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Abstract 

Background: Pericardial fat (PF) has been suggested to directly act on cardiomyocytes, leading to diastolic dysfunc‑
tion. The aim of this study was to investigate whether a higher PF volume is associated with a lower diastolic function 
in healthy subjects.

Methods: 254 adults (40–70 years, BMI 18–35 kg/m2, normal left ventricular ejection fraction), with (a)typical chest 
pain (otherwise healthy) from the cardiology outpatient clinic were retrospectively included in this study. All patients 
underwent a coronary computed tomographic angiography for the measurement of pericardial fat volume, as well 
as a transthoracic echocardiography for the assessment of diastolic function parameters. To assess the independent 
association of PF and diastolic function parameters, multivariable linear regression analysis was performed. To maxi‑
mize differences in PF volume, the group was divided in low (lowest quartile of both sexes) and high (highest quartile 
of both sexes) PF volume. Multivariable binary logistic analysis was used to study the associations within the groups 
between PF and diastolic function, adjusted for age, BMI, and sex.

Results: Significant associations for all four diastolic parameters with the PF volume were found after adjusting for 
BMI, age, and sex. In addition, subjects with high pericardial fat had a reduced left atrial volume index (p = 0.02), lower 
E/e (p < 0.01) and E/A (p = 0.01), reduced e′ lateral (p < 0.01), reduced e′ septal p = 0.03), compared to subjects with 
low pericardial fat.

Conclusion: These findings confirm that pericardial fat volume, even in healthy subjects with normal cardiac func‑
tion, is associated with diastolic function. Our results suggest that the mechanical effects of PF may limit the distensi‑
bility of the heart and thereby directly contribute to diastolic dysfunction.
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Background
Diastolic heart failure is a major cause of morbidity and 
mortality [1] and is preceded by diastolic dysfunction, 
which is often present in patients with obesity and type 
2 diabetes mellitus (T2DM). Diastolic dysfunction is 
defined as abnormal relaxation of the myocardium and 

may be present years before symptoms occur. It can be 
diagnosed by quantifying diastolic tissue motion and 
intracavitary filling pressures. The guidelines for diagnos-
ing diastolic function combine measurement of diastolic 
tissue motion, diastolic blood flow quantification, and 
structural abnormalities such as the presence of left atrial 
dilation [2]. Meeting 2 or more criteria results in the 
diagnosis of diastolic dysfunction.

Despite the clear definition, the understanding of the 
pathological mechanism of diastolic dysfunction remains 
poor. Various potential mechanisms have been suggested, 
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but none of them can adequately explain the pathologi-
cal process. Since increased pericardial fat (PF) volume 
is associated with adverse cardiovascular disease (CVD) 
outcomes, interest has peaked into this relationship and 
the potential effects of PF on cardiac dysfunction [3, 4].

PF is divided into two fat components: the Epicardial 
Adipose Tissue (EAT) and the Cardiac Adipose tissue 
(CAT). It is presumed that the EAT, due to its anatomical 
proximity to the myocardium, has the most effects on the 
myocardium. In normal physiology, EAT may have posi-
tive metabolic effects as it has an important function in 
lipid storing, and it also secretes endocrine factors [5]. It 
demonstrates a great flexibility in the storage and release 
of fatty acids, which has been suggested to protect the 
heart from lipotoxicity, whilstsimultaneously providing 
energy to the myocardium during high energy demand 
[6, 7]. As a metabolically active endocrine organ, EAT 
also produces adipokines which may protect the heart 
from cardiovascular disease [8]. However, when EAT 
expands, the balance between the storage and release 
of fatty acids shifts towards a more active secretion, as 
seen in obese subjects in comparison to lean subjects [9]. 
The expanded EAT transforms its secretions into pro-
inflammatory cytokines and chemokines [6, 8, 10]. Cho 
et al. showed that the thickness of EAT at the right ven-
tricle wall was associated with inflammation represented 
by hs-CRP level, LV mass, and subclinicial myocardial 
dysfunction in males [11]. This is also confirmed in EAT 
biopsies taken from patients undergoing coronary artery 
bypass grafting (CABG) [12, 13]. Some of these media-
tors are known to have profibrotic properties, linking the 
inflammation of enlarged EAT with fibrosis [14]. From 
studies performed in (morbidly) obese subjects with a 
high prevalence of T2DM, we know that PF, EAT, and 
CAT are linked to several diastolic function parameters 
[15–17]. However, studies associating PF directly with 
diastolic function in healthy subjects are scarce, and the 
underlying mechanisms remain unknown [18–21].

