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Abstract: Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present
in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate
side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of
compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates
for a multitude of vital activities related to plant growth and development. However, because of
the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research
tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review,
we put together the current knowledge about the characteristics, classification, and identification
of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant
reproduction and developmental processes. In addition, we especially discuss deeply the potential
mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis
and deposition based on previous studies. Particularly, five hypothetical models that may explain
the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are
proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.

Keywords: arabinogalactan proteins; cell wall; cellulose synthesis; cellulose deposition; characteristics;
classification; identification; biological function

1. Introduction

Arabinogalactan proteins (AGPs) are a class of proteoglycan compounds that are
widely present throughout the plant kingdom, as Arabidopsis thaliana (L.) Heynh., Nico-
tiana tabacum L., Brassica napus L., and maize (Zea mays L.) [1,2]. They are ubiquitous in
all plant tissues and cells and found in cell walls, plasma membranes, and extracellular
secretions of plants [3]. AGPs have been identified in a variety of angiosperms, gym-
nosperms, and lower plants (e.g., bryophytes and algae), such as rice (Oryza sativa L.),
Chinese cabbage (B. rapa L.), Picea abies (L.) Karst., Physcomitrella patens (Hedw.) Bruch
& Schimp, Polytrichastrum formosum (Hedw.) G.L.S.M, and Ectocarpus siliculosus (Dillw.)
Lyngb. [4–16]. Several excellent reviews have summarized that AGPs are associated with
vegetative growth, reproductive development, tissue regeneration, stress response, and
other vital activities in plants [2,17–29]. However, the exact molecular mechanisms of AGP
action in complicated biological processes are still unresolved and puzzling [28]. Here we
describe, in detail, the characteristics, classification, identification, and biological functions
of AGPs. Some progresses in understanding the synthesis and deposition of cellulose
are briefly summarized. A focus is especially placed on the way AGPs might participate
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in cellulose synthesis and deposition during cell wall biogenesis, and as a result, five
hypothetical models of AGP action are proposed.

2. Characteristics, Classification, and Identification of AGPs
2.1. Characteristics

AGPs belong to a superfamily of hydroxyproline (Hyp)-rich glycoproteins (HRGPs),
which also includes extensins (EXTs), proline (Pro)-rich proteins (PRPs), and solanaceous
lectins [30]. AGPs consist of a Hyp-rich core protein backbone with a molecular mass of
about 60–300 kDa, decorated by arabinose (Ara)- and galactose (Gal)-rich polysaccharide
units O-glycosidically linked to Hyp residues [1,2,19,30]. Their carbohydrate moieties
typically account for more than 90% of their molecular mass [1,30].

All protein backbone precursors of AGPs are expected to have an N-terminal signal
peptide sequence and a domain of variable length rich in Pro, alanine (Ala), serine (Ser),
and threonine (Thr) (PAST) [31–34]. In addition, a prerequisite for defining an AGP is to
possess AG glycomodules (amino acids regularly arranged as Ala-Pro, Pro-Ala, Ser-Pro,
and Thr-Pro repeats, without EXT glycomodules (e.g., Ser-Pro2-4)) [35]. The presence of a
C-terminal glycosylphosphatidylinositol (GPI) anchor signal sequence in most AGPs pro-
vides additional support for the identification of an AGP [35]. The maturation of AGP
molecules involves proper post-transcriptional modifications, which mainly leads to the
removal of N-terminal signal peptide, optional attachment of C-terminal GPI anchor,
hydroxylation of Pro residues into Hyp residues, and arabinogalactan (AG)
O-glycosylation [18,36,37].

Given that AGPs are typically at least 90% carbohydrate moieties by mass, carbohy-
drate moieties probably determine the interactive molecular surface, postsecretory fate,
and ultimately, the functions of AGPs [3,38–40]. These carbohydrate units vary in size from
30–150 carbohydrate residues, but exhibit a type II AG polysaccharide structure, which is
O-glycosidically linked to protein backbones at Hyp residues [2,19]. The type II AG polysac-
charide structure consists of a β-1,3-galactose backbone decorated with β-1,6-galactose side
chains, which are further modified by α-arabinose side chains and other relatively less
abundant carbohydrates, such as β-(methyl)glucuronic acid (GlcA), α-rhamnose (Rha), and
α-fucose [41]. Especially, 3-O-methyl-rhamnose as a terminal monosaccharide and galactan
core highly branched with the unusual branching point 1,2,3-linked galactose, never found
in AGPs of angiosperms, have been uniquely found in moss [9]. The AG polysaccharide
consensus structure has the theoretical molar ratios: Gal5, Ara6, GlcA2, and Rha2 [42,43].
The polydispersity of AGPs is mainly caused by the variable number of repetitive AG
subunits (repetitive glycomotifs of ~15 sugar residues) rather than the heterogeneity [43].

In the last decade, the identification of some AGPs lacking signal peptides in Arabidop-
sis, wheat (Triticum aestivum L.), and rice and some AGPs potentially lacking well-identified
O-glycosylation sites in poplar (Populus trichocarpa Torrey & A. Gray ex Hooker), Chinese
cabbage, wheat, and rice through bioinformatics approaches is challenging our conven-
tional concept to define an AGP [7,35,44–46], without excluding that there are several wild
species, including crop wild relatives, of which we have no data, not only for AGPs, but
even for their chemical composition [47–49].

2.2. Classification

Based on amino acid compositions, size, and specific amino acid motifs of protein
backbones, AGPs can be divided into classical AGPs, AG-peptides, chimeric AGPs (CAGPs),
and nonclassical AGPs, as classified by Showalter et al. [35]. Classical AGPs are usually
composed of an N-terminal signal peptide sequence, a central region with biased amino
acid compositions of at least 50% PAST and putative AG glycomodules, and a C-terminal
GPI-anchored signal [31–34]. Some classical AGPs containing a lysine (Lys)-rich insert
within the PAST-rich domain are defined as Lys-rich AGPs [50]. Those AGPs that are
between 50 and 90 amino acids in length with biased amino acid compositions of at
least 35% PAST and have a predicted signal peptide sequence at their N-terminus are
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called AG peptides [11,35]. CAGPs are longer than 90 amino acids in length and possess
other sequence motifs as well as putative AG glycomodules. CAGPs could be further
classified into several subfamilies based on other specific protein domains, such as fasciclin
domain in fasciclin-like AGPs (FLAs), nonspecific lipid-transfer protein (nsLTP) domain in
xylogen-like AGPs (XYLPs), plastocyanin-like (PCNL) domain in plastocyanin-like AGPs
(PLAs/PAGs), protein kinase domain in PK-like CAGPs, and formin homology 2 domain
in FH2-like CAGPs [11,33–35,51–54]. In addition, some CAGPs harbor both characteristic
domains of AGPs and EXTs, which have been identified and defined as AGP/EXT hybrids
(HAE) [35].

