adapted to robustly achieve particular functions, so 
there is widespread interest in exploiting collective behaviour for bio-inspired engineering. However, 
this requires understanding the precise properties and function of groups, which remains a challenge. 
Here, we demonstrate that collective groups can be described in a thermodynamic framework. We 
define an appropriate set of state variables and extract an equation of state for laboratory midge 
swarms. We then drive swarms through “thermodynamic” cycles via external stimuli, and show that 
our equation of state holds throughout. Our findings demonstrate a new way of precisely quantifying 
the nature of collective groups and provide a cornerstone for potential future engineering design.

Organisms on every size scale, from single-celled1 to highly  complex2, regularly come together in groups. In many 
cases, such aggregations are collective, in that the group as a whole displays properties and functionality distinct 
from those of its individual members or simply their linear  sum3,4. It is generally assumed that since evolution has 
led so many different kinds of animals to behave collectively, the performance of collective groups at whatever 
task they seek to achieve ought to be well beyond the capabilities of a single  individual5, while also being robust 
to uncertain natural  environments6,7 and operating without the need for top-down  control8. For these reasons, 
there has been significant interest both in understanding how collectivity conveys these  advantages9 and how to 
exploit it in engineered  systems10,11.

Taking advantage of evolutionary adaptation for the design of such a bio-inspired artificial collective system 
requires both determining the interaction rules used by real animals and properly understanding the function 
of the group. Both of these tasks remain a challenge. Extracting interaction rules by observing group behaviour 
is a highly nontrivial inverse  problem12 that can typically only be solved by assuming a modelling framework a 
 priori13,14. Appropriate model selection is made more difficult given that interactions may change in different 
 contexts7,8,15. Even less work has been done to precisely determine the tasks optimized by collective behaviour. 
Assumptions about the purpose of group behaviour typically come from ecological  reasoning16 rather than 
quantitative empirical  evidence8—and in some cases, such as hypothesized aerodynamic benefits conveyed to 
flocking birds, such reasoning has proved to be  incorrect17,18.

We argue that the essential nature of the group functionality is encoded in its properties—and therefore that 
understanding these properties both allows one to quantify the purpose of the collective behaviour and to pre-
dict the response of the group to environmental changes. As recent work has  demonstrated19–21, a powerful way 
to characterize these properties is to borrow ideas from other areas of physics. For groups on the move such as 
human crowds, hydrodynamics is a natural choice, and empirically measured constitutive laws have allowed the 
formulation of equations of motion that accurately predict how crowds  flow20. But for stationary groups such as 
insect swarms, where the group as a whole does not move even though its constituent individuals are continu-
ously rearranging, thermodynamics is a more natural framework, as it allows one to precisely describe the state 
of the system irrespective of its net  motion22. The most fundamental relationship for doing so is the equation of 
state, which links the state variables that describe the macroscopic properties of the system and encodes how 
they co-vary in response to environmental changes.

Here, we formulate such an equation of state for laboratory swarms of the non-biting midge Chironomus 
riparius (Fig. 1a). We define appropriate state variables, and empirically deduce their relationship by analysing 
a large data set of measured  swarms23. Then, by applying a suitable sequence of external perturbations to the 
swarms, we show that we can drive them through a thermodynamic cycle in pressure–volume space throughout 
which our empirical equation of state holds.
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Results
State variables. The first step in describing the macroscopic properties of the swarm is to define a set of 
state variables that fully characterizes the state of the system. The equation of state then links these state variables 
in a functional relation. In classical thermodynamics, a complete set of state variables is given by the conjugate 
pairs of pressure P and volume V, temperature T and entropy S, and, if the number of particles is not fixed, 
chemical potential μ and number of particles N. We use an analogous set of state variables here to characterize 
swarms. The most straightforward state variable to define is the number of individuals N, which is given simply 
by the number of midges in the swarm at a given time (note that midges that are not swarming simply sit on 
the walls or floor of the laboratory enclosure). The volume V of the swarm can be straightforwardly defined and 
computed as the volume of the convex hull enclosing all the midges. Note that while N and V are not indepen-
dently controllable quantities, the ratio N/V is empirically approximately constant in large  swarms24, meaning 
that the “thermodynamic” limit (that is, N → ∞ and V → ∞ with NV → ρ ) is approached in our  swarms25. In 
typical swarming events, N changes on a time scale that is very slow compared to the swarm dynamics; thus, a 
chemical potential is not needed to describe the instantaneous state of the swarm. Note, though, that since the 
number of midges varies between measurements that may be separated by many days, N remains a relevant state 
variable for capturing swarm-to-swarm variability.

