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A B S T R A C T   

To suppress the epidemics caused by a virus such as COVID-19, three effective strategies listing vaccination, 
quarantine and medical treatments, are employed under suitable policies. Quarantine motions may affect the 
economic systems and pharmaceutical medications may be recently in the developing phase. Thus, vaccination 
seems the best hope of the current situation to control COVID-19 epidemics. In this work, the dynamic model of 
COVID-19 epidemic is developed when the quarantine factor and the antiviral factor are established as free 
variables. Moreover, the impulsive populations are comprehended for traveling and migrating of individuals. The 
proposed dynamics with impulsive distractions are employed to generate the online data. Thereafter, the 
equivalent model is developed by using only the daily data of symptomatic infectious individuals and the optimal 
vaccination policy is derived by utilizing the closed-loop control topology. The theoretical framework of the 
proposed schemes validates the reduction of symptomatic infectious individuals by using fewer doses of vaccines 
comparing with the scheduling vaccination.   

1. Introduction 

The COVID-19 epidemic has become a global pandemic rapidly more 
than other records in the history of RNA viruses outbreaks such as severe 
acute respiratory syndrome (SARS) in 2002 and middle east respiratory 
syndrome (MERS) in 2012. At the time this paper has been written, the 
peak of the third wave is currently observed that has provoked the big 
wave of economic, civil and health anxieties [1]. By utilizing suitable 
policies such as vaccination, quarantine and medical treatments, the 
authority may be able to control the epidemic. Nonetheless, pharma
ceutical medications for this coronavirus are still in the developing 
phase and quarantine may cause the economic issue. In the meantime, 
the vaccination policy seems to be a worthy option. Unfortunately, the 
limitation in vaccine production causes an issue because of the high 
demand [2], especially for the developing countries. Currently, 23.7% of 
the world population has been fully vaccinated and only 1.3% of people 
in low-income countries have a chance to get at least one dose of 
vaccination [3].Therefore, the expansion of sufficient vaccination policy 
with predicting the epidemic dynamics and minimizing the usage is 
essential [4,5]. Investigating epidemic dynamics by numerical concept, 
mathematical models have been formulated by nonlinear ordinary dif
ferential equations (ODE) to predict the spread of infectious individuals 

or to evaluate the defense policies [6,7]. Therefore, the model dynamics 
can contribute with sufficient information to design the adequate stra
tegies [8,9], especially for the case of COVID-19 when the abundant data 
can be simply acquired according to the big-data era [10,11]. In general, 
dynamics of epidemics have been derived under the modifications of 
SEIR model [12,13] when the individuals have been categorized as 
follows: Susceptible (S), Exposed (E), Infectious (I) and Recovered (R). It 
is obvious that the COVID-19 epidemic is an unstable open-loop system 
with an exponential increase of the infected individuals at the spreading 
period [14]. 

Moreover, by considering the epidemic dynamics as the controlled 
plants, the appropriate defenses i.e. the vaccination policies have been 
developed such that the next–generation matrix [15], the compensator 
controller [16], the optimal controller based on fuzzy fractional de
rivatives [17], the vaccination based on threshold dynamics [18] and 
the modified sliding mode control [19]. However, those approaches are 
model based schemes and comprehensive state variables are generally 
required [20]. From the practical point of view, it’s very difficult to 
monitor and collect all states in real-time according to the continuous- 
time manner [21,22]. Furthermore, only some states are available at a 
certain sampling interval [23–25] and the impulsive changes caused by 
immigration should be considered because the coronavirus can spread 
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by the travel and immigrant of people [26,27]. Resulting, the dynamics 
of epidemic models can be reconsidered as a class of impulsive control 
systems (ICS) such that [28–30]. 

ICS schemes have been proposed by some works for a class of 
discrete-time systems such that [31,32] and linear systems [33]. For the 
optimal–control problems with ICS, they have a few schemes such as a 
linear-quadratic (LQ) controller [35], adaptive dynamic programming 
(ADP) [36] and Pontryagin’s maximum principle [26]. For the dynamics 
with partial knowledge of models, the neural optimal controller [37], 
the piecewise-constant optimal controller[38], models reducing order 
[39], neuro-fuzzy inference system [40] and the optimal control based 
on passivity [41] have been developed with the full state observer and 
measurement. Moreover, the model dynamics must be well-defined with 
the appropriate accuracy because of the impulsive data acquisition,[34]. 

In this work, the conventional SEIR is firstly augmented as the 
SqvEIAR epidemic model which includes the quarantined individuals 
and subgroups of ineffectively vaccinated and effectively vaccinated 
individuals. Thus, general dynamics of SqvEIAR are formulated as a 
class of discrete-time impulsive control systems when the vaccination 
policy is represented as the control effort. Secondly, the equivalent 
model is established by an adaptive network called fuzzy rules emulated 
network (FREN) on the impulsive axis. The learning law is utilized to 
improve the model’s performance with the convergent analysis of in
ternal signals. Finally, the optimal vaccination policy is derived by using 
only the data of symptomatic infectious (I) on the impulsive axis when 
the impulsive disturbances of susceptible (S), exposed (E), symptomatic 
infectious (I) and asymptomatic infectious (A) individuals are consoli
dated to mimic impulsive traveling and migrating. The analysis of 
closed-loop performance is conducted by the Lyapunov method with the 
extension of negative control–direction. 

The main contributions of this paper are briefly expressed as the 
followings:  

• Unlike SEIR and its modifications in [26,28,30], the vaccination is 
directly employed as the impulsive control input by the proposed 
SqvEIAR dynamics. Therefore, the equivalent model and the 
controller are derived according to the impulsive traveling and 
migrating of individuals.  

• By utilizing only the daily data of symptomatic infectious individuals 
(I) on the impulsive axis, the equivalent model is established and the 
full state observer, which is generally required such as the works in 
[22,24,26], is completely omitted here.  

• The controlled system of SqvEIAR dynamics on the impulsive axis is 
negative control direction by nature. The proposed controller is 
directly designed for this case when the closed-loop performance is 
guaranteed. 

The rest of this paper is organized as follows. Section 2 introduces the 
SqvEIAR dynamics and problem formulation according to the controlled 
system with vaccination policy. In Section 3, the equivalent model is 
established by utilizing an adaptive network FREN and the daily data of 
symptomatic infectious individuals. The optimal vaccination policy is 
derived in Section 4 with the performance analysis. Numerical systems 
and comparison results are provided in Section 5 to validate the pro
posed scheme. Finally, conclusions and future works are given in Section 
6. 

2. Mathematical model and problem formulation 

In this section, a mathematical model called SqvEIAR is attained by 
integrating state variables of quarantined people and vaccinated in
dividuals with the standard SEIAR. Thereafter, some problems with the 
impulsive iteration and sampling for the monitoring of symptomatic 
infectious individuals are clarified. 

