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Abstract

Summary: For the analysis of high-throughput genomic data produced by next-generation

sequencing (NGS) technologies, researchers need to identify linkage disequilibrium (LD) structure

in the genome. In this work, we developed an R package gpart which provides clustering algo-

rithms to define LD blocks or analysis units consisting of SNPs. The visualization tool in gpart can

display the LD structure and gene positions for up to 20 000 SNPs in one image. The gpart func-

tions facilitate construction of LD blocks and SNP partitions for vast amounts of genome sequenc-

ing data within reasonable time and memory limits in personal computing environments.

Availability and implementation: The R package is available at https://bioconductor.org/packages/

gpart.

Contact: yyoo@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent genome wide association studies (GWAS) and population

genetic studies, researchers increasingly investigate dense single nu-

cleotide polymorphism (SNP) data produced by new sequencing

technologies (Kilpinen and Barrett, 2013). To reduce the dimension

of high-throughput genomic data for genetic association analysis or

to find evidence for population genetic phenomenon, one can utilize

genomic linkage disequilibrium (LD) structure, especially LD blocks

(or haplotype blocks).

The development of algorithms and software to identify the LD

blocks from SNP genotype data mostly occurred before the era of deep

sequencing technology. To determine the LD blocks, Gabriel et al.

(2002) proposed a method based on estimation of the confidence

interval of D0. Zhang et al. (2002, 2003) developed a dynamic program-

ming algorithm to detect common haplotypes in a block. Wang et al.

(2002) proposed an approach using a four-gamete test. Barrett (2005)

proposed the Solid Spine method which finds blocks based on the strong

LD with markers at the block boundary, and Pattaro et al. (2008) devel-

oped a method based on an MCMC algorithm. As reported in Kim

et al., (2018), the previous methods and definitions for LD blocks

(Gabriel et al., 2002; Pattaro et al, 2008; Wang et al, 2002) do not serve

well to identify long range LD blocks in sequencing data such as avail-

able in the 1000 Genomes Project. We previously proposed a new

method of LD block construction called Big-LD (Kim et al. 2018), using

graph-based clustering techniques. We showed that Big-LD produces

larger size blocks, achieves better optimization in terms of LD strength
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within and across LD blocks, and agrees better with recombination

hotspots, compared to existing approaches such as methods imple-

mented in Haploview (Barrett, 2005; Gabriel et al., 2002; Wang

et al, 2002) or related methods (Pattaro et al, 2008; Taliun et al,

2014, 2016).

In this R/Bioconductor implementation gpart, we provide a

new SNP partitioning method based on not only LD block structures

but also on gene positions, together with a visualization tool to dis-

play a LD heatmap with LD block partitioning information and

gene positions. The algorithm GPART uses an updated version of

Big-LD which can deal with both r2 and D0 LD measures and has

improved speed and memory efficiency for construction of LD

blocks by means of a new heuristic algorithm.

2 Implementation and main functions

The R package gpart provides three main functions, BigLD,

GPART, LDblockHeatmap; and is available at the Bioconductor re-

pository (https://bioconductor.org/packages/gpart). The package

contains a vignette with detailed explanation about the functions

and their options, illustrated by various examples and figures.

2.1 Updated version of Big-LD
Big-LD is a method to identify LD blocks using SNPs (Kim et al.,

2018). The results of the Big-LD algorithm can be obtained using the

BigLD function in the gpart package. In gpart, the Big-LD algo-

rithm adopts an updated version of the published CLQ algorithm (Kim

et al., 2018) that finds LD bins using the newly added heuristic algo-

rithm (near-nonhrst algorithm, detailed in Supplementary Methods)

which has been extended to account for both LD measures (r2 and D0).

Although the new heuristic algorithm is not as fast as the existing heur-

istic CLQ algorithm (fast algorithm), it returns results more similar to

those obtained by the non-heuristic CLQ algorithm in a reasonable

time (Supplementary Table S1). Users can choose a CLQ mode (max-

imal/density) and heuristic algorithm (nonhrst/fast/near-

nonhrst) depending on their research aim or computational environ-

ment (see Supplementary Results, Supplementary Tables S2 and S3).

We apply BigLD to 1000 Genomes Project phase 3 data for

MAF>5% (Supplementary Table S4) and to a GWAS dataset

(Supplementary Table S5) (Roshandel et al., 2018).

2.2 GPART: SNP partitioning method
We developed a SNP partitioning algorithm, GPART, which partitions

sets of contiguous SNPs into blocks using the Big-LD results combined

with gene position information. Big-LD considers only LD structure

within the given data; therefore depending on the LD, the results can

include a large number of singleton SNPs or extremely large LD blocks.

According to the purpose of downstream analysis, it can be appropriate

to limit the number of SNPs in each block to increase analytical effect-

iveness. The GPART algorithm partitions an entire set of SNPs in a

specified region so that all blocks satisfy specified minimum and max-

imum size limits, where size refers to a number of SNPs.

The function GPART provides two different method types, a gene-

based method (geneBased) and an LDblock-based method

(LDblockBased). The gene-based method first fuses gene position in-

formation and Big-LD blocks, then splits or merges blocks that do not

meet pre-defined size criteria. The LDblock-based method splits large

LD blocks to satisfy the pre-defined size criteria and first takes them

as new blocks. Then it merges the remaining consecutive small-sized

LD blocks into new blocks of at least the minimum size. In this merg-

ing stage, as many small LD blocks as possible can be merged if the

small blocks overlap with a gene region. Depending on whether the

gene position information is used when combining small blocks, the

LDblock-based method is divided into two methods: the only-block

method (onlyBlocks) and the use-gene-region method

(useGeneRegions). The algorithm is detailed in Supplementary

methods. Application of GPART to 1000 Genomes Project phase 3

data and a GWAS dataset (Roshandel et al., 2018) is reported in

Supplementary results (Supplementary Tables S6 and S7).

2.3 LDblockheatmap: visualization function to show LD

structure and gene positions
The LDblockheatmap function provides plotting capabilities to

visualize the LD heatmap, LD block boundaries of Big-LD results or

genomic sequence partitioning results of GPART, and physical loca-

tion of LD blocks and genes (Fig. 1). The function displays gene

regions when gene positions are provided and can draw a figure

including up to 20 000 SNPs. See Supplementary Figures S1–S3 for

examples using various number of SNPs. For datasets with less than

200 SNPs, the LD bin structure obtained by the CLQ algorithm can

be visualized (Fig. 1 and Supplementary Fig. S1). The LD heatmap

can also be visualized without Big-LD results or gene positions.

For various examples plotted by LDblockHeatmap, see the vi-

gnette of the package gpart.

3 Conclusion

In this paper, we introduce an R package, called gpart, which pro-

vides novel functions to cluster and partition a given genomic region

by modeling the underlying LD structures of the SNPs as graphs. In

addition, the package offers an efficient visualization function to dis-

play the obtained results with genomic information. The package

gpart is available at Bioconductor.
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