Moreover, Ng et al. found an association between EAT 
volume index and interstitial myocardial fibrosis in an 
overweight to obese population [19]. This association 
suggests that enlarged EAT may be related to asympto-
matic cardiac remodeling, and hence, the enlarged EAT 
may be involved in the development of cardiac diastolic 
dysfunction as is seen in overweighed subjects. Most 
studies on EAT have focused on the effects of EAT on 
systolic function, whereas in fact, in obese and diabetic 
populations, diastolic function are the first cardiac func-
tion parameters to change in obesity and metabolic syn-
drome [22]. In addition, Yang et al. showed an increased 
EAT burden in pre-diabetic and diabetic subjects, com-
pared to normoglycemic subjects [23]. Also, Christensen 
et al. found that high levels of EAT were associated with 

the composite of incident CVD and mortality in subjects 
with T2DM [24]. EAT may possibly play a more central 
role in the development of asymptomatic diastolic car-
diac dysfunction than previously assumed, underlining 
the importance of a better understanding of the relation-
ship between EAT and early changes in cardiac diastolic 
function. Hence, further studies focusing on exploring 
the relationship between EAT and diastolic dysfunction 
in a relatively healthy population, independently of their 
metabolic profile, are warranted.

In summary, it is unknown whether PF and/or EAT 
influences diastolic cardiac function in healthy subjects 
before any symptoms of diastolic failure occur. Most 
studies looking into the associations between PF or EAT 
with diastolic function have been performed in subjects 
with heart failure, CVD, overweight, or (pre-)diabetes 
[18–20, 25]. This may possibly confound the relationship, 
as many structural and metabolic changes may interfere. 
Therefore, in this study, we aim to determine whether a 
higher PF volume is associated with subclinical but lower 
diastolic function in a healthy population. Secondly, we 
aim to examine if this lower diastolic function is solely 
derived from the EAT compartment, or if it is associated 
to the PF compartment as a whole.

Methods
Study cohort
This study was approved by the Institutional Review 
Board (IRB) and Ethics Committee. Involved data were 
collected on a routine basis from within the Maastricht 
biomarker CT study (ClinicalTrials.gov NCT01671930, 
MEC 08-4-057) and analysed anonymously in accord-
ance with Institutional Review Board guidelines. The 
study complies with the ethical principles of the Helsinki 
Declaration.

This study cohort is comprised of patients from the 
cardiology outpatient clinic presenting with (a)typi-
cal chest pain, who were according to the standard 
care protocol referred for coronary computed tomo-
graphic angiography (CCTA) for the evaluation of sta-
ble CVD, in accordance with the current guidelines [26, 
27]. Inclusion criteria for the Maastricht biomarker CT 
study were a recent history of cardiac typical or atypi-
cal chest pain, dyspnea, or collapse; at least 1  mL of 
serum for determination of biomarkers; and a diagnostic 
CCTA-scan, defined as 7 or more interpretable coronary 
segments. The exclusion criteria were hsCRP concen-
tration ≥ 10  mg/L (indicating underlying inflammatory 
disease), severe renal dysfunction, or dialysis (due to 
application of contrast fluids).

254 patients enrolled in the echocardiography sub-
group of the Maastricht Biomarker CT study were retro-
spectively included in this study [28, 29]. A flowchart of 
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inclusion is provided in Fig.  1. In the present subgroup 
analysis (n = 254), patients aged 40-70 years with a BMI 
between 18 and 35  kg/m2 without history or diagnosis 
of acute coronary syndrome at the time of CCTA were 
included. Exclusion criteria for this subgroup study were: 
left ventricular ejection fraction (LVEF) < 45%, diastolic 
dysfunction, atrial fibrillation, and diabetes mellitus.

Biochemical analysis
Serum samples were collected just before CCTA, pro-
cessed within 2  h and directly stored at − 80  °C until 
analysis. Total cholesterol (CV 2.0%), triglycerides (CV 
2.5%), high-density (CV 3.0%) and low-density lipo-
protein concentrations were measured as previously 
described (Cobas 6000, Roche Diagnostics) [28]. Serum 
creatinine (CV 2.5%) and cystatin C concentrations were 
measured in a fresh aliquot (Cobas 6000; Roche Diag-
nostics). Creatinine concentrations were assessed using 
the enzymatic method (Cobas 6000, Roche Diagnostics). 
Cystatin C was measured using a new particle-enhanced 
turbidimetric assay (Gentian AS), which was standard-
ized against the certified ERM-DA471/IFCC cystatin C 
reference material [30]. Glomerular filtration rate was 
estimated by the Chronic Kidney Disease Epidemiology 
Collaboration equations using serum creatinine and cys-
tatin C concentrations [31].