2.1. Model of SqvEIAR epidemic 

A flow diagram of SqvEIAR model is depicted in Fig. 1. In this model, 
the total population is divided into nine groups, i.e. susceptible S(t), 
exposed E(t), symptomatic infectious I(t), asymptomatic infectious A(t), 
recovered R(t), ineffectively vaccinated Vi(t), effectively vaccinated but 
still unprotected V(t), protected P(t) and quarantined Q(t) individuals. 
Thus, the dynamic system of SqvEIAR is derived as follows: 
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(1)  

where 

Λ(t) = ∊LE(t)+ [1 − qL]I(t) + dLA(t), (2)  

and all parameters are described by Table 1. From the control engi
neering point of view, in this work, the control input is assigned as the 
vaccination policy υ(t) and the output is the number of symptomatic 
infectious individuals I(t). Then, the controlled system under our 
investigation is conceptually rewritten as 

İ
(

t
)
= Fc

(
υ
(

t
)
, I
(

t
)
,Ξ
(

t
))

, (3)  

where Fc( − ) is an unknown function and Ξ(t) denotes other states such 
that S(t),Q(t),Vi(t),V(t), E(t),A(t) and R(t). Theoretically, the system in 
(3) is discretized by Euler approximation with the sampling time Ts as 

I(k + 1) = TsFc(υ(k), I(k),Ξ(k)) + I(k),
= Fd(υ(k), I(k),Ξ(k)), (4)  

where k is the sampling–index and Fd( − ) is the unknown nonlinear 
function. It’s worth to emphasize that Fd( − ) in (4) is not precisely 
required to design a model-free controller. Furthermore, in this work, 
only the relation between the input υ(k) and the output I(k+1) is obliged 
by the format of IF-THEN rules. 

Fig. 2 illustrates the concept of SqvEIAR dynamics as the controlled 
plant mentioned above. By utilizing impulsive sampling interval κ and 
the first sampling–index κj of the jth day as the block diagram in Fig. 2, 
the vaccination policy υ(k) is attended in the impulsive axis as 

υ
(

k
)

=

{
0 ifk ∕= κj,

υ
(
κj
)

otherwise. (5) 

Therefore, it’s clear that the output I(κj) can be rewritten as the 
function of υ(κj) such that 

I
(

k
)

=

{
Fd(I(k − 1),Ξ(k − 1)) ifk ∕= κj,

Fd
(
Ik− 1
)
+ Gu

(
υ
(
κj
))

otherwise. (6)  

where Gu( − ) denotes the unknown function which makes a change of 
I(k) caused by the impulsive input or the vaccination policy υ(κj). 

2.2. A class of impulsive controlled plants 

By considering SqvEIAR dynamics as the controlled plant in Fig. 2 at 
the impulsive index k = κj, the input u(κj) is the vaccination policy υ(κj)

and the output state x(κj) is the number of infected individuals I(κj). 
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Thus, the system dynamics (6) can be represented as 

x(k) = Fd∘Fd∘⋯Fd
(
x
(
κj− 1 + 1

))
,

= Fnj
d

(
x
(
κj− 1 + 1

))
,

(7)  

where nj is the number of sampling intervals during κj− 1 to κj. By using 
one step-back of (7), it leads to 

x
(
k − 1

)
= Fnj

d

(
x
(
κj− 1
))
. (8) 

Recalling (6), when k = κj, the dynamics (7) can be obtained as 

x
(
κj
)
= Fd

(
xk− 1

)
+Gu

(
u
(
κj
))
. (9) 

By substitute xk− 1 from (8) into (9), it yields 

x
(
κj
)
= Fd

(
Fnj

d

(
x
(
κj− 1
)))

+ Gu
(
u
(
κj
))
,

= FT
(
x
(
κj− 1
)
, u
(
κj
))
,

(10)  

where FT( − ) is the unknown function that represents the dynamics of 
the controlled plant on the impulsive axis. 

Without loss of generality, our problem formulation can be 
concluded that founding the control policy u(κj) when the function 
FT( − ) is unknown and x(κj), j = 1,2,…is only the measurable state. 

Fig. 1. Flow diagram of the proposed SqvEIAR epidemic model.  

Table 1 
Descriptions Model’s parameters.  

Parameter Description Remark 

β  Transmission rate According to the initial population 
e Vaccine efficacy Average efficacy 
ω  Progressive rate Protected group 
k  Progressive rate Infected group 
p Fraction Exposed group 
r  Recovery rate Infected group 
a  Antiviral factor Antiviral therapies 
f  Fraction Infected group 
n  Recovery rate Asymptomatic group 
z Fraction Asymptomatic group 
λ  Quarantine rate Approximated policy [0,1) 
∊L  Infectivity reduction Λ(t):Exposed group  
qL  Infectivity facto Λ(t):Infected group  
dL  Infectivity reduction Λ(t):Asymptomatic group   

Fig. 2. SqvEIAR on Impulsive-axis.  
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Remark 1. It worth to note that the unknown function FT( − ) is only 
dependent on the state at κj− 1 and the control effort at κj. Unlike the 
works on impulsive systems such as [37,32,35], the equivalent model 
developed in this work is required only the state at the previous 
impulsive axis and the current control effort. That will reduce the 
number or sampling data. 

3. Equivalent model with impulsive sampling 

3.1. Equivalent model based on FREN 

By employing the dynamic-linearization [44,45] with the unknown 
function FT( − ) in (10), there exist functions fT(x(κj− 1)) and gT(x(κj− 1))

for the affine dynamics such that 

x
(
κj
)
= fT

(
x
(
κj− 1
))

+ gT
(
x
(
κj− 1
))

u
(
κj
)
. (11) 

Furthermore, by utilizing the results in [46] with dynamics (1)–(4), 
we have 

|fT
(
x
(
κj− 1
))
|⩽αf |x

(
κj− 1
)
|, (12)  

and 

|gT
(
x
(
κj− 1
))
|⩽αg|x

(
κj− 1
)
|, (13)  

where αf and αs are positive constants. It’s worth clarifying that the 
parameter αf characterizes virus states such that αf < 1 and αf > 1 ac
cording to the virus at decreasing and increasing phases, respectively. 
The parameter αg represents the control gain gT( − ) in (11). Further
more, both parameters αf and αg are unknown and only their existence is 
required for further analysis. 