The remaining three state variables are somewhat more subtle, but can be defined by building on previous 
work. It has been explicitly  shown26 that a virial relation based on the kinetic energy and an effective potential 
energy holds for laboratory swarms of Chironomus riparius. For particles moving in a potential, this virial rela-
tion can be used to define a  pressure26. As we have shown previously, swarming midges behave as if they are 
trapped in a harmonic potential well that binds them to the swarm, with a spring constant k(N) that depends on 
the swarm  size24,26 (Fig. 1b). The difference between the kinetic energy and this harmonic potential energy thus 
allows us to compute a  pressure4,26,27, which is conceptually similar to the swim pressure defined in other active 
 systems28. The virial theorem thus provides a link between kinetic energy, potential energy, and a field that plays 
the role of a pressure, when coupled with the observation that individual midges to a good approximation behave 
as if they are moving in a harmonic  potential24,26. We can write this virial pressure P (per unit mass, assuming 
a constant mass per midge) as

Figure 1.  Swarm kinematics. (a) Trajectories (> 40 s long) of individual midges (each colour corresponding to 
a different midge) are individually convoluted but remain spatially localized over a ground-based swarm marker 
(black square). (b) Averaged spring constant �k|N� as function of the swarm size N (symbols). The black line is 
a power-law fit to the data. (c) Probability density function (PDF) of midge positions in the horizontal plane 
(blue) along with a Gaussian fit to the data (red). (d) PDF of midge positions in the vertical (gravity) direction 
(blue) and a Gaussian fit to the data (red). The deviation from Gaussianity in the vertical component of the 
position arises from the symmetry breaking due to the bottom floor of the experimental setup. (e,f) PDFs of the 
horizontal (e) and vertical (f) midge velocities (blue) along with Gaussian fits to the data (red).
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where N is the number of midges in the swarm, V is the swarm volume, vi is the velocity of midge i, ri is its 
distance from the swarm centre of mass, and �k� = �−ai · r̂i/ri� is the effective spring constant of the emergent 
potential well that binds midges to the swarm. In this expression, ai is the acceleration of midge i, r̂i is the unit 
vector pointing from a midge towards the instantaneous centre of mass of the swarm (defined as 1/N

∑N
i=1 ri ) 

and averages are taken over the individuals in the swarm. This spring constant depends on the swarm size N 
(Fig. 1b). We note that we have previously simply used the directly computed potential energy −�ai · ri� to 
define the  pressure4,27; here, we instead average the potential terms and fit them to a power law in N (Fig. 1b) to 
mitigate the contribution of spurious instantaneous noise in the individual positions that would be enhanced 
by differentiating them twice to compute accelerations. We use this power law to determine the spring constant 
k instantaneously at each time step.

The results from the two methods for computing the pressure are similar and consistent, but the method we 
use here is less prone to noise. Physically, this pressure P can be interpreted as the additional spatially variable 
energy density required to keep the midges bound to the swarm given that their potential energy varies in space 
but their mean velocity (and therefore kinetic energy) does not. Thus, compared to a simple passive particle 
moving in a harmonic well, midges have more kinetic energy than expected at the swarm edges; this pressure 
compensates for the excess kinetic energy. This pressure should be viewed as a manifestation of the active nature 
of the midges (similar to a swim  pressure28), since the kinetic energy is an active property of each individual 
midge and the potential energy is an emergent property of the swarm.