Cardiac computed tomographic angiography
All 254 patients had undergone a standardized non-
enhanced scan to determine the calcium score using 
the Agatston method [32] at our center prior to CCTA 
assessment.

Semi-automatic segmentation determined the PF vol-
ume by dedicated software (SyngoVia, Siemens Health-
ineers, Forcheim, Germany) using a threshold from 
− 150 to − 50 Hounsfield Units to distinguish visceral 
adipose tissue, as set by the software [33]. Because of the 
large sample size, only in a random sample of 10% of the 
subjects the pericardium was marked manually to sepa-
rate the PF into EAT and CAT (depicted in Fig. 2), and 
thereafter, the software calculated the separate 3D vol-
umes of EAT and CAT.

Echocardiography
Echocardiography was performed within a period of 
3 months from the CCTA by an experienced echocardi-
ographist. Transthoracic images of the left ventricle (LV) 
were acquired to assess morphology, function and mass 
(Philips IE 33, Philips Healthcare). LV function and -mass 
were calculated by off-line analysis using Xcelera soft-
ware package (Philips), according to current ESC/AHA 
guidelines [34].

Only four diastolic parameters are decisive in the 
evaluation of diastolic function according to the Ameri-
can Society of Echocardiography (ASE)/European Asso-
ciation of Cardiovascular Imaging (EACVI) guidelines, 
namely, left atrial volume index (LAVI), e′ septal, e′ lat-
eral (mobility of the septal and lateral left ventricle wall 
respectively), and peak velocity of tricuspid regurgitation 
(TR) [2]. Therefore, most of the analyses will focus upon 
these diastolic function parameters. But, in addition, also 
mitral peak A and E velocity, E/A ratio, and E/e′ ratio, 
were determined.

Statistical analysis
Baseline characteristics of the sample were summarized 
using mean and standard deviation or median and inter-
quartile range (IQR) for normally distributed and skewed 
continuous variables, respectively. Categorical data were 
presented as absolute number and percentage. To assess 
the independent association of PF and diastolic func-
tion parameters in these 254 patients, linear regression 
analysis was performed with either LAVI or e′ septal or 
e′ lateral or TR as the dependent variable. These mod-
els were adjusted for BMI, age, sex, and their interaction 
terms with PF, since it is known that these parameters are 
strongly associated with PF [9, 35, 36]. Results of the lin-
ear regression analysis are presented as regression coef-
ficient with 95% confidence interval (95% CI).

This study is based on a sample of healthy participants 
without diastolic dysfunction, therefore, only mild differ-
ences in diastolic function were expected. To maximize 
the differences in PF volume, the group was divided into 
low PF (lowest quartile of both sexes separately) and high 
PF (highest quartile of both sexes separately). The low-
est and highest quartile groups were matched for cardio-
vascular risk factors, i.e., sex, systolic and diastolic blood 
pressure, total and LDL cholesterol, and kidney function. 
Differences in other baseline characteristics across these 
extreme quartiles of PF volume were investigated using 
the independent-samples t test for continuous variables 
with a normal distribution, or the Mann–Whitney U-test 
for non-normal distributed continuous variables. Pear-
son’s Chi square test was used for categorical variables. 
Data are presented as proportions, mean ± standard 
deviations, and data with a non-normal distribution are 
presented as the median (interquartile range, IQR).

To assess the independent association of PF and dias-
tolic function parameters in these extreme quartiles 
(n = 130), also multivariable linear regression analysis 
was performed with either LAVI, or e′ septal, or e′ lat-
eral, or E/e′, or TR as the dependent variable. These 
models were adjusted for BMI, age, and sex. Results are 
presented as regression coefficient with 95% confidence 
interval (95% CI).
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Fig. 1 Flowchart of inclusion (n = 254). 254 patients from the Maastricht biomarker CT study were eligible for the analysis of the association of PF 
and diastolic function in healthy subjects



Page 5 of 11de Wit‑Verheggen et al. Cardiovasc Diabetol          (2020) 19:129  

To investigate the association of EAT with the total PF 
and EAT with diastolic function, Pearson’s correlation 
coefficient was computed. Because only in 10% of the 
subjects an EAT volume was known, this subgroup was 

considered too small to perform regression analysis. 
All statistical analyses were performed with IBM SPSS 
Statistics Version 25.0 (SPSS, Inc.). Two-sided p-values 
of ≤ 0.05 were considered statistically significant.