For the unknown affine dynamics (11), the equivalent model based 
on FREN can by established as 

x̂
(
κj
)
= fm

(
x
(
κj− 1
))

+ gm
(
x
(
κj− 1
))

u
(
κj
)
, (14)  

where x̂(κj) is the estimated state. Functions fm(x(κj− 1)) and gm(x(κj− 1))

are derived by FREN’s computation as 
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x
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))
= βT

f

(
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)
ϕ
(
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)
, (15)  

and 
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(
x
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= βT

g
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)
ϕ
(

κj− 1

)
, (16)  

respectively, where ϕ(κj− 1) is the membership vector of x(κj− 1) and 
βf (κj− 1) and βg(κj− 1) are adjustable parameters. 

By utilizing (15) and (16), the network architecture is established in 
Fig. 3 where N denotes as the number of IF-THEN rules such that: 

IF x(κj− 1) is Small (μ1) THEN fm(x(κj− 1)) should be Small and 
gm(x(κj− 1)) should be Small. 

Thereafter, the learning laws are derived to tune all adjustable pa
rameters βf ,g(κj) with the estimation error ê(κj) defined by 

ê
(
κj
)
= x
(
κj
)
− x̂
(
κj
)
. (17) 

It’s worth remaking that x(κj) is stationary during κj to κ−
j+1. Result

ing, the estimation error in (17) is rewritten according to the ith inner 
iteration as 

ê
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(
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)

u
(
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, (19)  

∀i = 0, 1,2,⋯, imax and x̂(κj, 1) is the first estimated state at k = κj before 
initiating the inner iterative learning law. 

Let’s define the cost function Ê(κj, i+1) over the ith-iteration as 

Ê
(

κj, i+ 1
)

=
1
2

ê2
(

κj, i+ 1
)

. (20) 

Employing the gradient search, the learning law of βf (κj− 1, i) is ob
tained as 

Fig. 3. FREN: Equivalent model.  
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βf
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κj, i + 1
)

∂βf
(
κj− 1, i

) , (21)  

where a positive constant ηf is the learning rate. By utilizing the chain 
rule according to (18) and (20), we have 

∂Ê
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∂ê
(
κj, i + 1

)

∂x̂
(
κj, i + 1

)
∂x̂
(
κj, i + 1

)

∂βf
(
κj− 1, i

) ,

= − ê
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(22) 

Substitution (22) into (21), the learning law for βf (κj− 1, i) is obtained 
as 
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)
= βf
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+ ηf ê
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By repeating the similar procedure with (21)–(23) with βg( − ), we 
have 
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where ηg is the learning rate. By utilizing the chain rule again, it yields to 
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∂Ê
(

κj, i + 1
)

∂ê
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Thus, the learning law for βg(κj− 1, i) is derived as 
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To terminate the inner iteration, two conditions are employed as i: 
the maximum iteration number i⩾imax and ii: the limited estimation error 
⃒
⃒ê(κj, i + 1)

⃒
⃒⩽εo, where εo is a designed parameter. 

3.2. Model performance analysis 

In general, the performance of learning laws developed under the 
gradient search is obviously related to the setting of learning rates. The 
following theorem is employed to select the learning rates ηf and ηg with 
the convergence of the estimation error. 

Theorem 3.1. For a class of impulsive system dynamics (14), the 
estimation error (17) of the equivalent model based on FREN (14) is a 
convergent sequence along with the iteration axis when the learning 
rates ηf and ηg are selected by the following conditions: 
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Proof. By recalling the universal function approximation of FREN in 
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where εs(k) is a bounded residue error. During the inner iteration ith,
ϕ(κj− 1, i) is fixed, thus, the relation in (29) can be rewritten as 
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By using (29) with (14–16), we have  
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With one step back on ith iteration, the learning laws in (23) and (26) 
can be rearranged as 

βf
(
κj− 1, i

)
= βf

(
κj− 1, i − 1

)
+ ηf ê
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(
κj, i
)
u
(
κj
)
ϕ
(
κj− 1
)
, (35)  

respectively. By applying (34) and (35) with (32) and (33), respectively, 
we obtain 
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(
κj, i
)

ϕ
(

κj− 1

)
,

(36)  

and 

β̃
T
g

(
κj− 1, i

)
= β*

g

(
κj− 1

)
− βg

(
κj− 1, i − 1

)
− ηg ê
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By substituting (36) and (37) into (31), it leads to   

ê
(
κj, i + 1

)
= x

(
κj
)
− x̂
(
κj, i + 1

)
,

= β*T
f

(
κj− 1

)
ϕ
(

κj− 1

)
+ β*T

g

(
κj− 1

)
ϕ
(

κj− 1

)
u
(

κj

)
+ εs

(
k
)
− βT

f

(
κj− 1, i

)
ϕ
(

κj− 1

)
− βT

g

(
κj− 1, i

)
ϕ
(

κj− 1

)
u
(

κj

)
,

= β̃
T
f

(
κj− 1, i

)
ϕ
(

κj− 1

)
+ β̃

T
g

(
κj− 1, i

)
ϕ
(

κj− 1

)
u
(

κj

)
+ εs

(
k
)
,

(31)   
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To simplify, let’s define 

A
(

κj

)
= 1 − ηf ||ϕ

(
κj− 1

)
||

2
− ηgu2

(
κj

)
||ϕ
(

κj− 1

)
||

2
. (39) 

Thus, the estimation error along the i-iteration can be simplified as 

ê
(
κj, i+ 1

)
= A

(
κj
)

ê
(
κj, i
)
. (40) 

Recalling the conditions in (27) and (28), it’s clear that 

|A

(

κj

)

|⩽|1 −
γf

ϕM
||ϕ
(

κj− 1

)

||
2
−

γg

u2
MϕM

u2
(

κj

)

||ϕ
(

κj− 1

)

||
2
| < 1. (41)  

Thus, it can be concluded that the estimation error ̂e(κj, i) is a convergent 
sequence on the i-iteration axis with the proposed learning algorithm. 
The proof is completed. It’s worth noting that the estimated functions 
fm(x(κj− 1)) and gm(x(κj− 1)) in (15) and (16) are bounded such that 

02⩽f min
m ⩽|fm

(
x
(
κj− 1
))
|⩽f max

m , (42)  

and 

0 < gmin
m ⩽|gm

(
x
(
κj− 1
))
|⩽gmax

m , (43)  

∀j = 1, 2, ⋯, according to the result from Theorem 3.1 and FREN’s 
property [42,43]. 

Remark 2. For the controllable systems, it’s required that 
⃒
⃒gm(x(κj− 1))

⃒
⃒ ∕= 0. This is one of our advantages of the proposed 

equivalent model when the condition in (43) is always satisfied. 
Furthermore, the evidence will be demonstrated in the section on nu
merical results. 