2.3. Identification

The use of the beta-glucosyl Yariv reagent (β-Yariv; binds and perturbs AGPs) or a
set of AGP-specific monoclonal antibodies (mABs; recognize AGP carbohydrate epitopes)
is a traditional way to identify AGPs in plant tissues; however, such generalities are too
narrow to account for all AGPs [2,36,55,56]. To date, genomes of many plant species
have been sequenced, which has enabled the identification of AGPs using bioinformatics
approaches. Based on the arrangement of amino acid composition, a series of methods have
successively developed to search for AGP-coding genes, such as “amino acid bias” program,
hidden Markov models, BIO OHIO, and python script “Finding-AGP” [11,31,35,57]. In the
meanwhile, the basic local alignment search tool also helps to search for CAGPs that are
not processed by other programs [34,58]. To date, a total of 151 and 282 putative AGPs
have been identified in Arabidopsis and rice, respectively [11,12,31,34,35,53,57–59].

3. Biological Functions of AGPs

Current studies took advantage of immunocytochemistry, reverse genetics, transcrip-
tomics, proteomics, and molecular approaches to explore biological functions of AGPs in a
broad range of plants [24,60,61]. Indeed, such experimental approaches have demonstrated
that AGPs are implicated in various biological processes, including cell expansion and
differentiation, embryogenesis, seed germination, root development, sexual reproduction,
fruit ripening, biotic and abiotic stress response, signal transduction, and response to
multiple plant hormones [2,17–29,62].

In the following, we summarize the expression patterns, genetic analyses, and biologi-
cal functions of AGPs that have been characterized so far (Table 1). It is shown that AGPs
are expressed in almost all plant tissues and organs and widely participate in plant growth
and reproduction. In addition, we highlight advances in understanding AGPs involved in
the synthesis and deposition of cellulose components during cell wall biogenesis.
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Table 1. List of AGPs implicated in diverse plant growth and development processes.

Gene a Species Classification GPI Anchor b Subcellular
Localization

Expression
Pattern Genetic Analysis Phenotype Biological Function References

AtAGP4/JAGGER Arabidopsis thaliana (L.)
Heynh. classical AGP

√
– stigma, style,

transmitting tract,
and ovules

T-DNA insertion mutant
and RNA interference
(RNAi)

polytubey block and
persistent synergid blocks pollen tube

attraction
[63,64]

overexpression aborted ovules and seeds

AtAGP6 and AtAGP11 A. thaliana classical AGP
√

– pollen and pollen
tubes

T-DNA insertion single
mutant no discernible phenotype

have overlapping functions
in pollen and pollen tube
development

[65–69]
T-DNA insertion double
mutant and RNAi

collapsed pollen, inhibited
pollen tube growth, and
untimely pollen
germination

BcMF8 Brassica campestris L. classical AGP
√

plasma
membrane,
extracellular
spaces, and cell
walls

pollen and pollen
tubes antisense RNA

sunken pollen with
abnormal intine, decreased
pollen germination, and
retarded pollen tube growth

contributes to pollen wall
development, aperture
formation, and pollen tube
growth

[70,71]

BcMF18 B. campestris classical AGP
√

plasma membrane,
extracellular
spaces, and cell
walls

pollen

antisense RNA

shrunken and withered
pollen with abnormal
cellulose distribution,
lacking intine, cytoplasm,
and nuclei required for microspore

development and pollen
intine formation

[72,73]

ectopic overexpression

reduced male fertility, short
siliques with low seed set,
aborted pollen grains
without all cytoplasmic
materials and nuclei, and
no cellulose accumulation
in intine

AtAGP40 A. thaliana AG peptide
√

– pollen

T-DNA insertion mutant

no alteration in pollen grain
development but a
reduction in pollen grain
fitness prevents premature pollen

grain germination [74]

agp6 agp11 agp40 triple
mutant

a significant reduction in
seed production and a
higher number of early
germinating pollen tubes
inside the anthers
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Table 1. Cont.

Gene a Species Classification GPI Anchor b Subcellular
Localization

Expression
Pattern Genetic Analysis Phenotype Biological Function References

Gsp-1 Triticum aestivum L. AG peptide – probably
inside vacuoles

developing
endosperms RNAi

increased grain hardness
and decreased viscosity of
aqueous extracts

required for
endosperm formation [75]

TTS
Nicotiana tabacum L.
and N. alata
Link & Otto

non-classical
AGP × extracellular

matrix
stylar
transmitting tissue

antisense RNA and
sense cosuppression

reduced pollen tube growth
and reduced female fertility

functions in growth and
guidance into the ovules of
the pollen tubes

[76–78]

Na120K/NaPRP5 N. alata nonclassical
AGP × extracellular

matrix styles RNAi

unable to perform S-specific
pollen rejection but retains
the ability to reject
N. plumbaginifolia pollen

functions in S-specific
pollen rejection
(self-incompatibility)

[79–82]

AGPNa3/RT35 N. alata nonclassical
AGP × – stigma – –

has a specific, yet to be
determined, role in
the pistil

[83]

AtFLA3 A. thaliana FLA
√

plasma membrane pollen and
pollen tubes

RNAi

shrunken and wrinkled
pollen grains with
abnormal cellulose
distribution in intine involved in microspore

development and may
affect pollen
intine formation

[84]

overexpression

defective elongation of the
stamen filament, reduced
female fertility, wrinkled
rosette leaves, more rapid
primary root growth, and
abnormal root cap cells

AtFLA5 and AtFLA10 A. thaliana FLA
√

– ovules – –
may be related to
embryogenesis and
seed development

[85–87]

AtFLA14 A. thaliana FLA
√ plasma membrane

and Hechtian
strands

pollen

T-DNA insertion mutant

no discernible phenotype
but precocious pollen
germination inside the
mature anthers under high
moisture conditions

required for pollen
development and
preventing premature
pollen germination under
high humidity

[88]

overexpression

abnormal pollen grains
with a shrunken and
withered appearance,
reduced fertility, short
mature siliques, and lower
seed set

AtFLA9 A. thaliana FLA
√

– seedlings, flowers,
and siliques

T-DNA insertion mutant

enhanced seed abortion
under control conditions;
impaired embryo
development plays a role in embryo

development, seed setting
and response to
drought stress

[89,90]

gain-of-function

reduced seed abortion
under drought conditions
and increased abortion
under control conditions;
impaired embryo
development
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Table 1. Cont.