Fig. 2 Definition of pericardial fat (PF) and the related adipose tissues. The adipose tissue surrounding the heart is defined as the pericardial fat (PF) 
and is a combination of epicardial and cardiac fat components. Within the PF, the pericardium demarcates the epicardial adipose tissue (EAT) from 
the cardiac adipose tissue (CAT). EAT (depicted in blue) is located between the myocardium and visceral pericardium, CAT (depicted in green) is 
located adherent and external to the parietal pericardium

Table 1 Baseline characteristics of the study sample, and divided into highest and lowest quartiles of PF

Data are presented as mean ± standard deviation, percentage, or as median (interquartile range, IQR)

Total sample (n = 254) PF low (n = 65) PF high (n = 65) p-value

Demographics

 Age (years) 57.0 ± 7.5 55.7 ± 8.0 59.1 ± 7.4 0.015

 Sex (% female) 48 46 48 0.860

Cardiovascular risk factors

 Framingham Risk Score 18.0 ± 13.2 14.4 ± 10.1 21.4 ± 16.1 0.004

 Glucose (mmol/L) 5.6 ± 0.9 5.5 ± 0.8 5.9 ± 1.2 0.025

 Body mass index (kg/m2) 26.4 ± 3.7 23.7 ± 2.7 28.1 ± 2.9 < 0.001

 Systolic bloodpressure (mmHg) 142 ± 20 141 ± 23 146 ± 20 0.139

 Diastolic bloodpressure (mmHg) 81 ± 11 80 ± 12 82 ± 11 0.254

 Total cholesterol (mmol/L) 5.6 ± 1.1 5.5 ± 1.2 5.8 ± 1.2 0.148

 HDL cholesterol (mmol/L) 1.3 ± 0.4 1.5 ± 0.4 1.2 ± 0.4 0.001

 LDL cholesterol (mmol/L) 3.6 ± 1.0 3.4 ± 1.0 3.6 ± 1.1 0.405

 Triglycerides (mmol/L) 1.5 (1.0, 2.2) 1.2 (0.8, 1.5) 1.7 (1.3, 2.5) < 0.001

 Creatinine (μmol/L) 76 ± 17 76 ± 15 75 ± 18 0.769

 eGFR (MDRD) (mL/min/1.73 m2) 88 ± 18 89 ± 16 90 ± 21 0.619

 CRP (mg/L) 2.3 ± 2.7 2.1 ± 2.5 2.8 ± 3.8 0.470

Coronary artery disease

 No Plaque (%) 39.4 ± 4.9 46.2 ± 5.0 35.4 ± 4.8 0.215

 Mild (%) 37.0 ± 4.8 33.8 ± 4.8 36.9 ± 4.9 0.716

 Moderate (%) 10.20 ± 3.0 7.7 ± 2.7 10.8 ± 3.1 0.548

 Severe (%) 11.8 ± 3.2 9.2 ± 2.9 15.4 ± 3.6 0.289

 Multi‑vessel (%) 1.6 ± 1.3 3.1 ± 1.7 1.5 ± 1.2 0.563
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Results
The baseline characteristics for the total sample and the 
lowest and highest quartile groups of PF volume are pre-
sented in Table 1.

Distribution and determinants of the PF volume
Median (IQR) PF volume in the total cohort were 1.411 
(IQR 1.035, 2.057) dl. Since males have a higher PF vol-
ume than females (median 1.729  dl, IQR 1.202, 2.492; 
median 1.215  dl, IQR 0.909, 1.552; respectively), the 
upper and lower PF volume quartiles of males and 
females were combined for the analysis (Fig. 3a).

There was a significant difference between the low-
est and highest quartile groups for age (55.7 ± 8.0 versus 
59.1 ± 7.4, p = 0.015), BMI (23.7 ± 2.7 versus 28.1 ± 2.9, 
p value < 0.001), glucose (5.5 ± 0.8 versus 5.9 ± 1.2, 
p = 0.025), HDL cholesterol (1.5 ± 0.4 versus 1.2 ± 0.4) 
and triglycerides (1.5 ± 1.1 versus 2.4 ± 2.0, p = 0.001), 
see Table 1. The CAD findings were not different between 
the two groups of high and low PF. However, Framing-
ham Risk Score was higher in the high PF group, possibly 
due to the association of PF with age and BMI.