4. Impulsive optimal controller for vaccination policy 

In this section, the optimal vaccination policy for SqvEIAR dynamics 
is derived on the impulsive axis. To simplify, the impulsive index κj in 
(10) is solely noted as j. Thus, the controlled plant (10) can be simply 
rewritten as 

x(j) = FT(x(j − 1), u(j)), (44)  

and the equivalent model in (14) can be also simplified as 

x̂(j) = fm(x(j − 1))+ gm(x(j − 1))u(j). (45) 

Let’s define the unity function r(j) as 

r
(
j
)
= γxx2( j − 1

)
+ γuu2( j

)
, (46)  

where γx and γu are positive constants. Thereafter, the long term cost 
function J(j) is given as 

J(j) = r(j) + γr(j + 1) + γ2r
(
j + 2

)
+ γ3r

(
j + 3

)
+ ⋯,

= r(j) + γJ(j + 1), (47)  

where 0 < γ < 1 is a discount factor. The optimal solution can be ob
tained when ∂J(j)

∂u(j) = 0. By using (46) and (47), it yields 

∂J(j)
∂u(j)

=
∂r(j)
∂u(j)

+ γ
∂J(j + 1)

∂u(j)
,

= 2γuu
(

j
)

+ γ
[

∂J(j + 1)
∂r(j + 1)

∂r(j + 1)
∂x(j)

∂x(j)
∂u(j)

]

,

= 2γuu
(

j
)

+ γ
[

2γxx
(

j
)

∂x(j)
∂u(j)

]

.

(48) 

By setting ∂J(j)
∂u(j) = 0, the ideal-optimal control law u*(j) is derived as 

u*
(

j
)

= − γ
γx

γu
x
(

j
)

∂x(j)
∂u(j)

. (49) 

When the function FT( − ) in (44) is unknown, It’s obvious that ∂x(j)
∂u(j)

can not be determined directly because of the unknown function FT( − )

in (44). Furthermore, the relation of x(j) with respect to u(j) also leads to 
the causality problem according to the diagram in Fig. 2. 

To utilize the control law based on (48) and (49), the equivalent 
model (45) is employed as x(j)→x̂(j). By recalling (45), it leads to 

∂x(j)
∂u(j)

≈
∂x̂(j)
∂u(j)

= gm

(

x
(

j − 1
))

. (50) 

Thus, the relation in (48) can be rearranged as 

∂J(j)
∂u(j)

≐ 2γuu(j) + γ[2γx[fm(x(j − 1)) + gm(x(j − 1))u(j)]gm(x(j − 1))],

= 2
{[

γu + γγxg2
m

(
xj− 1
)]

u
(
j
)
+ γγxgm

(
xj− 1
)
fm
(
xj− 1
)}

.

(51) 

By setting ∂J(j)
∂u(j) = 0, thus, the control law is obtained as 

u
(

j
)

= −
γγxgm

(
xj− 1
)

γu + γγxg2
m

(
xj− 1
)fm

(

xj− 1

)

. (52) 

It’s clear that the proposed control law in (52) is a model free 
controller utilizing under the estimated functions fm( − ) and gm( − ) from 
FREN. Furthermore, only the data of infected individuals on the 
impulsive axis x(j)≐I(κj) is required. Unlike the works in [26,41], the 
full-state observers are strictly demanded at all sampling intervals k as 
real-time monitoring. 

Therefore, the closed–loop performance is guaranteed by employing 
the Lyapunov method and and algebraic inequality procedures as the 
following theorem. 

Theorem 4.1. By utilizing the vaccination policy υ(κj) on the impulsive 
axis via the control law (52) for the SqvEIAR dynamics in (1), the closed- 
loop performance is guaranteed under the number of infected individuals 
when the designed parameters are given as the following conditions:  

i: γu in (46) is defined as a time varying parameter γu(j − 1) such that 

γu
(
j − 1

)
= αug2

m

(
xj− 1
)
, (53)  

where αu is a positive constant and  
ii: γx and γ in (46) and (47), respectively, are satisfied 

ê
(
κj, i + 1

)
=

[
β̃f

(
κj− 1, i − 1

)
− ηf ê

(
κj, i
)

ϕ
(

κj− 1

)]T
ϕ
(

κj− 1

)

+
[
β̃g

(
κj− 1, i − 1

)
− ηg ê

(
κj, i
)

u
(

κj

)
ϕ
(

κj− 1

)]T
ϕ
(

κj− 1

)

u
(

κj

)

+ εs

(

k
)

,

= β̃
T
f

(
κj− 1, i − 1

)
ϕ
(

κj− 1

)
+ β̃

T
g

(
κj− 1, i − 1

)
ϕ
(

κj− 1

)
u
(

κj

)
− ηf ê

(
κj, i
)⃒
⃒
⃒

⃒
⃒
⃒ϕ
(

κj− 1

)⃒
⃒
⃒|

2
− ηg ê

(
κj, i
)

u2
(

κj

)⃒
⃒
⃒

⃒
⃒
⃒ϕ
(

κj− 1

)⃒
⃒
⃒|

2
+ εs

(
k
)
,

= ê
(

κj, i
)
− ηf ê

(
κj, i
)⃒
⃒
⃒

⃒
⃒
⃒ϕ
(

κj− 1

)⃒
⃒
⃒|

2
− ηg ê

(
κj, i
)

u2
(

κj

)⃒
⃒
⃒

⃒
⃒
⃒ϕ
(

κj− 1

)⃒
⃒
⃒|

2
,

=
[
1 − ηf

⃒
⃒
⃒

⃒
⃒
⃒ϕ
(

κj− 1

)⃒
⃒
⃒|

2
− ηgu2

(
κj

)⃒
⃒
⃒

⃒
⃒
⃒ϕ
(

κj− 1

)⃒
⃒
⃒|

2
]

ê
(

κj, i
)
.

(38)   
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γγx

αu + γγx
⩽

1 − αf

αg

gmin
m

f max
m

. (54)   

Proof. By employing the control law (52) with the dynamics (11), it 
yields 

x
(

j
)

= fT

(

xj− 1

)

−
γγxgm

(
xj− 1
)
gT
(
xj− 1
)

γu + γγxg2
m

(
xj− 1
) fm

(

xj− 1

)

. (55) 

Let’s define the Lyapunov candidate function L(j) as 

L(j) = |x(j)|. (56) 

Thus, the change of (56) can be obtained as 

ΔL(j) = L(j) − L(j − 1),

= |x(j)| − |x(j − 1)|,

=

⃒
⃒
⃒
⃒fT

(

xj− 1

)

−
γγxgm

(
xj− 1
)
gT
(
xj− 1
)

γu + γγxg2
m

(
xj− 1
) fm

(

xj− 1

)⃒
⃒
⃒
⃒ −

⃒
⃒
⃒
⃒x
(

j − 1
)⃒
⃒
⃒
⃒,

=
⃒
⃒fT
(
xj− 1
)
− γo

(
xj− 1
)
fm
(
xj− 1
)
gT
(
xj− 1
)⃒
⃒ −
⃒
⃒x
(
j − 1

)⃒
⃒,

⩽
⃒
⃒fT
(
xj− 1
)⃒
⃒+
⃒
⃒γo
(
xj− 1
)
fm
(
xj− 1
)⃒
⃒
⃒
⃒gT
(
xj− 1
)⃒
⃒ −
⃒
⃒x
(
j − 1