Gene a Species Classification GPI Anchor b Subcellular
Localization

Expression
Pattern Genetic Analysis Phenotype Biological Function References

BrFLA2, BrFLA28,
and BrFLA32 B. rapa L. FLA

√ plasma membrane
and Hechtian
strands

anthers, pollen,
and pollen tubes RNAi

precocious pollen
germination in the anthers
under high humidity

indispensable for the
proper timing of pollen
germination under high
relative humidity

[54]

AtENODL9 A. thaliana ENODL
√

plasma membrane
vascular system in
leaves, stems, and
roots

T-DNA insertion mutant
a significant reduction in
the overall reproductive
potential

involved in the
reproduction process [91,92]

AtENODL11,
AtENODL12,
AtENODL13,
AtENODL14/AtEN14,
and
AtENODL15/AtEN15

A. thaliana ENODL
√

AtENODL14 and
AtENODL15:
plasma membrane
and filiform
apparatus

AtENODL11 and
AtENODL12:
flowers, fruits,
and embryo sacs;
AtENODL13,
AtENODL14, and
AtENODL15:
seedlings, roots,
flowers, ovules,
and stomatal
lineage cells

T-DNA insertion single
and double mutants no obvious phenotypes

AtENODL11–AtENODL15:
functionally redundant in
pollen tube reception;
AtENODL13, AtENODL14,
and AtENODL15: required
for stomatal lineage
development

[33,85,86,
89,93–95]

enodl13-1; enodl14-1;
enodl15-1 triple mutant

significant defects in
stomatal patterning and
defects in division
regulation

en13 en14 en15 triple
mutant no obvious phenotypes

en-RNAi mutant
remarkably reduced seed
set, aborted ovules, and
failure of pollen tube burst

EN15 overexpression
disturbed pollen tube
guidance and reduced
fertility

AtAGP57C/APAP1 A. thaliana classical AGP
√

cell walls – T-DNA insertion mutant
higher inflorescence stem
and reduced covalent
linkages in cell walls

involved in maintaining
wall architecture [96]

AtFLA11/IRX13 and
AtFLA12 A. thaliana FLA

√
– inflorescence

stems T-DNA double mutant

altered cell wall architecture
with increased cellulose
microfibril angle and
reduced cellulose content
and altered stem tensile
strength and stiffness

contributes to secondary
cell wall formation [97–99]

AtFLA16 A. thaliana FLA × plasma membrane
and cell wall

hypocotyls of
young seedlings,
roots, rosette
leaves, stems,
flowers, and
siliques

T-DNA insertion mutant

reduced stem length,
reduced first internode
length, fewer rosette leaves,
altered carbohydrate
content and biomechanics

involved in stem elongation
and secondary cell wall
synthesis and function

[100]

AtAGP31 A. thaliana nonclassical
AGP × – vascular bundles – –

may be involved in
vascular tissue function
during defense response
and development

[101–103]
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Table 1. Cont.

Gene a Species Classification GPI Anchor b Subcellular
Localization

Expression
Pattern Genetic Analysis Phenotype Biological Function References

AtXYP1 and AtXYP2 A. thaliana XYLP
√

–

AtXYP1:
cotyledons, roots,
anthers, and
pistils; AtXYP2:
vasculature, roots,
inflorescences,
and stems

T-DNA insertion double
mutant

defects in vascular
development:
discontinuous veins,
improperly interconnected
vessel elements, and
simplified venation

involved in vascular
development [52,53,86]

AtAGP14 A. thaliana AG peptide
√

plasma membrane endodermis, root
hair zone T-DNA insertion mutant

markedly increased length
of root hairs under control
and phosphate
(Pi)-deficient conditions

regulates root hair
elongation exhibiting
environmental response
behavior

[104]

AtAGP15 and
AtAGP21 A. thaliana AG peptide

√
plasma
membrane–
apoplastic
space

– T-DNA insertion mutant

apg21: aberrant root hair
development;
apg15: a milder phenotype
than apg21

involved in root
development [105]

AtAGP30 A. thaliana nonclassical
AGP

× – roots
T-DNA insertion mutant

inhibited root regeneration
in vitro and suppression of
the ABA-induced delay in
germination

plays a role in root
regeneration, seed
germination, and ABA
response

[106,107]

overexpression severely affected shoot
development

AtFLA1 A. thaliana FLA
√

–

stomata,
trichomes, anthers,
embryos, and
roots

T-DNA insertion mutant

increased lateral roots and
reduced shoot regeneration
in an in vitro shoot
induction assay

plays a role in lateral root
development and shoot
regeneration

[85,86,89,
108]

AtSOS5/AtFLA4 A. thaliana FLA
√

plasma
membrane,
Hechtian strands,
and apoplast

roots, leaves,
stems, flowers,
siliques, and seed
coat

T-DNA insertion mutant
and ethyl methane
sulfonate-induced
mutant

abnormal cell expansion,
thinner walls, reduced
middle lamella in response
to salt stress, and reduction
in cellulose across the seed
mucilage inner layer

maintains root growth
under salt stress and
involved in the formation
of seed mucilage

[38,86,109–
116]

AtFLA18 A. thaliana FLA × –
all organs,
including leaves,
stems, siliques,
and flowers

T-DNA insertion mutant

short and swollen lateral
roots and slightly longer
primary root when grown
on sensitizing condition of
high-sucrose
containing medium plays a role during

root elongation [117]

fla18-sos5 double mutant

a more severe perturbation
of anisotropic growth in
both lateral roots and
primary roots, a small,
chlorotic shoot phenotype
under restrictive conditions



Int. J. Mol. Sci. 2022, 23, 6578 8 of 26

Table 1. Cont.

Gene a Species Classification GPI Anchor b Subcellular
Localization

Expression
Pattern Genetic Analysis Phenotype Biological Function References

BcFLA1 B. carinata A. Braun
(Ethiopian mustard) FLA

√ plasma membrane
and cell wall roots CRISPR/Cas9

reduced root hair length in
inorganic Pi-deficient
conditions

has a predicted role in the
Pi deficiency-induced root
hair elongation

[60]

CsAGP1 Cucumis sativus L. classical AGP
√

– most vegetative
tissues overexpression taller stature and earlier

flowering involved in stem elongation [118]

PtaAGP6 Pinus taeda L. Lys-rich AGP
√ cell walls or

extracellular
spaces

wood, shoot tips,
pollen cones, roots,
and planings

– –
functions in xylem
differentiation and wood
formation

[119]

PtFLA6
Populus trichocarpa
Torrey & A. Gray
ex Hooker

FLA – – xylem tissues of
stems antisense RNA

inhibited tension wood
formation in the upper side
and enhanced GA3
biosynthesis and GA
signaling

plays important roles in
GA-mediated tension wood
formation

[120]

ZeXYP1 Zinnia elegans L. XYLP
√

–
meristem,
procambium, and
xylem

– –

mediates local and
inductive cell–cell
interactions required for
xylem differentiation

[52,53,121,
122]

GhFLA1 Gossypium hirsutum L. FLA
√

cell walls fibers
RNAi

reduced fiber initiation and
elongation, leading to
shorter mature fibers

involved in fiber initiation
and elongation [123,124]

overexpression promoted fiber elongation

GhAGP4 G. hirsutum FLA
√

– fibers RNAi

inhibited fiber initiation
and elongation, shorter
fiber length, worse fiber
quality, and affected
cytoskeleton network and
cellulose deposition of fiber
cells

essential for the initiation
and elongation of cotton
fiber development

[125,126]

AtAGP18 A. thaliana Lys-rich AGP
√ plasma membrane

and Hechtian
strands

roots, stems,
flowers, and
leaves

RNAi
functional megaspore fails
to enlarge and mitotically
divide functions in plant growth

and development, female
gametogenesis, and
determining megaspore fate

[50,127–
131]

overexpression

smaller rosettes, shorter
stems and roots, more
branches, less viable seeds,
and abnormal maintenance
of surviving megaspores
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Table 1. Cont.