Distribution and determinants of diastolic function
The association between diastolic function and PF vol-
ume was investigated, as some of the diastolic parameters 
are expected to deteriorate during the development of 
diastolic dysfunction before clinical criteria for diastolic 
dysfunction are met (Fig. 4).

Although still in the normal range, significant differ-
ences in the diastolic function parameters were found 
between the lowest and highest PF quartiles. As shown 
in Table  2, a reduced LAVI and E/e′ was found in the 
lowest PF quartile (p = 0.02, p < 0.01, respectively); and 
a reduced e′ lateral, e′ septal, and E/A in the highest PF 
quartile (p < 0.01, p = 0.03, p = 0.01, respectively); and 
an increased peak A velocity in the highest PF quar-
tile (p < 0.01). Peak E velocity and TR did not differ 

significantly between the two extreme PF volume quar-
tiles. Together, these differences reflect a diminished, 
although still normal, diastolic cardiac function in the 
highest PF quartile compared to the lowest PF quartile.

Association of PF with diastolic function
In the total sample (n = 254), significant associations for 
all four diastolic parameters with the PF volume were 
found after adjusting for BMI, age, and sex. These data 
are depicted in Table 3. Analyses of the interactions with 
BMI, age, and sex, did not improve the model. In addi-
tion, in the extreme quartiles of PF volumes (n = 130) a 
significantly negative association between high PF and 
LAVI, high PF and e′ lateral, and high PF and TR, were 
found after adjusting for BMI, age, and sex. However, 
the difference in the mobility of the septal wall between 
the extreme quartiles of PF volume and between E/e′ the 
extreme quartile of PF volume were no longer evident 
after the model was adjusted for these factors. These 
regression data are depicted in Table 4.

Distribution and determinants of the different components 
of the PF volume
In 10% of the total sample (n = 24), the EAT volume 
was studied by manually dividing the PF into the differ-
ent CAT and EAT volumes. This random selection of 6 
patients per PF quartile was made since the manual sub-
division of the PF is extremely laborious, and to ascertain 
that the sample reflects the entire population. The data 
showed that with an increasing PF, no similar increase 
in the relative volume of EAT and CAT can be expected, 
as the relationship with the relative amount of EAT and 
CAT is lacking (p > 0.7). These data are illustrated in 
Fig. 5.

To gain further insight into whether EAT is the major 
culprit in hampering diastolic function as suggested 
because of its anatomic proximity to the myocardium, 
separate correlations of EAT were made with the 
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different diastolic parameters. Despite the small num-
ber, a direct correlation of the percentage of EAT and 
e′ lateral was found. There was no correlation with EAT 
and the other diastolic function parameters (Additional 
file 1: Figure S4).

Discussion
Studies associating PF or EAT with diastolic function 
are scarce and often contradictive. A partial explanation 
may be that most studies so far were performed in a non-
healthy population, which may confound the reported 
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Table 2 Cardiac function measured by transthoracic echocardiography

Data are presented as means ± standard deviation

Reference values: LVEF ≥ 45%, LAVI < 34 ml/m2, e′ lateral > 10 cm/s, e′ septal > 7 cm/s, E/A 0.8–2.5, E/e′ 8–14, TR 2.0–2.8 m/s

Total population 
(n = 254)