We can define a Shannon-like entropy S via its definition in terms of the joint probability distributions of 
position and velocity. This entropy is defined as

where p(x,v) is the joint probability density function (PDF) of midge position and velocity. S here is measured in 
bits, as it is naturally an information entropy. Empirically, we find that the position and velocity PDFs are nearly 
statistically independent for all components and close to Gaussian, aside from the vertical component of the 
position (Fig. 1c–f). However, the deviation from Gaussianity in this component (which occurs because of the 
symmetry breaking due to the ground) does not significantly affect the estimate of the entropy; thus, we approxi-
mate it as Gaussian as well. Making these approximations, we can thus analytically write the (extensive) entropy as

where σx and σv are the standard deviations of the midge positions and velocities, respectively. In practice, we 
calculated σv by averaging the instantaneous root-mean-square values of all three velocity components rather 
than a time-averaged value; the difference between these components was always less than 10%. This expression 
makes it more clear why the Gaussian approximation for the vertical component of the position is reasonable 
here: only the mean and variance of the PDFs are required to compute the entropy, and these low moments are 
very similar for the true data and the Gaussian estimate.

Although there is no obvious definition of temperature for a swarm, we can define one starting from the 
entropy, since temperature (when scaled by a Boltzmann constant) can be defined as the increase in the total 
physical energy of the system due to the addition of a single bit of entropy. Given our definitions, adding a single 
bit of entropy (that is, setting S → S + 1 ) for constant σx and N (that is, a swarm of fixed number and spatial size) 
is equivalent to setting σv → 21/(3N)σv . Adding this entropy changes the total energy of the system by an amount

which we thus define as the temperature k∗BT . Even though this temperature is nominally a function of the swarm 
size N, it correctly yields an intensive temperature as expected in the limit of large N, as the explicit N-dependence 
vanishes in that limit since limn→∞ k∗BT = σ 2

v ln 2 . In practice, this limit is achieved very rapidly: we find that 
this temperature is nearly independent of N for N larger than about 20, consistent with our earlier results on the 
effective “thermodynamic limit” for  swarms25. The effective Boltzmann constant k∗B is included here to convert 
between temperature and energy, though we note that we cannot set its value, as there is no intrinsically preferred 
temperature scale.

Equipartition. With these definitions in hand, we can evaluate the suitability of these quantities for describ-
ing the macroscopic state of midge swarms. First, we note that proper state variables ought to be independent 
of the swarm history; that is, they ought to describe only the current state of the system rather than the proto-
col by which that state was prepared. Although this property is difficult to prove incontrovertibly, none of the 
definitions of our state variables have history dependence. We further find that when these state variables are 
modulated (see below), their correlation times are very short, lending support to their interpretation as true state 
variables. We can also compare the relationships between these state variables and the swarm behaviour to what 
would be expected classically. In equilibrium thermodynamics, for example, temperature is connected to the 
number of degrees of freedom (d.o.f.) in a system via equipartition, such that each d.o.f. contributes an energy 
of 12k

∗
BT . We can write the total energy E of a swarm as the sum of the kinetic energy Ek(t) = 1

2v
2 and potential 

P =
1

3NV

N
∑

i=1

(

v2i −
1

2
�k�r2i

)

,

S = −
∞

∫
−∞
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energy Ep(t) = 1
2k(N)r(t)2 for all the individuals, where r is the distance of a midge to the swarm centre of mass, 

v is the velocity of a midge, and k(N) is the effective spring constant. Surprisingly, even though individual midges 
are certainly not in equilibrium due to their active nature, we find that the total energy is linear in both T and N 
(Fig. 2a), and that there is no apparent anisotropy, suggesting that equipartition holds for our swarms. This result 
is highly nontrivial, especially given that our definition of T does not contain the spring constant k(N), which 
is only determined empirically from our data. Moreover, the slope of the E/k∗BT curve is well approximated as 
(9/2)N, implying that each midge has 9 effective d.o.f. (or 6 after discounting the factor of ln2 in our definition of 
k∗BT ) These d.o.f. can be identified as 3 translational and 3 potential modes, given that the potential well in which 
the midges reside is three-dimensional. These results demonstrate the surprising applicability of equilibrium 
thermodynamics for describing the macroscopic state of  swarms29.