)⃒
⃒,

(57)  

where 

γo

(

xj− 1

)

=
γγxgm

(
xj− 1
)

γu + γγxg2
m

(
xj− 1
) . (58) 

Recalling (12) and (13), we have 

ΔL(j)⩽ αf
⃒
⃒x
(
j − 1

)⃒
⃒+
⃒
⃒γo
(
xj− 1
)
fm
(
xj− 1
)⃒
⃒αg
⃒
⃒x
(
j − 1

)⃒
⃒ −
⃒
⃒x
(
j − 1

)⃒
⃒,

⩽
[
αf + αg

⃒
⃒γo
(
xj− 1
)
fm
(
xj− 1
)⃒
⃒ − 1

]⃒
⃒x
(
j − 1

)⃒
⃒.

(59) 

In order to obtain ΔL(j) ≤ 0, it’s required that 

αf +αg|γo
(
xj− 1
)
fm
(
xj− 1
)
| ≤ 1, (60)  

or 

|γo

(

xj− 1

)

fm

(

xj− 1

)

|⩽
1 − αf

αg
. (61) 

By using γo(xj− 1) (58) and γu in (53), it yields 

⃒
⃒
⃒
⃒

γγxgm
(
xj− 1
)

γu + γγxg2
m

(
xj− 1
)fm

(

xj− 1

)⃒
⃒
⃒
⃒⩽

1 − αf

αg
,

⃒
⃒
⃒
⃒

γγxgm
(
xj− 1
)

αug2
m

(
xj− 1
)
+ γγxg

2
m

(
xj− 1
)fm

(

xj− 1

)⃒
⃒
⃒
⃒⩽

1 − αf

αg
,

⃒
⃒
⃒
⃒

γγx

αu + γγx

fm
(
xj− 1
)

gm
(
xj− 1
)

⃒
⃒
⃒
⃒⩽

1 − αf

αg
.

(62) 

The designed parameters γ, γx and αu are positive constants, thus, the 
relation in (62) can be rearranged as 

γγx

αu + γγx
⩽

1 − αf

αg
|
gm
(
xj− 1
)

fm
(
xj− 1
) |, (63)  

or 

γγx

αu + γγx
⩽

1 − αf

αg

gmin
m

f max
m

⩽
1 − αf

αg
|
gm
(
xj− 1
)

fm
(
xj− 1
) |. (64)  

That fulfills the condition in (54). Thus, the proof is completed. 

Remark 3. To acquire the parameters such as αf , αg, fmax
m and gmin

m , the 
design engineers can determine it by their experience according to the 
controlled plant or monitoring the response which will be demonstrated 
by the section of numerical results.By considering SqvEIAR dynamics 
with the vaccination policy, it’s obvious that the infected individual 
should be decreased by increasing the vaccination. Thus, in this case, the 
controlled plant has a negative control direction. Therefore, the analysis 
of Theorem 4.1 is extended by the following Lemma. 

Lemma 4.1. For the case of negative control direction of SqvEIAR dy
namics (1) according to the impulsive vaccination υ(κj) (52), the closed-loop 
performance under Theorem 4.1 is still valid via the following condition: 

0 <
αf − 1

αg

gmin
m

f max
m

⩽
γγx

αu + γγx
⩽

αf + 1
αg

gmin
m

f max
m

. (65)   

Proof. Let’s define the Lyapunov function L(j) as 

L
(
j
)
= x2( j

)
. (66) 

Recalling dynamics in (55) and (58), the change of Lyapunov func
tion ΔL(j) is derived as  

According to the SqvEIAR dynamics in (1) and (11) and the equivalent 
model in (14), it’s clear that I(k) is always positive or x(κj)⩾0 leading to 

ΔL(j) = x2( j
)
− x2( j − 1

)
,

=
[
fT
(
xj− 1
)
− γo

(
xj− 1
)
fm
(
xj− 1
)
gT
(
xj− 1
)]2

− [x(j − 1)]2,
= − 2γo

(
xj− 1
)
fm
(
xj− 1
)
fT
(
xj− 1
)
gT
(
xj− 1
)
+ f 2

T

(
xj− 1
)
+ γ2

o

(
xj− 1
)
f 2

m

(
xj− 1
)
g2

T

(
xj− 1
)
− x2( j − 1

)
.

(67)   
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fm(xj− 1)⩾0 and fT(xj− 1)⩾0. Thereafter, by using (12) and (13), we obtain   

For ΔL(j) ≤ 0, it’s required that 

− 1⩽αf +αgγo
(
xj− 1
)
fm
(
xj− 1
)
⩽1,

(69)  

or 

− 1⩽αf +αg
γγxgm

(
xj− 1
)
fm
(
xj− 1
)

γu + γγxg2
m

(
xj− 1
) ⩽1.

(70) 

By using (53), thus, the relation in (70) is rearranged as 

− 1⩽αf +αg
γγxgm

(
xj− 1
)
fm
(
xj− 1
)

(
αu + γγx

)
g2

m

(
xj− 1
)⩽1,

(71)  

or 

−
1 + αf

αg
⩽

γγxfm
(
xj− 1
)

(
αu + γγx

)
gm
(
xj− 1
)⩽

1 − αf

αg
.

(72) 

For the case of negative control direction, we have 

gm
(
x
(
κj− 1
))

< 0, (73)  

or 

gm
(
xj− 1
)
= − |gm

(
xj− 1
)
|. (74) 

By using (74), the relation in (72) can be rearranged as 

1 + αf

αg

⃒
⃒gm
(
xj− 1
)⃒
⃒

fm
(
xj− 1
) ⩾

γγx

αu + γγx
⩾ −

1 − αf

αg

⃒
⃒gm
(
xj− 1
)⃒
⃒

fm
(
xj− 1
) , (75)  

or 

αf − 1
αg

⃒
⃒gm
(
xj− 1
)⃒
⃒

fm
(
xj− 1
) ⩽

γγx

αu + γγx
⩽

αf + 1
αg

⃒
⃒gm
(
xj− 1
)⃒
⃒

fm
(
xj− 1
) . (76) 

Thus, the relation in (76) is conclusively conducted as 

αf − 1
αg

gmin
m

f max
m

⩽
γγx

αu + γγx
⩽

αf + 1
αg

gmin
m

f max
m

. (77)  

The proof is completed. 