Gene a Species Classification GPI Anchor b Subcellular
Localization

Expression
Pattern Genetic Analysis Phenotype Biological Function References

AtAGP19 A. thaliana Lys-rich AGP
√

–

roots, flowers,
stems, seedlings,
leaves, and
siliques

T-DNA insertion mutant

smaller, rounder, and flatter
rosette leaves, lighter-green
leaves containing less
chlorophyll, delayed
growth, shorter hypocotyls
and inflorescence stems,
fewer siliques, and less seed
production

functions in various aspects
of plant growth and
development, including cell
division and expansion, leaf
development, and
reproduction

[50,130,132,
133]

LeAGP-1 Lycopersicon esculentum
Mill.

Lys-rich AGP
√ plasma membrane

and Hechtian
strands

roots and stems

overexpression multiple branches and less
seeds functions in plant growth

and development, probably
by linking the plasma
membrane to the
cytoskeleton

[134–138]transgenic tobacco BY-2
cells treated with β-Yariv

terminal cell bulging,
puncta formation,
disturbed microtubule
organization, and actin
filament formation

attAGP L. esculentum classical AGP
√ plasma membrane

and cell wall

precisely at the
site of dodder
attack

RNAi and virus-induced
gene silencing

reduced attachment force of
Cuscuta reflexa to host
tomatoes

promotes the parasite’s
adherence [139]

AtAGP17/RAT1 A. thaliana Lys-rich AGP
√ plasma membrane

and Hechtian
strands

roots, stems,
flowers, and
leaves

T-DNA insertion mutant
resistant to Agrobacterium
tumefaciens root
transformation

allows Agrobacterium
rapidly to reduce the
systemic acquired
resistance response during
infection

[129,140,
141]

overexpression no phenotype

NaAGP4 N. alata Lys-rich AGP
√

–
roots, stems,
flowers, and
leaves

– – responds to wounding and
fungal infection [142]

AtAGP24 A. thaliana AG peptide
√

plasma membrane pollen, roots, and
siliques overexpression enhanced disease

susceptibility to the fungus

involved in the pathogen
response; may be involved
in regulating cell separation
in floral abscission zones

[35,85,143,
144]

AtFLA8/AtAGP8 A. thaliana FLA
√

–
roots, leaves,
flowers, and
ovules

T-DNA insertion mutant

significantly increased
susceptibility to root-knot
nematode Meloidogyne
incognita

plays a role in defense
against root-knot
nematodes

[85–
87,89,145]

GhAGP31 G. hirsutum nonclassical
AGP × cell walls roots, hypocotyls,

and ovules overexpression

improved freezing
tolerance of yeast cells and
cold tolerance of
Arabidopsis seedlings

responses to cold stress
during early root
development

[146]

a Confirmed GPI-anchored AGPs from proteomics analysis are in bold [85,86,89]; b existence of predicted GPI anchors (
√

, exists; ×, does not exist); dashes represent no data.
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4. Involvement of AGPs in Cellulose Synthesis and Deposition during Plant Cell
Wall Biogenesis
4.1. Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis

Plant cell walls are largely composed of cellulose, hemicelluloses, and pectins, along
with a small amount of proteins and other compounds [147–149]. As the most abundant
and main load-bearing biopolymer of the cell wall, cellulose is synthesized by cellulose
synthase (CesA) proteins, integral plasma membrane proteins arranged into a unique
hexagonal rosette complex called the cellulose synthase complex (CSC) [149,150].

There are several articles that cover many aspects of cellulose biosynthesis, which
include CSC assembly in the Golgi apparatus, trafficking of CSCs to the plasma mem-
brane, relationship between cellulose deposition and the underlying cortical microtubules,
and post-translational modification of CesAs [151–163]. Several excellent reviews have
summarized the genes and enzymes related to the synthesis and deposition of cellu-
lose [149,150,158,161,164–166]. What is drawing our attention is that some AGPs, especially
FLAs, have also been involved in cellulose synthesis and deposition [164,167,168].

4.2. AGPs Implicated in Cellulose Synthesis and Deposition

It has been proposed that some AGPs contribute to different biological processes,
such as fiber development, microspore formation, and root growth via their impacts on
cellulose synthesis and deposition. Cotton fibers are highly specialized and extremely elon-
gated single-cell trichomes from seed epidermis, which are mainly composed of cellulose
(>90%) [169,170]. Abundant AGP carbohydrate epitopes have been detected during the
formation of cotton fibers, and several fiber-preferential genes encoding FLAs were isolated
from cotton (Gossypium hirsutum L.) [123–125,171], implying that AGPs are probably impli-
cated in the synthesis of cellulose. Direct evidence that cross-linking of AGPs with β-Yariv
inhibits cellulose deposition on cultured tobacco protoplasts also gives a hint that AGPs are
related to cellulose deposition [172]. In an increasing volume of evidence, this assumption
has been further supported by phenotyping of loss-of-function and gain-of-function mu-
tants. RNA interference (RNAi) of GhAGP4 inhibits fiber initiation and elongation in cotton
and affects cellulose deposition of fiber cells. Suppression of GhAGP4 downregulates the
expression level of the cellulose biosynthesis-related gene celA1, providing the direct proof
that FLAs may affect the cell wall synthesis through cellulose deposition [126]. Overexpres-
sion of GhFLA1 in cotton promotes fiber elongation, whereas suppression of GhFLA1 slows
down fiber initiation and elongation. In addition, expression levels of the genes involved in
cellulose biosynthesis are remarkably enhanced in the GhFLA1 overexpression transgenic
fibers, leading to a higher rate of cellulose. In contrast, the transcripts of these genes are
dramatically reduced in GhFLA1 RNAi transgenic fibers with a lower rate of cellulose [124].
The intine of nearly half of the pollen grains in AtFLA3 RNAi transgenic plants appears to
have some abnormalities, with an abnormal cellulose distribution, indicating that AtFLA3
may affect the pollen wall development by influencing cellulose deposition [84]. BcMF18
in B. campestris, encoding a classical AGP, is specifically expressed in pollen grains. An-
tisense transgenic pollen also shows intine layer development defects similar to FLA3
RNAi transgenic plants [72]. The case in Arabidopsis with a T-DNA insertion mutation of
FLA1, showing a change of cellulose deposition in fla1, is also in support of this view [108].
AtFLA11/IRX13 and AtFLA12 participate in the formation of secondary cell walls, and
double mutant shows reduced cellulose content, increased cellulose microfibril angle (refers
to the microfibril deviation in the cell wall layer from the long axis of the cell), and im-
paired structure and composition of cell walls [98,99,158,173]. AtSOS5/AtFLA4 is found to
cooperate in the cell wall sensing system and facilitate cellulose synthesis [38,109–116]. An
atfla16 mutant shows that loss of FLA16 leads to reduced levels of cellulose and reduced
stem length [100]. Unfortunately, because AGPs form a large family and a single-knockout
mutant rarely results in a detectable phenotype, the precise functions of AGPs and their
mechanisms of action in cellulose biosynthesis remain unclear.
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In this current work, we propose some assumptions about the potential mechanisms of
AGPs to participate in complex biological processes via their impacts on cellulose synthesis
and deposition based on previous studies.