Equation of state. The fundamental relation in any thermodynamic system is the equation of state that 
expresses how the state variables co-vary. Equations of state are thus the foundation for the design and control of 
thermodynamic systems, because they describe how the system will respond when a subset of the state variables 
are modulated. Any equation of state can be written in the form P = f (V , T , N) for some function f. Although 
the form of f is a priori unknown, it can typically be written as a power series in V, T, and N, in the spirit of a 
virial expansion. We fit the equation of state to our data assuming the functional form

and using nonlinear least-squares regression. We chose to fit to the pressure for convenient analogy with a 
thermodynamic framework, but any other variable would have been an equivalent possibility. We note that 
when fitting, we normalized all the state variables by their root-mean-square values so that they were all of the 
same order of magnitude. These normalization pre-factors do not change the exponents, but are instead simply 
absorbed into c4 . Thus, to leading order, we assume P = f (V , k∗BT , N) ∝ Vc1(k∗BT)

c2Nc3 and fit this relation 
to the swarm pressure (Fig. 2b,c), obtaining c1 = − 1.7, c2 = 2, and c3 = 1, with uncertainties on the order of 1%. 
Although the expression for the pressure does depend on three parameters in a nonlinear fashion, the resulting 
estimates for these parameters are remarkably stable and consistent across all measurements. Hence, we arrive 
at the equation of state PV1.7 ∝ N(k∗BT)

2.

P = f (V , k∗BT , N) = c4V
c1(k∗BT)

c2Nc3 ,

Figure 2.  Equipartition and the equation of state. (a) The total energy of the system E normalized by k∗BT as 
a function of swarm size (blue) along with the kinetic energy Ek (yellow) and potential energy Ep (blue). The 
total normalized energy of the system is well approximated by (9/2)N (black dashed line), indicating that each 
individual midge contributes (9/2)k∗BT to E and thus has 9 degrees of freedom (6 after discounting the factor 
of ln2 in our definition of k∗BT ). The deviations from that behaviour for the largest swarms can be attributed to 
a growing uncertainty in the energy due to the smaller number of experiments with such large swarms. (b) A 
portion of our ensemble of data of the measured pressure (blue). The yellow line is the reconstruction of the 
pressure from our equation of state. The inset shows a zoomed-in portion of the data to highlight the quality of 
the reconstruction. (c) PDF of the pressure for our entire data  ensemble23. The statistics of the directly measured 
pressure (blue) and reconstructed pressure from the equation of state have nearly identical statistics for the full 
dynamic range of the signal.
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This equation of state reveals aspects of the nature of swarms, particularly when compared with the linear 
equation of state for an ideal gas (where PV = NkBT ). In both cases, for example, to maintain a fixed pressure and 
volume, smaller systems need to be hotter; but this requirement is less severe for swarms since the temperature 
is squared, meaning that midges have to speed up less than ideal gas molecules do. Likewise, to maintain a fixed 
temperature, volume expansion must be counteracted by a reduction in pressure; but midges must lower the 
pressure more than a corresponding ideal gas, which is reflective of the decrease of the swarm spring constant 
with size.

Thermodynamic cycling. Beyond such reasoning, however, the true power of an equation of state in ther-
modynamics lies in specifying how the state variables will change when some are varied but the system remains 
in the same state, such as in an engine. To demonstrate that our equation of state similarly describes swarms, it 
is thus necessary to drive them away from their natural state. Although it is impossible to manipulate the state 
variables directly in this system of living organisms as one would do with a mechanical system, we have shown 
previously that time-varying  acoustic30 and  illumination27 stimulation lead to macroscopic changes in swarm 
behaviour. Here we therefore build on these findings and use interlaced illumination changes and acoustic sig-
nals to drive swarms along four distinct paths in pressure–volume space, analogous to a thermodynamic engine 
cycle. The stimulation protocol is sketched in Fig. 3a. The “on” state of the acoustic signal is telegraph noise (see 
Experimental details), while the “off ” state is completely quiet. The illumination signal simply switches between 
two different steady light levels. Switching between the four states of “light-high and sound-on,” “light-high and 
sound-off,” “light-low and sound-off,” and “light-low and sound-on” with a 40-s period (Fig. 3a) produces the 
pressure–volume cycle shown in Fig. 3b. We suspect that the loops in the cycle stem from the swarm’s typical 
“startle” response after abrupt changes in environmental conditions, followed by a rapid relaxation to a steady 
 state27,30.