Remark 4. The negative control direction of SqvEIAR dynamics under 
the proposed vaccination policy can be validated by the plot of gm(κj) in 
Fig. 7. The negative value of gm(κj) is obviously observed along with the 

Fig. 5. Plots of symptomatic infectious I(κj) populations.  

ΔL(j)⩽ 2γo

(
xj− 1

)
fm

(
xj− 1

)
αf αgx2

(
j − 1

)
+ α2

f x2
(

j − 1
)
+ α2

gγ2
o

(
xj− 1

)
f 2

m

(
xj− 1

)
x2
(

j − 1
)
− x2

(
j − 1

)
,

⩽
[
α2

f + 2γo

(
xj− 1

)
fm

(
xj− 1

)
αf αg + α2

gγ2
o

(
xj− 1

)
f 2

m

(
xj− 1

)
− 1
]
× x2

(
j − 1

)
,

⩽
[[

αf + αgγo
(
xj− 1
)
fm
(
xj− 1
)]2

− 1
]
x2( j − 1

)
.

(68)   

Fig. 4. Membership functions of I(κj− 1) or x(κj− 1)..  

Table 2 
Initial and parameter values.  

Parameters Values Parameters Values 

S(1) 8,000 e 0.7 
Q(1) 0 ω  0.1 
V(1) 0 p 0.1 
E(1) 1,000 r  0.3 
I(1) 500 a  0.3 
A(1) 500 f  0.965 
N(1) 10,000 n  0.3 
z 0.02 λ  0.1 
λ  0.1 ∊L  0 
qL  0.5 dL  1  
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operation.  

Algorithm1: Daily vaccination policy and inner-loop of equivalent model. 

For the conclusion, the Algorithm1 is given to represent the learning 
laws for the equivalent model and the determination of the proposed 
vaccination policy according to the condition (65) of Lemma 4.1. 

5. Controller setting and numerical results 

In this section, the design of the proposed scheme is demonstrated 
and the validation results are given by the numerical system of SqvEIAR 
dynamics (1) altogether with impulsive traveling of individuals. 

5.1. Parameters design and setting 

Table 2 represents all parameter values of SqvEIAR dynamics in (1) 
and initial values. Fig. 4 illustrates the membership functions μ of FREN 

in Fig. 3 when N = 3 and I(κj− 1) or x(κj− 1) ∈ [0, 1000]. It’s worth to 
denote that, in this work, the setting of the range of x(κj− 1) is double of 
I(1) in Table 2. 

The vaccination policy is in the range of [0,1]. Thus, the parameter uM 
is given as uM = max(υ) = 1. With 3 membership functions, we have Fig. 6. Estimated function fm(κj).  

Fig. 7. Estimated function gm(κj).  

Fig. 8. Vaccination policy u(κj).  

Fig. 9. Vaccinated individuals.  
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ϕM = 3. By recalling the results from Theorem 3.1 where γf = 0.7 and 
γg = 0.7, thus, the learning rates for βf and βg can be determined as 

0⩽ηf <
γf

ϕM
=

0.7
3

= 0.2333, (78)  

and 

0⩽ηg <
γg

u2
MϕM

=
0.7

1 × 3
= 0.2333, (79)  

respectively. In this work, we select ηf = 0.2 and ηg = 0.2. 
Thereafter, the parameters of the controller are designed according 

to Theorem 4.1 and Lemma 4.1. The sampling time k is given as Ts =

0.001 [day] in this simulation. Let’s simply select gmin
m = 200, fmax

m =

700, αf = 0.7 and αg = 0.7. It yields γ = 0.7, γx = 0.5 and αu = 0.25 such 
that 

γγx

αu + γγx
= 0.5833⩽

αf + 1
αg

gmin
m

f max
m

= 0.6939. (80) 

Thus, the condition in Lemma 4.1 has been fulfilled. 

5.2. Validation results 

By testing SqvEIAR dynamics (1) without applying the controller 
(υ(t) = 0) and quarantine (λ = 0), the population of symptomatic in
fectious individuals I(κj) is depicted by the A-plot in Fig. 5. Next, the 
parameter λ is give as λ = 0.5 for quarantining. Thus, the population of 
I(κj) is shown by the B-plot in Fig. 5. Thereafter, the C-plot in Fig. 5 
represents I(κj) of SqvEIAR dynamics when applying only the vaccina
tion policy as υ(t) = u(κj) in (52) and λ = 0. It’s obvious that the peak of 
symptomatic infectious individuals is definitely reduced. 

Fig. 6 displays the plot of fm(κj). It’s clear that the setting as fmax
m =

700 in Section 5.1 has been validated. The plot of gm(κj) is illustrated in 
Fig. 7. It proves the case of negative control direction regarding to the 
establishment of Lemma 4.1. Furthermore, it can be observed 

⃒
⃒gm(κj)

|min = 400. Thus, the setting as gmin
m = 200 in Section 5.1 has been also 

validated. The vaccination policy is represented by the plot in Fig. 8 and 
the details are fully illustrated by Fig. 9. 

5.3. Results with impulsive traveling and migrating 

The effects of impulsive immigrating and traveling are considered in 
this test. Fig. 10 presents the impulsive moving pattern which contains 
four groups such that S(κj), E(κj), I(κj) and A(κj). It’s worth emphasizing 
that those varying individuals are assumed to be unknown. Thus, the 
controller generates the vaccination policy υ(t) by using the equivalent 
model only. 

To demonstrate the performance of the proposed vaccination policy, 
the scheduling vaccination policy [18] is firstly utilized with υ(t) = 0.7 
along 4 weeks (28 days). Thereafter, the proposed scheme is employed 
by using the same setting in Section 5.1. Fig. 11 illustrates the plots of 
I(κj) with difference vaccination policies. The result of no vaccination is 
firstly considered with the higher number of symptomatic infectious 
individuals. Afterward, the scheduling vaccination is employed. It’s 
clear that the number of symptomatic infectious individuals is signifi
cantly decreased and 7,389 doses of vaccine are used. Finally, the pro
posed vaccination policy is utilized. Only 6,478 doses of vaccine are 
used but the number of symptomatic infectious individuals is obviously 
reduced according to the result from the scheduling vaccination. 
Furthermore, the proposed vaccination policy is represented by the plot 
in Fig. 12. After day 23rd, the vaccination policy is reached zero because 
the epidemic is under control. On day 25th, it has large immigrating 
amount of I(κj = 25). Thus, the vaccination policy is spontaneously 
increased. That will suggest the authorities gaining control of the 
epidemic. 

6. Conclusions 

In this paper, the optimal vaccinated strategy has been derived by 
using only the daily data of symptomatic infectious individuals and 

Fig. 10. Impulsive immigrating pattern.  

Fig. 11. Symptomatic infectious I(κj) with Impulsive immigrating..  