4.2.1. AGPs Are Involved in Cellulose Synthesis via the
1-Aminocyclopropane-1-Carboxylic Acid (ACC)-Mediated Pathway

ACC is the direct precursor of ethylene, and the majority of the regulatory mechanisms
of ethylene biosynthesis act at the level of ACC production by ACC synthases (ACSs) [174].
In addition to its role as the central molecule of ethylene biosynthesis, ACC is also capable
of functioning in some biological processes via an ethylene-independent way. Tsang
et al. found that the effect of ACC on primary root elongation in acute response to cell
wall stress was partially independent of its conversion to ethylene or ethylene signaling
in Arabidopsis [175]. The inhibition of cell elongation caused by disturbed cellulose
biosynthesis can be fully restored in the short term by blocking ACC signaling despite the
presence of visible cell wall damage [175].

It has been suggested that ACC might also be involved in AGP-related cell wall forma-
tion via an ethylene-independent pathway. A loss-of-function mutant of AtSOS5/AtFLA4,
which lacks a GPI-anchored extracellular FLA, presents an impaired root growth and
radial root tip swelling phenotype under high salt conditions [38,109,114,116]. What is
particularly interesting is that double mutants of two AGP-specific galactosyltransferase
genes (GALT2 and GALT5) and two leucine-rich repeat receptor-like kinase (RLK) genes
(FEI1 and FEI2) phenocopy this mutant of AtSOS5/AtFLA4, respectively [110,116]. It has
been demonstrated that these five proteins act linearly in the same signaling pathway of
cellulose synthesis, in which AtSOS5/AtFLA4, glycosylated by GALT2 and GALT5 in the
Golgi, helps to sense turgor pressure and transmits signals to plasma membrane-localized
FEI1 and FEI2 [116]. An in-depth study on FEI1 and FEI2 brings ACC into play, where
inhibition of ACSs suppresses the expansion defect in fei1 fei2 mutant by the disruption
of an ethylene-independent pathway. As FEIs do not alter ACS activity and FEIs interact
directly with ACS5 in a nonphosphorylation-dependent manner, it has been proposed
that FEIs may form a scaffold to localize ACS or may complex ACS with other proteins
and that ACC itself may act as a signaling molecule in cellulose synthesis during cell
expansion rather than ethylene [110]. Thus, in this model, GPI-anchored AGPs, such as
AtSOS5/AtFLA4, may act as a signal sensor to relay information to FEI proteins; then
FEI proteins interact directly with ACSs and, as a consequence, collaborate on cellulose
synthesis, possibly via an ACC-mediated signaling pathway (Figure 1).

4.2.2. AGPs as Structural Components Affect Cellulose Deposition through Cross-Linking
to Other Cell Wall Components

Cellulose associates with hemicelluloses to form a framework embedded in a matrix
of pectins and proteins, allow the cellulose microfibrils to move apart during cell wall
loosening, and trap them in place when cell wall growth stops [147,176,177]. Pectins, de-
fined as a heterogeneous group of polysaccharides, are major components of the primary
cell wall [176,178]. The complex and dynamic pectin network consists of homogalac-
turonans (HGs), rhamnogalacturonans type I (RG-I), and RG-II, with a small amount of
xylogalacturonans, arabinans, and AG I, which are covalently linked to each other [147].
Hemicelluloses are cross-linking polymers of diverse structures, including xyloglucans,
xylans, arabinoxylans, mannans, glucomannans, and β-glucans [179].

Cell wall components, including polysaccharides cellulose, hemicelluloses, and pectins,
as well as structural proteins (such as AGPs, the protagonists of this review), interact co-
valently and noncovalently to form the functional cell wall [147–149,180]. Hijazi et al.
proposed an overview of the interactions assumed or demonstrated between HRGPs and
cell wall polysaccharides, highlighting the linkages of AGPs with pectins and hemicellu-
loses and their contribution to cell wall architecture [180]. The classical AGP, AtAGP57C,
has been revealed to covalently attach to hemicellulosic and pectic polysaccharides, with
RG-I and HG linked to Rha residues in AG polysaccharides and with arabinoxylan attached
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to either a Rha residue in the RG-I domain or directly to an arabinosyl residue in the AG
glycan domain, to form ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1
(APAP1) in Arabidopsis cell suspension cultures [96]. AtAGP31 is a nonclassical AGP mem-
ber with an N-terminus histidine (His)-rich stretch, a repetitive Pro-rich domain, and a
C-terminus Cys-rich PAC (PRP and AGP containing Cys) domain [101]. AtAGP31 has been
demonstrated to interact in vitro with galactans, which are lateral chains of RG-I through
its PAC domain, bind to methylated polygalacturonic acids through its His-rich stretch, and
show in vitro self-assembly, providing evidence for the model of noncovalent networks
between AGPs and other cell wall components [103].
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Figure 1. A hypothetical model of AGP involvement in cellulose synthesis via the
1-aminocyclopropane-1-carboxylic acid (ACC)-mediated pathway. AGPs may sense extracellular
signals by carbohydrate moieties and transmit signals to some receptor kinases, thereby regulating
cell wall formation by promoting cellulose synthesis through an ethylene-independent ACC pathway.
Cellulose microfibrils are synthesized by cellulose synthase complexes (CSCs) that are present at the
plasma membrane. GALT2 localized to the endoplasmic reticulum (ER) and the Golgi and GALT5
localized to Golgi vesicles function in AGP O-glycosylation [40]. AtSOS5/AtFLA4, FEI1, and FEI2
are localized to the plasma membrane [109,110]. The GALT2 GALT5/AtSOS5/FEI1 FEI2 pathway is
represented according to Basu et al. [116].

