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Abstract

Farmland is on the decline and worldwide food security is at risk. Rice is the staple of choice

for over half the Earth’s people. To sustain current demands and ascertain a food secure

future, substandard farmland affected by abiotic stresses must be utilized. For rapid crop

improvement, a broader understanding of polygenic traits like stress tolerance and crop

yield is indispensable. To this end, the hidden diversity of resilient and neglected wild varie-

ties must be traced back to their genetic roots. In this study, we separately assayed 11 phe-

notypes in a panel of 176 diverse accessions predominantly comprised of local landraces

from Bangladesh. We compiled high resolution sequence data for these accessions. We

collectively studied the ties between the observed phenotypic differences and the examined

additive genetic effects underlying these variations. We applied a fixed effect model to asso-

ciate phenotypes with genotypes on a genomic scale. Discovered QTLs were mapped to

known genes. Our explorations yielded 13 QTLs related to various traits in multiple trait clas-

ses. 10 identified QTLs were equivalent to findings from previous studies. Integrative analy-

sis assumes potential novel functionality for a number of candidate genes. These findings

will usher novel avenues for the bioengineering of high yielding crops of the future fortified

with genetic defenses against abiotic stressors.

1. Introduction

10 million hectares of arable land is lost to urbanization every year [1]. An accelerated wave of

climate change damages the quality of the remaining landmass [2]. About half of the world’s

currently estimated farmland is affected by abiotic stresses, most notably, salinity [3, 4].

Among cereal crops, rice is the most sensitive to abiotic factors and yield losses [5] but has the

largest contribution to global food production. Rice feeds more people across the world than

any other crop [6], accounting for up to 80% of daily calorie intakes of half the world’s popula-

tion [7]. It is surmised that global rice production has to double by the year 2050 to combat
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these burdens imposed on food security [8, 9]. The insufficiency in finite arable land has to be

overcome by increases in crop productivity. This must involve the introgression and propaga-

tion of stress tolerance traits to enable farming in soil less ideal for present day elite varieties.

With the help of high-resolution genotyping technologies, it has become possible to eluci-

date the molecular signature of complex polygenic traits. Multitudes of small genetic effects

and their interactions with the surroundings underlie the quantitative assertion of these phe-

notypes. This limits our ability to refine them through direct breeding or molecular

approaches. Many statistical and genome-wide association based studies (GWAS) have been

carried out for salinity tolerance [10, 11], chlorophyll [12] and yield [13] related traits in rice

independently. Researchers often point out that complex traits are interlinked through their

evolutionary origins and must be studied in conjunction to reach conclusive outcomes [14].

Few recent GWAS studies explore abiotic stress tolerance in relation to developmental and

agronomic phenotypes in rice. Identification of major-effect QTLs for yield, tolerance and

developmental attributes will continue to add layers of sophistication to the current under-

standing of plant biology. Characterization of causal polymorphisms will facilitate the intro-

gression of salient features into elite varieties with the help of sophisticated molecular

technologies such as CRISPR-Cas9 genome editing.

Bangladesh is the largest delta on the planet, endowed with fertile land, meandering rivers

and a pronounced history of growing rice. To accelerate the improvements in cereal crop

development, we phenotyped 176 local rice varieties from Bangladesh for 11 quantitative traits

relating to plant biomass, chlorophyll content, tissue ion content and visual salt damage (SES).

We incorporated next-generation sequencing data with high genomic coverage to estimate

additive genetic effects and correlate the observed phenotypic values with genomic predic-

tions. We tested over 4 million high-quality SNP markers for association signals separately for

each trait. We cross-referenced our identified QTLs with functional annotations, publicly

available gene expression profiles and allelic substitution effects. The compiled assessment of

multiple traits belonging to several trait classes accentuated the genetic landscape influencing

their effects. For identified QTLs, integrative analysis of auxiliary data enabled us to unravel

potential novel gene roles.

2. Methods

2.1 Data and source code

All data, source code and shell commands are documented on GitHub at https://www.github.

com/DeadlineWasYesterday/Cat-does-plant. The complete computational pipeline was exe-

cuted in an HP Z840 workstation running on a 16-core Intel Xeon processor with 256GB of

RAM.