Fig. 12. Vaccination policy u(κj) with Impulsive immigrating..  
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considering the impulsive immigrants of susceptible, exposed, symp
tomatic infectious and asymptomatic infectious individuals. SqvEIAR 
dynamics have been developed to accomplish the vaccination’s effec
tiveness, antiviral factor and quarantine. By utilizing only the daily data 
of symptomatic infectious individuals the equivalent model has been 
established with the impulsive axis. Therefore, the negative control di
rection of the controlled SqvEIAR dynamics with the vaccination policy 
has been validated by the negative value of the estimated function 
gm(κj). By employing the proposed vaccination policy, the number of 
symptomatic infectious individuals has been significantly reduced with 
the fewer usage vaccines. Furthermore, the adaptive algorithm has 
validated the fast response according to the impulsive traveling and 
migrating of individuals. 

The optimal vaccination proposed in this work may provide a 
feasible non-pharmaceutical policy for the authority to control the 
COVID-19 epidemic. Currently, the vaccines are all in the intensively 
developing phase and the new variants of the coronavirus are persis
tently discovered thus the new or updated data will be included to 
enchant the performance as our upcoming future work. 

CRediT authorship contribution statement 

C. Treesatayapun: Conceptualization, Methodology, Software, Data 
curation, Visualization, Investigation, Writing - original draft, Writing - 
review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This work has been supported by Mexican Research Organization 
CONACyT grant# 257253. 

References 

[1] Worldometers, Worldometers coronavirus; 2021. https://www.worldometers.info/ 
coronavirus/, [Accessed 08-15-2021]. 

[2] M. Adrian, A. Zegarra, S.D. Infante, D.B. Carrasco, D.O. Liceaga, COVID-19 optimal 
vaccination policies: A modeling study on efficacy, natural and vaccine-induced 
immunity responses, Mathematical Biosciences 337 (2021), 108614. 

[3] Ourworldindata, Coronavirus (COVID-19) Vaccinations; 2021. https:// 
ourworldindata.org/covid-vaccinations, [Accessed 08-17-2021]. 

[4] P.D. Giamberardino, D. Iacoviello, Evaluation of the effect of different policies in 
the containment of epidemic spreads for the COVID-19 case, Biomedical Signal 
Processing and Control 65 (2021), 102325. 

[5] H. Aghdaoui, A.L. Alaoui, K.S. Nisar, M. Tilioua, On analysis and optimal control of 
a SEIRI epidemic model with general incidence rate, Results in Physics 20 (2021), 
103681. 

[6] L. Leonardo, R. Xavier, A modified SEIR model to predict the COVID-19 outbreak in 
Spain and Italy: Simulating control scenarios and multi-scale epidemics, Results in 
Physics 21 (2021), 103746. 

[7] M. Mandal, S. Jana, S.K. Nandi, A. Khatua, S. Adak, T.K. Kar, A model based study 
on the dynamics of COVID-19: Prediction and control, Chaos Solitons Fractals 136 
(2020), 109889. 

[8] H. Khan, R.N. Mohapatra, K. Vajravelu, S.J. Liao, The explicit series solution of SIR 
and SIS epidemic models, Applied Mathematics and Computation 215 (2) (2009) 
653–659. 

[9] M.D. la Sen, S. Alonso-Quesada, Vaccination strategies based on feedback control 
techniques for a general SEIR- epidemic model, Applied Mathematics and 
Computation 218 (7) (2011) 3888–3904. 

[10] P.J.I. Ellis, Modelling suggests ABO histo-incompatibility may substantially reduce 
SARS-CoV-2 transmission, Epidemics 35 (2021), 100446. 

[11] R. Padmanabhan, N. Meskin, T. Khattab, M. Shraim, M. Al-Hitmia, Reinforcement 
learning-based decision support system for COVID-19, Biomedical Signal 
Processing and Control 68 (2021), 102676. 

[12] J. Stehle, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Regis, J.F. Pinton, 
N. Khanafer, W.V. d. Broeck and P. Vanhem, “Simulation of an SEIR infectious 
disease model on the dynamic contact network of conference attendees,” BMC 
Medicine, vol. 9, no. 87, p. 1–15, 2011. 

[13] J. Andrade, J. Duggan, An evaluation of Hamiltonian Monte Carlo performance to 
calibrate age-structured compartmental SEIR models to incidence data, Epidemics 
33 (2020), 100415. 

[14] M.A. Hadi, H.I. Ali, Control of COVID-19 system using a novel nonlinear robust 
control algorithm, Biomedical Signal Processing and Control 64 (2021), 102317. 

[15] Y.K. Xie, Z. Wang, J.W. Lu, Y.X. Li, Stability analysis and control strategies for a 
new SIS epidemic model in heterogeneous networks, Applied Mathematics and 
Computation 383 (2020), 125381. 

[16] M.A. Hadi, Z.M. Amean, New strategy to control covid-19 pandemic using lead/lag 
compensator, Biomedical Signal Processing and Control 68 (2021), 102669. 

[17] N.P. Dong, H.V. Long, A. Khastan, Optimal control of a fractional order model for 
granular SEIR epidemic with uncertainty, Commun Nonlinear Sci Numer Simulat 
88 (2020), 105312. 

[18] I. Al-Darabsah, Threshold dynamics of a time-delayed epidemic model for 
continuous imperfect-vaccine with a generalized nonmonotone incidence rate, 
Nonlinear Dynamics 101 (2020) 1281–1300. 

[19] N. Sebastian, F.A. Inthamoussou, F. Valenciaga, H.D. Battista, F. Garelli, Potentials 
of constrained sliding mode control as an intervention guide to manage COVID19 
spread, Biomedical Signal Processing and Control 67 (2021), 102557. 

[20] R. Abolpour, S. Siamak, M. Mohammadi, P. Moradi, M. Dehghani, Linear 
parameter varying model of COVID-19 pandemic exploiting basis functions, 
Biomedical Signal Processing and Control 70 (2021), 102999. 

[21] C. Zhan, J. Chen, H. Zhang, An investigation of testing capacity for evaluating and 
modeling the spread of coronavirus disease, Information Sciences 561 (2021) 
211–229. 

[22] A. Rajaei, M. Raeiszadeh, V. Azimi, M. Sharifi, State estimation-based control of 
COVID-19 epidemic before and after vaccine development, Journal of Process 
Control 102 (2021) 1–4. 

[23] B. Peddinti, A. Shaikh, K.R. Bhavya, K.C. Nithin-Kumar, Framework for Real-Time 
Detection and Identification of possible patients of COVID-19 at public places, 
Biomedical Signal Processing and Control 68 (2021), 102605. 