Arabidopsis seed coat mucilage is an excellent model to study cellulose synthesis
and its interactions with other cell wall polymers [165]. AtSOS5/AtFLA4 and FEI2 are
found to not only participate in root growth, but also act in a similar pathway to regulate
seed coat mucilage synthesis and deposition of cellulose rays during the hydration pro-
cess of Arabidopsis seeds [110,111]. Previously, AtSOS5/AtFLA4 was suggested to affect
cellulose synthesis on the seed coat surface, which, in turn, influences the anchoring of
pectin components in seed coat mucilage [111]. However, further studies on atsos5/atfla4
revealed that the formation of cellulosic rays in the adherent mucilage layer was disrupted,
with a significantly reduced pectin content, while the cellulose content in mucilage was
hardly affected [112,113,165]. The pectin matrix is implicated in the deposition of cellulose
microfibrils [181,182]. A hypothesis was proposed that AtSOS5/AtFLA4 could act as a struc-
tural component independently of cellulose biosynthesis and signaling, instead organizing
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cellulose microfibrils through interconnections with pectins or hemicelluloses, and that
FEI2 would be required to localize AtSOS5/AtFLA4 in the plasma membrane [112,113,165].

Taken together, we propose a model in which AGPs act as structural components
affecting cellulose deposition through interconnections with other cell wall components,
such as hemicelluloses and pectins (Figure 2).
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Figure 2. A hypothetical model of AGPs as structural components affecting cellulose deposition
through interconnections with other cell wall components, such as hemicelluloses and pectins.
AtAGP57C covalently attaches to hemicellulosic and pectic polysaccharides, as proposed by Tan et al.
for the APAP1 complex [96]. Noncovalent networks between AtAGP31 and cell wall polysaccharides
refer to Hijazi et al. [103]. AtSOS5/AtFLA4 and pectin interconnections in a FEI2-dependent manner
are represented according to [112,113,165].

4.2.3. AGPs Participate in the Deposition of Cellulose Microfibrils through the Microtubule
as an Intermediary

The length, deposition angle, and crystallinity of cellulose microfibrils show a decisive
effect on the physical properties of the cell wall [183]. AGPs have been shown to affect
cellulose deposition in plant cell walls. In poplar, PtFLAs are found to be expressed in
the xylem, of which 10 genes are specifically expressed in tension wood (TW). Some of
these genes are upregulated in TW (PtFLA1-10), which might be related to mechanical
properties of TW [184]. Two FLA-encoding genes in Eucalyptus grandis W. Hill ex Maiden,
EgrFLA1 and EgrFLA2, exhibit higher expression levels in the xylem of TW in the upper
sides of branches that possesses a higher cellulose content and a low microfibril angle
but, instead, a lower expression level in xylem below these branches, deeply implying
an accordance between FLA expression level and cellulose content as well as microfibril
angle [185]. Arabidopsis AtFLA11 and AtFLA12 are highly expressed in stems, mainly
distributed in vascular bundles, surrounding parenchyma and vessels. In Atfla11/fal12
double mutants, the decreased cellulose content leads to a reduction of tensile strength,
while the increased cellulose microfibril angle gives rise to a decrease in tensile stiffness,
indicating that AtFLA11 and AtFLA12 could interfere with the deposition of cellulose
microfibrils during the formation of the secondary cell wall [99].

Cortical microtubules can guide CSCs to move along the microtubule array in a cel-
lulose synthase interactive 1 (CSI1)-dependent manner and, as a consequence, to affect
the cellulose microfibril angle [154,155,158,173]. The close linkage between AGPs and
cytoskeletal structures, including microfilaments and microtubules, has shed light on the
potential role of AGPs in cellulose deposition through a cytoskeletal network. REB1/RHD1
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encodes a UDP-D-Glc 4-epimerase, which is involved in the galactosylation of AGPs and
xyloglucans [186]. The trichoblasts of mutant reb1-1 are highly swollen with cortical mi-
crotubules that are disordered or even completely absent and lack certain AGP epitopes,
suggesting a connection between the organization of cortical microtubules and the deposi-
tion of AGPs [186,187]. Sardar et al. demonstrated that β-Yariv treatment in tobacco tissue
culture cells triggers depolymerization/disorganization of microtubules and F-actin, and
cytoskeletal disruptors alter LeAGP1 localization along the Hechtian strands (a stretched
plasma membrane extending from the plasmolyzed protoplast to the cell wall in plants),
implying that GPI-anchored AGPs play a role in the plasma membrane–cytoskeleton con-
nection [138]. Further evidence that cortical microtubules’ disorganization is induced by
β-Yariv reagent and two mABs (JIM13 and JIM14) in root epidermal cells substantiates
the hypothesis that cell surface AGPs influence the organization of cortical microtubules
inside the cell [188]. In addition, the distance between cortical microtubules and the plasma
membrane is increased significantly with β-Yariv reagent treatment [188]. All these findings
lead to the hypothesis that altered AGP status impacts the mechanical properties of the
cell wall, transmits the flow of communication from the cell wall to the microtubules by
unknown transmembrane protein(s), and results in altered microtubule organization or
dissociation from the membrane [138,188].

Based on the abnormalities of cellulose deposition in AGP mutants described above, it
is speculated that AGPs may regulate the deposition of cellulose microfibrils by affecting the
arrangement of cortical microtubules and/or the connection between cortical microtubules
and the plasma membrane through transmembrane protein(s) (Figure 3).
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Figure 3. A hypothetical model of AGPs regulating the deposition of cellulose microfibrils by affecting
the arrangement of cortical microtubules and/or the connection between cortical microtubules and
the plasma membrane through transmembrane protein(s). This model is proposed based on previous
studies by Nguema-Ona et al. and Sardar et al. [138,188].