PF low (n = 65) PF high (n = 65) p-value

Left ventricular ejection fraction (%) 61 ± 5 62 ± 5 61 ± 5 0.213

Left ventricular mass index (g/m2) 84.7 ± 16.9 80.6 ± 15.6 88.0 ± 16.0 0.008

Left atrial volume index (mL/m2) 33.7 ± 0.7 36.8 ± 10.3 32.7 ± 8.4 0.015

e′ lateral (cm/s) 11.0 ± 2.7 12.2 ± 2.9 10.3 ± 2.0 0.005

e′ septal (cm/s) 8.5 ± 2.0 9.5 ± 2.1 8.4 ± 1.8 0.034

E/A 1.1 ± 0.4 1.1 ± 0.4 1.0 ± 0.4 0.013

Peak E velocity (cm/s) 72 ± 20 73 ± 24 70 ± 18 0.425

Peak A velocity (cm/s) 72 ± 18 66 ± 16 74 ± 17 0.004

E/e′ 7.9 ± 2.1 6.8 ± 1.7 8.3 ± 2.3 0.009

Tricuspid regurgitation (m/s) 2.3 ± 0.4 2.2 ± 0.4 2.3 ± 0.3 0.416
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associations of PF or EAT with diastolic function [15–
20]. Here, we studied the association between PF and 
diastolic function in a lean to obese middle-aged popula-
tion, with normal systolic and diastolic cardiac function. 
We evaluated these relationships independently of their 
metabolic profile as correction for metabolic risk factors 
was applied. Furthermore, we explored the association of 
EAT with PF and EAT with diastolic function.

We report that PF was significantly associated with 
the diastolic function parameters LAVI, e′ lateral, e′ sep-
tal, E/e′, and TR, when corrected for age, BMI, and sex. 

Adjustment for sex alone was already sufficient to render 
the association significant, since PF is different distrib-
uted between male and female. The reported associations 
indicate that even in our healthy population with a nor-
mal diastolic function, PF—independently of CVD risk 
factors related to age, BMI, and sex—is associated with 
diastolic function parameters.

In the analyses focusing on low and high PF volume, 
high PF was associated with a decrease in LAVI and e′ 
lateral, and an increase in TR (as depicted in Fig. 5). The 
decrease in e′ lateral is in line with previous research 

Table 3 Multivariable linear regression analysis in  the  total population exploring associations between  PF 
and parameters of diastolic cardiac function

CI confidence interval
a Adjusted for body mass index, age, and sex

Unadjusted regression 
coefficient (95% CI)

p-value Adjusted regression 
 coefficienta (95% CI)

p-value

Left atrial volume index (mL/m2) − 0.24 (− 1.79; 1.32) 0.764 − 2.05 (− 3.92; − 0.19) 0.001

e′ septal (cm/s) − 0.03 (− 0.52; 0.47) 0.917 − 0.13 (− 0.68; 0.43) 0.020

e′ lateral (cm/s) − 0.21 (− 0.84; 0.41) 0.496 − 0.02 (− 0.71; 0.67) < 0.001

E/e′ 7.45 (6.49; 8.42) 0.335 0.16 (− 0.42; 0.74) 0.003

Tricuspid regurgitation (m/s) 0.04 (− 0.04; 0.12) 0.356 − 0.02 (− 0.12; 0.07) 0.001

Table 4 Multivariable linear regression analysis in  the  extreme PF quartiles (0 = low, 1 = high) exploring associations 
between PF and parameters of diastolic cardiac function

CI confidence interval
a Adjusted for body mass index, age, and sex

Unadjusted regression 
coefficient (95% CI)

p-value Adjusted regression  coefficienta 
(95% CI)

p-value

Left atrial volume index (mL/m2) − 4.13 (− 7.47; − 0.80) 0.015 − 7.85 (− 12.13; − 3.56) 0.001

e′ septal (cm/s) − 1.17 (− 2.25; − 0.10) 0.034 − 0.96 (− 2.28; 0.36) 0.088

e′ lateral (cm/s) − 1.97 (− 3.33; − 0.60) 0.005 − 1.39 (− 3.13; 0.34) 0.020

E/e′ 1.52 (0.40; 2.64) 0.009 1.33 (− 0.11; 2.77) 0.118

Tricuspid regurgitation (m/s) 0.06 (− 0.09; 0.22) 0.416 0.01 (− 0.18; 0.20) 0.004
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Fig. 5 No relation of PF to its CAT and EAT component. The amount of CAT (a) and EAT (b) are not related to PF. Although EAT and CAT volume 
show a wide variation, they are linearly associated to each other (c), indicating that both increase with an increase of PF
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performed in (morbid) obese subjects with a high preva-
lence of T2DM [15]. The lower e′ lateral in the highest PF 
quartile reflects a slower relaxation of the lateral wall of 
the left ventricle, necessary for an effective diastolic fill-
ing phase. The lower LAVI in the highest PF quartile is 
not known to be a sign of lower diastolic function. We 
do not know what underlies these findings, but they may 
indicate that PF causes mechanical hindrance that com-
promises not only the mobility of the lateral left ventri-
cle wall (e′ lateral), but also compresses the left atrium, 
and thereby reducing its volume (LAVI). This hypothesis 
needs further work.