In addition to the pressure and volume, we can also measure the other state variables as we perturb the 
swarms. Given that we do not observe any evidence of a phase transition, we would expect that our equation of 
state, if valid, should hold throughout this cycle. To check this hypothesis, we used the measured V, T, and N 
values during unperturbed experiments along with the equation of state to predict the scaling exponents, and in 
turn the pressure P. We then use these baseline, unperturbed exponents and V, T, and N during the interlaced 
perturbations to predict a pressure P. This pressure prediction matches the measured signal exceptionally well 
(Fig. 3c,d) even though the equation of state was formulated only using data from unperturbed swarms, high-
lighting the quality of this thermodynamic analogy. Although we might expect that a strong enough perturbation 
might lead to qualitatively different behaviour (if the swarm went through the analog of a phase  transition31), 
our results give strong support to the hypothesis that our equation of state should hold for any perturbation that 
does not drive such a transition.

Discussion
Our findings demonstrate the surprising efficacy of classical equilibrium thermodynamics for quantitatively 
characterizing and predicting collective behaviour in biology. Even though individual midges are certainly not 
in equilibrium and need not obey the same rules as, for example, particles in an ideal gas, we find that the collec-
tive behaviour of ensembles of these individuals is surprisingly simple. The existence of a well-defined equation 
of state for this system gives us a new way both of illuminating the purpose of collective behaviour, given that it 
encodes the nature of the collective state, and quantitatively distinguishing different kinds of animal groups that 
may have similar movement patterns but different  functions1–3,8. Importantly, we note that this equation of state 
is not a swarm model per se, in that it does not make any detailed predictions about the dynamics of individuals. 
Rather, it gives us a quantitative way of analysing and interpreting swarm data at the macroscale. Finally, these 
results also provide a natural starting point for designing artificial collective systems by outlining a framework 
for adapting intuition and expertise gained from engineering thermodynamic systems to this new situation. 
This approach could, for example, be useful to guide the design of engineered drone swarms via machine learn-
ing  techniques32 and to provide a precise and quantifiable global description of the collective nature of swarms.

Methods
In our laboratory we maintain a colony of C. riparius midges in an (122 cm)3 acrylic tank. C. riparius larvae 
develop in eight 10 L breeding tanks filled with dechlorinated, aerated water and a cellulose substrate. The 
colony is regulated on an artificial circadian rhythm with 16 h of light and 8 h of night using an overhead light 
on a timer. Over the roughly 2-week life cycle of the midges, larvae become pupae and eventually mature into 
flying adult midges. Females in the colony mate with males, fertilizing eggs that they lay in the breeding tanks, 
thus closing the life cycle.

Just after dusk and dawn, male midges will form mating swarms over ground-based visual features known as 
swarm  markers33. In our laboratory, this feature is a black square plate. Swarms are consistently spheroidal with 
a swarm diameter that depends on the number of swarming  individuals24. Typical swarm sizes in our labora-
tory range from 10 to 100 individuals. Note that individuals that are not participating in the swarm do not fly; 
rather, they sit on the walls or floor of the enclosure. The swarm behaviour is recorded by three cameras placed 
outside the enclosure.