[24] L. Xue, S. Jing, J.C. Miller, W. Suna, H. Li, J.G. Estrada-Francoc, J.M. Hyman, 
H. Zhue, A data-driven network model for the emerging COVID-19 epidemics in 
Wuhan, Toronto and Italy, Mathematical Biosciences 326 (2020), 108391. 

[25] N.Y. Khanday and S.A. Sofi, ”Deep Insight: Convolutional Neural Network and its 
Applications for COVID-19 Prognosis,” Biomedical Signal Processing and Control, 
vol. In Press, p. 102814, 2021. 

[26] Z. Abbasi, I. Zamani, A.H. Amiri-Mehra, M. Shafieirad, A. Ibeas, Optimal Control 
Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19, 
Chaos, Solitons and Fractals 139 (2020), 110054. 

[27] M.P. Hossain, A. Junus, X. Zhu, P. Jia, T. Wen, D. Pfeiffer, H. Yuan, The effects of 
border control and quarantine measures on the spread of COVID-19, Epidemics 32 
(2020), 100397. 

[28] M.F. Villa-Tamayo, P.S. Rivadeneira, Adaptive Impulsive Offset-Free MPC to 
Handle Parameter Variations for Type 1 Diabetes Treatment, Industrial & 
Engineering Chemistry Research 59 (2020) 5865–5876. 

[29] G. Hernandez-Mejia, X. Du, A.Y. Alanis, E.A. Hernandez-Vargas, Bounded input 
impulsive control for scheduling therapies, Journal of Process Control 102 (2021) 
34–43. 

[30] M. Bachar, J.G. Raimann, P. Kotanko, Impulsive mathematical modeling of 
ascorbic acid metabolism in healthy subjects, Journal of Theoretical Biology 392 
(2016) 35–47. 

[31] Y. Gao, X. Zhang, G. Lu, Y. Zheng, Impulsive synchronization of discrete-time 
chaotic systems under communication constraints, Commun. Nonlinear Sci. 
Numer. Simul. 16 (2011) 1580–1588. 

[32] X. Liguang, S.G. Shuzhi, Set-stabilization of discrete chaotic systems via impulsive 
control, Applied Mathematics Letters 53 (2016) 52–62. 

[33] L.F. Nie, Z.D. Teng, Effects of impulsive control on permanence and extinction of 
lactic acid fermentation, Journal of Process Control 24 (7) (2014) 1121–1134. 

[34] D. He, L. Xu, Ultimate boundedness of non-autonomous dynamical complex 
networks under impulsive control, IEEE Trans. Circuits Syst. II 62 (2015) 
997–1001. 

[35] F. Cacace, V. Cusimano, P. Palumbo, Optimal impulsive control with application to 
antiangiogenic tumor therapy, IEEE Trans. Control Syst. Technol. 28 (1) (2020) 
106–117. 

[36] Q. Wei, R. Song, Z. Liao, B. Li, F.L. Lewis, Discrete-time impulsive adaptive 
dynamic programming, IEEE Trans. Cybern. 50 (10) (2020) 4293–4306. 

[37] G. Hernandez-Mejia, A.Y. Alanis, E.A. Hernandez-Vargas, Neural inverse optimal 
control for discrete-time impulsive systems, Neurocomputing 314 (2018) 101–108. 

[38] L.O. Naraigh, A. Byrne, Piecewise-constant optimal control strategies for 
controlling the outbreak of COVID-19 in the Irish population, Mathematical 
Biosciences 330 (2020), 108496. 

[39] M.O. Berner, V. Scherer, M. Monnigmann, Controllability analysis and optimal 
control of biomass drying with reduced order models, Journal of Process Control 
89 (2020) 1–10. 

[40] W. Jianfang, H. Ruo, L. Ming, L. Shanshan, Z. Xizheng, H. Jun, C. Jiaxu, 
L. Xiangjun, Diagnosis of sleep disorders in traditional Chinese medicine based on 

C. Treesatayapun                                                                                                                                                                                                                               

http://refhub.elsevier.com/S1746-8094(21)00824-7/h0010
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0010
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0010
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0020
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0020
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0020
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0025
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0025
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0025
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0030
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0030
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0030
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0035
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0035
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0035
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0040
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0040
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0040
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0045
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0045
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0045
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0050
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0050
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0055
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0055
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0055
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0065
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0065
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0065
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0070
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0070
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0075
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0075
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0075
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0080
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0080
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0085
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0085
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0085
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0090
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0090
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0090
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0095
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0095
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0095
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0100
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0100
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0100
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0105
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0105
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0105
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0110
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0110
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0110
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0115
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0115
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0115
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0120
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0120
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0120
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0130
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0130
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0130
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0135
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0135
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0135
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0140
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0140
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0140
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0145
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0145
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0145
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0150
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0150
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0150
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0155
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0155
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0155
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0160
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0160
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0165
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0165
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0170
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0170
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0170
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0175
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0175
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0175
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0180
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0180
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0185
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0185
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0190
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0190
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0190
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0195
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0195
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0195
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0200
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0200


Biomedical Signal Processing and Control 71 (2022) 103227

12

adaptive neuro-fuzzy inference system, Biomedical Signal Processing and Control 
70 (2021), 102942. 

[41] G. Hernandez-Mejia, A.Y. Alanis, M. Hernandez-Gonzalez, R. Findeisen, E. 
A. Hernandez-Vargas, Passivity-based inverse optimal impulsive control for 
influenza treatment in the host, IEEE Trans. Control Syst. Technol. 28 (1) (2020) 
94–105. 

[42] C. Treesatayapun, S. Uatrongjit, Adaptive controller with Fuzzy rules emulated 
structure and its applications, Engineering Applications of Artificial Intelligence 18 
(2005) 603–615. 

[43] C. Treesatayapun, Prescribed performance of discrete-time controller based on the 
dynamic equivalent data model, Applied Mathematical Modelling 78 (2020) 
366–382. 

[44] Z. Hou, R. Chi, H. Gao, An overview of dynamic-linearization-based data-driven 
control and applications, IEEE Trans. Ind. Electron. 64 (5) (2017) 4076–4090. 

[45] C. Treesatayapun, Discrete-time adaptive controller based on non-switch reaching 
condition and compact system dynamic estimator, J. Franklin I. 354 (5) (2017) 
6783–6804. 

[46] X. Liguang, G. Shuzhi-Sam, Set–stabilization of discrete chaotic systems via 
impulsive control, Applied Mathematics Letters 53 (2016) 52–62. 

C. Treesatayapun                                                                                                                                                                                                                               

http://refhub.elsevier.com/S1746-8094(21)00824-7/h0200
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0200
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0205
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0205
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0205
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0205
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0210
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0210
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0210
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0215
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0215
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0215
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0220
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0220
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0225
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0225
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0225
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0230
http://refhub.elsevier.com/S1746-8094(21)00824-7/h0230