Although EAT was only determined in a small sub-
population (n = 24), insights in the compartmental distri-
bution of PF and its consequences on diastolic function 
can be gathered. We found that at increased PF volumes, 
the EAT and CAT compartments increased at a same 
amount relatively to the whole fat depot. This is sur-
prising as Wu et  al. reported that subjects after bariat-
ric surgery showed a great loss of CAT and only a small 
decrease in EAT [37]. Therefore, the regional distribution 
of adipose tissue remains an important subject for fur-
ther research, taking into account that this distribution 
plays an important role in the development of metabolic 
syndrome and CVD [38].

The association of high PF with e′ lateral suggests that 
in a healthy population the mechanical effects of PF limit 
the distensibility of the heart first, which subsequently 
contributes to diastolic dysfunction. This study suggests 
that secondly, after progression of this relaxation prob-
lem of the lateral wall, the LAVI might increase despite 
the compression of the PF mass, as seen in diastolic 
dysfunction. But this remains speculative, as we did not 
measure the mobility of the lateral wall of the left ven-
tricle during the systolic phase. However, during systole 
the PF mass will be less restrictive than during diastole, 
which is in line with our hypothesis. Most notably, a 
mechanically limited heart is accompanied by pressure 
changes within the cardiomyocytes, which in turn can 
affect the metabolism of these cells, and thereby, nega-
tively influence diastolic function.

Most of the research on PF so far focused on adipokine 
release and a potentially causal role in the formation of 
fibroses. Pressure changes due to increased PF lead-
ing to an altered metabolism are an alternative pathway 
how PF can influence cardiac function. Thus, although 
the underlying mechanism remains unknown, the idea 
that mechanical effects of high PF cause a diminished 
mobility of the myocardium is supported by the current 
data. As others already suggested, this diminished mobil-
ity may provoke fibrosis, which has been associated with 
diastolic dysfunction, however this remains to be eluci-
dated. In our population changes in diastolic function 

parameters were associated with an increase in PF, how-
ever, the diastolic function was within normal range; 
hence no causality with fibrosis could be made.

Limitations
As we performed a cross-sectional retrospective study, 
our study has some limitations by design. Due to the ret-
rospective design, the low and high PF groups were not 
matched on all relevant characteristics. However, we did 
adjust our analyses for age, BMI, and sex. Although we 
corrected for age, BMI, and sex, some of metabolic char-
acteristics such as glucose, HDL-cholesterol, and triglyc-
erides, may confound the associations, although these 
metabolic characteristics were within normal range. Also, 
because of the retrospective design, there was timeframe 
of a maximum of three months between the CCTA and 
TTE, this may have influenced our association. In addi-
tion, since the manual subdivision of the PF is extremely 
laborious, we only separated the PF components in 10% 
of the total cohort, following random selection. Thus, 
the power was limited for exploring the metabolic effects 
of EAT, independently of PF, on diastolic function. The 
cross-sectional outline of this study does not allow any 
conclusions regarding possible causality. Future work 
should therefore include a prospective approach to evalu-
ate causal relationships.

Finally, it is important to bear in mind that our study 
population consisted of relatively healthy subjects, whose 
cardiac diastolic function was considered to be good. We 
only studied the associations between PF and small vari-
ations in normal diastolic function, which also explains 
why we did not find correlations between the diastolic 
parameters and age, BMI, or sex, in our sample (Addi-
tional file  1: Figures  S1, S2, S3). There were no subjects 
with clinically defined diastolic failure to assess the rela-
tionships between PF and diastolic dysfunction. This, 
of course, remains an important question for future 
research.

Conclusion
The purpose of the current study was to determine the 
association of PF and cardiac diastolic function in a 
healthy population. Linear regression analysis revealed 
that PF, independently of age, BMI, and sex, is associated 
with the four diastolic ultrasound parameters which are 
decisive in the evaluation of diastolic function. A poten-
tial underlying mechanism of this may be that increased 
PF may compress the heart, leading to a limited dis-
tensibility in the diastole and fibrosis as seen in cardiac 
remodeling, and thus, may lead to diastolic dysfunction. 
This study adds to the growing body of research that 
explores possible mechanisms in the development of 
diastolic failure. Concluding, we confirm that PF, even in 
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healthy subjects with normal cardiac function and with-
out diabetes, does hinder diastolic function. The exact 
causality of this effect and the relationship with fibrosis 
remains to be determined.
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