The cameras used to image the swarms were hardware-synchronized Point Grey Flea3 1.3 MP Mono USB3 
Vision cameras running at 100 frames per second, synchronized via an external function generator. To illuminate 
the midges without interfering with their natural behaviour, we used 20 3 W near-infrared LED arrays placed on 
top of and inside the measurement tank. C. riparius do not see in the infrared, but it is detectable by the cameras, 
thus allowing non-intrusive imaging of the swarming events. The cameras were placed on tripods outside the 
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midge enclosure, and were arranged in a horizontal plane with angular separations of 30° and 70°23 and placed 
far enough from the experimental enclosure to ensure that the full swarm was always fully within the field of view 
of each camera. Calibration of the imaging system was done via Tsai’s  method34, using a flat plate with a regular 
dot pattern placed inside the tank (and removed before the initiation of swarming) as a calibration reference. 
During each acquisition session, each of which typically occurred on different days, we recorded between 30,000 
and 100,000 frames of data, corresponding to 5–16 min and 40 s of swarming. To obtain three-dimensional 
trajectories from the individual camera recordings, we first processed each image to obtain 2D midge positions 
in each camera’s frame of reference, matched the data between the cameras to obtain 3D midge positions for 
every midge in the swarm, and finally tracked all the 3D positions in time. The observed swarms are dilute. 
Even in statistically unusual cases of close midge encounters, individuals can still be  identified23. To process the 
images, we first removed the background illumination field (obtained by averaging over the full image sequence) 
and then detected midges simply by computing the centroids of connected regions that were brighter than an 
empirically set threshold and larger than a minimal pixel size. Regions that were highly non-spherical and very 
large indicated the overlap of the images of multiple midges in the camera’s field of view, and so were split into 
multiple midges (see Ref.23). The 2D midge coordinates were stereo-matched between the cameras by projecting 
the lines of sight connecting each camera’s centre of projection and each midge’s 2D location into 3D space using 

Figure 3.  Thermodynamic cycling of a midge swarm with �N� = 27 . Schematic of the perturbation cycle 
showing the illumination (solid) and sound (dashed) signal timings. The symbols indicate the switching points 
identified in (b). (b,c) Phase-averaged swarm behaviour during the perturbation cycle plotted in the pressure–
volume phase plane for (b) the pressure signal as measured and (c) as reconstructed using our equation of 
state. 〈 〉φ denotes a phase average of a quantity over a full cycle. The four different states of the perturbation 
signal are indicated. The data has been averaged using a moving 3.5-s window for clarity. The swarm 
behaviour moves in a closed loop in this phase plane during this cycling, as would be expected for an engine in 
equilibrium thermodynamics, and the equation of state holds throughout even though it was developed only 
for unperturbed swarms. (d) Phase-averaged pressure 〈P〉φ of the swarm during a continuous cycle through the 
four light and sound states. The blue line shows the directly measured pressure and the yellow line shows the 
reconstruction using the equation of state.
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the calibrated camera model and then identifying near-intersections. In principle, two cameras are sufficient for 
this purpose, but additional cameras have been shown to significantly improve the confidence and yield of this 
 procedure35. To connect the 3D positions temporally and create trajectories, we used a multi-frame predictive 
tracking  algorithm23,35. Velocities and acceleration were then computed by differentiating the trajectories in 
 time23. At each time-step, we additionally removed midges that were sitting or walking on the walls or marker 
rather than flying, identifying them based on a 100-frame moving average of their speed. If this average speed 
at a given time step was less than 60 mm/s, we discarded the individual at that time-step.

In this study, we applied interleaved perturbations of two different classes to the swarms in conjunction 
to the observation of unperturbed swarming events. For the first perturbation type, we induced illumination 
perturbations, generated by a 6500 K Luxeon Star LED array mounted above the midge enclosure, as described 
in Ref.27. For this study, we modulated the brightness of the LED between 1.4 lux and 2.4 lux, switching every 
20 s for a period of 40 s. A second class of perturbations were acoustic signals that were generated by a small 
(~ 5 cm) omnidirectional speaker placed on the swarm marker. We alternated between a quiet state (that is, no 
sound played through the speaker) and playback of a telegraph noise acoustic signal, again with a 40-s period. 
This corresponds to up to 25 full cycles per acquisition session. The telegraph noise was constructed by passing 
a white-noise signal through a low-pass 700 Hz filter, and then playing short pulses of this signal during the 
acoustic “on” state with varying length and amplitude. We empirically found that filtering the white-noise signal 
was necessary to induce a persistent response of the swarm. This may be due to swarms’ tendency to adapt to 
and ignore static changes in their environment while responding persistently to dynamic  changes27,30. The pulse 
length ranged from 0.1 to 0.3 s and the pause between pulses ranged from 0.25 to 0.5 s. The noise amplitude was 
clearly audible over the ambient sound levels in the laboratory, and we varied it only slightly.

Data availability
The trajectory data are available at https ://doi.org/10.6084/m9.figsh are.11791 071.v1.
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