4.2.4. AGPs Act as Potential Signal Molecules during Cell Wall Biogenesis

Almost two decades ago, Showalter envisioned some likely scenarios for AGPs in
molecular interactions and cellular signaling at the cell surface [2]. Since AGPs are proteo-
glycans and their protein backbone is decorated by AG polysaccharides, AG polysaccha-
rides determine the characters of AGPs and affect their functions [3,38–40], as previously
mentioned in this review. So far, a series of evidence has been provided to emphasize
the importance of AG polysaccharides for AGP signaling. GhGalT1 is implicated in the
biosynthesis of the β-1,3-galactan backbone of AGPs and is responsible for the glycosyla-
tion of AGPs in cotton [170]. The length of cotton fibers in GhGalT1 RNAi silencing lines
becomes longer. Interestingly, the level of JIM8 (a mAB)-responsive carbohydrates epitopes
is decreased [170]. Prolyl 4-hydroxylases in tomato (SlP4Hs) are involved in Pro hydroxyla-
tion of AGPs. The level of JIM8-bound epitopes in SlP4H-silenced tomato plants is also
altered, inferring phenotypes of root tip and branch lengthening and leaf enlargement [189].
This similarity leads to an assumption that particular carbohydrate epitopes related to
JIM8 in AGPs may be associated with cell elongation and expansion. In addition, the
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Arabidopsis mutant mur1, with blocked biosynthesis of L-fucose in the AG polysaccharides
of AGPs, displays a dwarf phenotype and a decreased root cell elongation, implying that
AGPs modified by L-fucose participate in cell elongation and growth [190]. Defects in the
synthesis of AG glycans of AGPs, caused by the functional disruption of KNS/UPEX1
(a type II GALT), results in pollen aggregation and reduced fertility [191]. Furthermore,
GlcA residues have also been demonstrated to be essential for the biosynthesis of type II
AG and normal function of AGPs [192,193]. The Arabidopsis β-glucuronosyltransferases
participate in the process of grafting GlcA on AGP glycans. Mutation in AtGlcAT14A
leads to a reduction of GlcA substitution and an enhanced cell elongation during seedling
growth [193]. A knockout mutant of the Arabidopsis β-glucuronidase (GUS) gene AtGUS2,
atgus2-1, has decreased GlcA content and shortened hypocotyl, consistent with a role for
the AG polysaccharides of AGPs in cell growth [192].

The carbohydrate components of AGPs contain a lot of structural information, which
makes potential candidates for chemical signals. The carbohydrate moieties can be ex-
tracellularly processed by glycosidases, such as β-galactosidases, and detached from
AGPs to form free AG glycans, therefore providing the possibility for AGPs in signal-
ing [51,194]. Some excellent reviews have given detailed information of a number of
glycoside hydrolases (GHs) involved in the metabolism of AGP carbohydrate moieties, in-
cluding β-galactosidases, β-galactanases, α-arabinofuranosidases, β-arabinopyranosidases,
β-glucuronidases, α-fucosidases, and α-rhamnosidases [55,195,196]. However, only a few
plant GHs have been reported to hydrolyze AGP glycans relative to the well-characterized
AGP-degrading GHs from microbial origin [196], and more exploration is still warranted
to understand the role of AG polysaccharide structure towards the AGP function in plant
growth and development.

Plant cells mainly undergo anisotropic growth, including diffusion and tip growth [197].
Cell growth is achieved through strictly controlled cell wall expansion. In this unique pro-
cess, the influx of water from the extracellular space forms turgor pressure to act on cell
wall elasticity and extensibility. Thus, wall stress relaxation may result from the loosening
and shifting of load-bearing linkages between cellulose microfibrils. Subsequently, the cell
wall expands, and newly synthesized cellulose microfibrils, as well as the pre-existing wall
polymers, deposit on the thinned cell wall to further re-form cross-linking with matrix
polysaccharides secreted into the wall [147]. The above-mentioned deficient mutants of AG
polysaccharides or GlcA residues of AGPs display cell expansion alterations, a phenotype
with a delayed elongation and growth. All this is reminiscent of cell expansion, but the
deposition process of new cell wall components could be disturbed, resulting in abnormal
anisotropic growth of cells. It has been speculated that AGPs may regulate the cellulose
deposition process in the cell wall through their AG polysaccharides as signal molecules
possibly recognized by plasma membrane receptors [29], thus achieving an anisotropic
growth of cells (Figure 4).

4.2.5. AGPs Act as Putative Ca2+ Capacitors to Regulate Cellulose Deposition Possibly
through Pectin–Ca2+ Cross-Links

The carbohydrate moieties of AGPs may not only act as potential chemical signals
but also participate in the signal transduction process by chelation with calcium ions
(Ca2+). AGP6 and AGP11 are two classical AGPs with specific expression and functional
redundancy in pollens and pollen tubes [65–68]. The double null mutant agp6 agp11 shows
phenotypes that include collapsed pollen grains, inhibited pollen tube growth, and preco-
cious pollen germination inside the anthers [67,68]. Costa et al. found that the expression
of calcium- and signaling-related genes was altered in agp6 agp11 pollen tubes, indicating
the putative involvement of AGPs in Ca2+ signaling cascades [69]. Additional studies
have provided evidence for this potential function of AGPs. The AG polysaccharides of
AGPs have been verified to bind Ca2+ at GlcA residues with a binding stoichiometry of 2:1
at pH = 5, to form an AGP–Ca2+ oscillator, thereby activating H+ ATPase on the plasma
membrane and allowing the influx of Ca2+ into cells [198]. AG isolated from glcat14 triple
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mutants deficient in the β-glucuronosyltransferases that transfer GlcA to the AG has lower
Ca2+ binding capacity in vitro, and the plants with this defective AG have multiple devel-
opmental defects, such as reduced trichome branching, and limited seedling growth [199].
Taken together, these findings imply that the binding of GlcA on AGP polysaccharides to
Ca2+ is important for cell elongation and growth.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 17 of 28 
 

 

regulate the cellulose deposition process in the cell wall through their AG polysaccharides 
as signal molecules possibly recognized by plasma membrane receptors [29], thus achiev-
ing an anisotropic growth of cells (Figure 4). 

 

 
Figure 4. A putative mechanism is an enzymatic release of AG polysaccharides from AGPs that may 
act as signal molecules possibly recognized by plasma membrane receptors. The sugars may be 
cleaved by glycoside hydrolases and may function as signal molecules binding to specific receptors, 
as proposed by Showalter [2]. 

4.2.5. AGPs Act as Putative Ca2+ Capacitors to Regulate Cellulose Deposition Possibly 
through Pectin–Ca2+ Cross-Links 

The carbohydrate moieties of AGPs may not only act as potential chemical signals 
but also participate in the signal transduction process by chelation with calcium ions 
(Ca2+). AGP6 and AGP11 are two classical AGPs with specific expression and functional 
redundancy in pollens and pollen tubes [65–68]. The double null mutant agp6 agp11 shows 
phenotypes that include collapsed pollen grains, inhibited pollen tube growth, and pre-
cocious pollen germination inside the anthers [67,68]. Costa et al. found that the expres-
sion of calcium- and signaling-related genes was altered in agp6 agp11 pollen tubes, indi-
cating the putative involvement of AGPs in Ca2+ signaling cascades [69]. Additional stud-
ies have provided evidence for this potential function of AGPs. The AG polysaccharides 
of AGPs have been verified to bind Ca2+ at GlcA residues with a binding stoichiometry of 
2:1 at pH = 5, to form an AGP–Ca2+ oscillator, thereby activating H+ ATPase on the plasma 
membrane and allowing the influx of Ca2+ into cells [198]. AG isolated from glcat14 triple 
mutants deficient in the β-glucuronosyltransferases that transfer GlcA to the AG has lower 
Ca2+ binding capacity in vitro, and the plants with this defective AG have multiple devel-
opmental defects, such as reduced trichome branching, and limited seedling growth [199]. 
Taken together, these findings imply that the binding of GlcA on AGP polysaccharides to 
Ca2+ is important for cell elongation and growth. 