2.2 Plant material and growth conditions

The 176 rice accessions were received from the IRRI seed bank to ascertain their identity with

the 3,000-rice genome project [15]. Seeds were multiplied at BRRI (Bangladesh Rice Research

Institute) fields in the months of March and April when the average day/night temperature

was 32˚/28˚C with an average humidity of 72%. S1 Table lists the accession codes and meta-

data with local names and subpopulation information for all 176 varieties. Only 3 varieties

belong to the USDA core (IRGC 31727, IRGC 27555 and IRGC 58736) and none are listed in

the USDA mini-core collection. 106 accessions are traditional landraces that are cultivated

locally in Bangladesh. The remaining 70 accessions are varieties that had been developed by

BRRI from local landraces for local agronomy. With the exception of three (IRGC 49375,

IRGC 126002 and IRGC 124432), all varieties had been originally collected from Bangladesh
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by the International Rice Research Institute. The starter template for the map of Bangladesh

was collected from Vecteezy [16] and modified in Adobe Illustrator. Geolocations were

labelled using the ggplot2 and ggrepel libraries in R.

The phenotype screening for salinity tolerance at the seedling stage took place in a nethouse

enclosure at an average day/night temperature of 31˚C/27˚C and approximately 72% relative

humidity. The screening for salinity tolerance at seedling stage was carried out following the

methods described by Amin et al. 2012 [17]. Sprouted seeds were sown in netted Styrofoam

and floated in 3×3 (3 for control and 3 for stress) replicated PVC trays containing 60L Yoshida

solution [18]. The positions of the 176 accession seedlings were randomized in each of the 6

trays. The germinated seeds were allowed to grow for 14 days. Then, NaCl stress was applied

gradually starting from 4dS/m up to 12dS/m by 2dS/m increments every 24 hours in all of the

experiment trays. The solution level of the trays were maintained with water. Phenotypic mea-

surements were taken after 16 days of stress application, when 90% of the leaves of the sensitive

control (IR29) were damaged.

2.3 Phenotyping

After about 1 month of germination and 16 days from the first salt stress exposure for the stress

condition plants, seedlings were systematically phenotyped. Fresh weight and length measure-

ments were taken for whole roots and shoots. For root and shoot ion content data, plants were

externally washed and oven dried at 70˚C. Ground-up dried roots and leaves were treated with

1N HCl for 48 hours before being assayed in a flame photometer (Sherwood model 410, Sher-

wood, UK). Ion measurements are denoted in millimolar concentration. SES (Standard Evalu-

ation System) scores were given to each plant on the basis of growth stunting, damage to

leaves, leaf chlorosis, drying of biomass and plant vigor as described by Gregorio et al. 1997

[19, 20]. Chlorophyll content was measured in fully expanded third leaves. Leaf extracts of

1cm2 size were dissolved in 80% acetone in the absence of light. Absorbance at 645nm and

663nm wavelengths were measured. The formulae for chlorophyll A and B estimation were

adapted from Yoshida et al. 1976 [18] as follows:

Chlorophyll A content ¼ 12:7� A663 � 2:69� A645ð Þ �
V

1000�W

Chlorophyll B content ¼ 22:9� A663 � 4:68� A645ð Þ �
V

1000�W

Here A663 and A645 refer to the absorbance at 663nm and 645nm wavelengths respectively.

V is volume in milliliters, W is the fresh weight of the leaf pieces in milligrams and chlorophyll

content is expressed as milligrams per gram of fresh leaf tissue.

2.4 Phenotype statistics

We have catalogued 10 basic traits that we grossly assign to plant biomass, chlorophyll content

and tissue ion content categories. The 11th basic trait is the visual SES score for evaluating salt

damage which by definition is only measured in stress condition. Simple mathematical opera-

tions on the phenotypes gave rise to 12 additional derived phenotypes. For the 10 traits mea-

sured in both conditions, heritability was measured by the formula h2 ¼ s2
G= s2

G þ
s2
e
n

� �
where

s2
G is the variance of the genotypes, s2

e is the residual variance and n is the number of replicates.

The variance components were calculated by including the genotype, treatment condition and

interaction between genotype and condition as random effects in the lmer function from the
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lme4 package in R. Marker-based heritability was calculated using the kinship matrix K

(details in section 2.7) in themarker_h2 function from the heritability package in R. Broad-

sense heritability was calculated by dividing the variance of the genotype means by the overall

phenotypic variance. Correlation and GWAS studies involved phenotype means for three rep-

licates. Linear correlation is expressed by the Pearson’s correlation coefficient. Genomic pre-

diction for SNP effects on phenotype was calculated by ridge regression using themixed.solve
function from the rrBLUP package [21]. Assessment of data distributions was carried out by

the SciPy module in Python. Phenotype transformation for GWAS was done by an ideal geno-

type derived warping function calculated by WarpedLMM [22].