Ca2+ signaling is involved in abiotic stress, wound response, stomatal movements, 
self-incompatibility, interaction with pathogenic microorganisms, tip growth (pollen tube 
growth and root hair growth), and other vital processes in plants [43,200,201], in which 
AGPs are also widely involved. This opens the possibility that an AGP–Ca2+ oscillator may 
participate in multiple signal transduction processes in cells. Boron deficiency in A. thali-
ana causes Ca2+ influx in root cells and induces the expression of calcium signaling-related 
genes [202]. It is speculated that boron could interact with Gal residues in the GPI anchor 
structure of AGPs to stabilize the anchorage of AGPs to the plasma membrane. At the 
same time, GPI anchors could be used as boron receptors to release Ca2+ by an AGP–Ca2+ 
oscillator in the periplasm after sensing boron deficiency and then initiate a series of 
downstream signal transduction processes [203]. Like AGPs, auxin is also implicated in 
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Ca2+ signaling is involved in abiotic stress, wound response, stomatal movements,
self-incompatibility, interaction with pathogenic microorganisms, tip growth (pollen tube
growth and root hair growth), and other vital processes in plants [43,200,201], in which
AGPs are also widely involved. This opens the possibility that an AGP–Ca2+ oscillator
may participate in multiple signal transduction processes in cells. Boron deficiency in A.
thaliana causes Ca2+ influx in root cells and induces the expression of calcium signaling-
related genes [202]. It is speculated that boron could interact with Gal residues in the GPI
anchor structure of AGPs to stabilize the anchorage of AGPs to the plasma membrane.
At the same time, GPI anchors could be used as boron receptors to release Ca2+ by an
AGP–Ca2+ oscillator in the periplasm after sensing boron deficiency and then initiate
a series of downstream signal transduction processes [203]. Like AGPs, auxin is also
implicated in many processes of plant growth and development, and it is also capable of
triggering an intracellular Ca2+ signal response [204]. Based on these findings, Lamport
et al. proposed a novel concept of an AGP–Ca2+–auxin signaling cascade model: first,
auxin-activated plasma membrane H+-ATPase could release H+, thus lowering extracellular
pH; subsequently, AGP–Ca2+ oscillator would release Ca2+ that enters the cytosol through
Ca2+ channels; then, Ca2+ recycled from the cytosol via Golgi vesicle exocytosis would
recharge the AGP capacitors to form a reservoir again [43].

In addition to acting as a Ca2+ reservoir, AGPs may also associate with RLKs to mediate
various signaling transductions [92]. The Arabidopsis AtENDOL14 is a GPI-anchored AGP
with a plastocyanin-like domain, which has strong and specific physical interaction with
the extracellular domain of FERONIA [94]. As a plasma-membrane-localized receptor
kinase, FERONIA has been recently proved to induce Ca2+ signaling to maintain cell wall
integrity during salt stress [205]. The trio of AtENDOL14, FERONIA, and Ca2+ signaling
suggests a possibility that GPI-anchored AGPs are involved in FERONIA-dependent Ca2+

signaling [92,205].
Ca2+ is found in the cell wall ionically cross-linked to HGs in the pectin matrix [147].

In the presence of Ca2+, pectin cross-linking Ca2+ occurs to form the “eggbox” structure,
which has been proposed to be load-bearing components in cell walls [206]. It has been
demonstrated that pectins can bind to cellulose during its synthesis and deposition through
interactions with, for example, Ca2+-deficient regions of HGs and binding of the arabinan
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and galactan side chains to the cellulose, and these bindings are reversible [207,208]. After
Ca2+ chelation, pectin cross-linking Ca2+ may be removed and pectins recycled [69,209].
In addition, a recent study indicates that the strength of the pectin–Ca2+ hydrogels affects
cellulose structure, crystallinity, and material properties [209].

Since AGPs have a higher affinity for Ca2+ than pectin, a discharged AGP–Ca2+

capacitor would be recharged by Ca2+ recycled from the cytosol and possibly from the
wall matrix (e.g., Ca2+–pectin) [198]. Cellulose/Ca2+-bound pectin interactions and the
novel concept of dynamic Ca2+ recycling by an AGP–Ca2+ oscillator underlie an interesting
possibility that AGPs may act as putative Ca2+ capacitors to regulate cellulose deposition
possibly through pectin–Ca2+ cross-links (Figure 5).
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5. Conclusions

A number of features including the functional redundancy of AGP family members,
the complex post-translational modification process involving many related genes, a high
complexity of the carbohydrate side chain structure, and the inability of β-Yariv reagent
to recognize a single specific AGP hinder our complete understanding of this gene family.
We have been continuously looking for links in numerous research studies on AGPs and
trying to find clues that can reasonably explain the functional mechanisms of AGPs in
vital activities in plants, as well as connecting these data to compile a possible mechanistic
scenario. On the basis of previous studies, five models of how AGPs may participate in
cellulose synthesis and deposition during cell wall biogenesis have been proposed: (A)
AGPs sense extracellular signals by carbohydrate side chains and transmit signals to some
receptor kinases, thereby regulating cell wall formation by promoting cellulose synthesis
through an ethylene-independent ACC pathway; (B) AGPs serves as structural components
affecting cellulose deposition through cross-linking to other cell wall components, such
as hemicelluloses and pectins; (C) AGPs regulate the deposition of cellulose microfibrils
by affecting the arrangement of cortical microtubules and/or the connection between
cortical microtubules and the plasma membrane through transmembrane protein(s); (D)
AGPs act as potential chemical signals with their AG polysaccharides; and (E) AGP–Ca2+

oscillator forms by chelating Ca2+ to regulate cellulose deposition in the cell wall possibly
through pectin–Ca2+ cross-links. These hypothetical models can provide some clues for
further research on the functions of AGPs in cellulose synthesis and deposition, without
discarding other mechanistic pathways that might also be involved. Since members from
different AGP subfamilies have fairly distinct characteristic domains, the exact molecular
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mechanisms of AGP action in complicated plant biological processes, not solely devoted to
cellulose metabolism and deposition, will certainly require further in-depth investigations
in the near future.
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