2.5 Preprocessing genotype data

Next-generation sequencing data was compiled from the 3,000-rice genome project [15]. In

the original study, libraries were created from young leaves and sequenced in the Illumina

HiSeq2000 platform to generate 90bp paired-end reads. Raw sequence reads were aligned to

the IRGSP 1.0 reference genome for Oryza sativa sub. japonica cultivar Nipponbare. The aver-

age sequencing depth was 14× with genome coverage and mapping rates over 90%. Publicly

available VCF data from aligned reads were sourced for 176 varieties and compiled using

VCFtools in the SAMtools suite. SNPs having phred-scaled quality scores below 30 were

flagged as low-quality reads and considered missing data. Beagle 5.1 [23] was used for imputa-

tion of unphased genotypes. There were on average 2,930,739 missing genotypes out of

15,241,544 total marker calls per individual with a standard deviation of 492,558. For assess-

ment of imputation accuracy, we prepared a test set having the original proportion of missing

data by systematically removing high-quality reads from 1.85 million markers which had no

missing reads. Unphased imputation accuracy was measured to be over 99.5% and the report

can be found on the git repository. Working files were prepared using in-house python scripts.

SNPs that originally had over 20% low quality reads were excluded from all studies. For

GWAS, a minor allele frequency filter of 5% was applied to the whole population. Because of

the smaller sample size, the minor allele frequency filter for the subpopulations was set at 10%.

2.6 Population structure estimation

A combination of methods was employed for deciphering population structure. Principle

components were calculated using R and clustered in two and three dimensions respectively

using a k-means clustering algorithm. The first three principal components showed 38%

explained variation in scree plots. 2D and 3D scatter plots were also plotted in R using the first

three principal components and can be seen in the git repository. Bayesian maximum likeli-

hood-based population structure estimation software fastStructure [24] implemented in

python was used for assessing admixture between groups. K (number of subpopulations) val-

ues from 2 to 15 were tested and the chooseK.py function was used to select k = 3. Distances for

the neighbor-joining tree were calculated in TASSEL 5 [25] and visualized by the web-based

application iTOL (interactive Tree Of Life) [26].

2.7 Genome-wide association studies

The primary algorithm for association testing was BLINK [27] in the GAPIT software package

[28]. The more popular and statistically robust compressed mixed linear model (CMLM)

applied both in GAPIT and TASSEL 5 were also run to validate the findings (data in git

repository).
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BLINK employs two successive fixed effects models. The first model tests for associations

and calculates p values and the second model iteratively improves the first model by exporting

markers as covariates using Bayesian Information Criterion (BIC).

The first model is denoted:

yi ¼ S
�

i1b1 þ S
�

i2b2 þ . . .þ S�ikbk þ Sijdj þ ei

where yi is the estimated observation for the i-th individual. S�i terms represent covariates

named pseudo QTNs that start off as an empty set and subsequently are iteratively selected by

the second model. b terms are the corresponding effects for the pseudo QTNs. Sij is the geno-

type for the testing marker j. dj is the effect of the j-th marker and ei is the residual error term

having a distribution ei � Nð0; s2
eÞ.

The second model given below is similar but lacks the genotype term:

yi ¼ S
�

i1b1 þ S
�

i2b2 þ . . .þ S�ikbk þ ei

Markers are sorted by ascending order of p value and fitted in the second model one by one

if considered significant after Bonferroni correction and found to not be in linkage disequilib-

rium (r2 > 0.7) with any marker already included in the equation. Model selection by BIC

finds the best fit second model from all combinations and the covariates from that model are

exported to the first model.

This complete process is repeated in BLINK until the second model no longer selects new

covariates for inclusion in the first model and the first model is established as the final testing

model.

To correct for population structure and cryptic relatedness, the kinship matrix K, calculated

using GAPIT and the Q matrix having the first three principal components were fit in the first

model as covariates. For the compressed mixed linear models fit for validation tests, the opti-

mum compression level was selected and the same covariates were included. Q-Q plots and

Manhattan plots were visualized by the qqman package in R [29].

An adjusted Bonferroni correction was applied to set the genome wide significant and sug-

gestive thresholds. The formula used for setting the significance threshold was −log (1/M)

where M is the total number of testing markers. In the whole population, the value was 6.63

for 4,283,120 markers that remained after the MAF filter, which was rounded down to 6.5 for

use. In Indica and Aus subpopulations, there were 2,735,794 and 2,562,596 markers respec-

tively and the significant threshold was set at 6.4 accordingly. For suggestive thresholds, effec-

tive number of markers were calculated, defined as those being in approximate linkage

equilibrium across the genome. A pairwise LD cutoff of r2 = 0.2 with 50kb sliding windows

and step size of 50kb in PLINK [30] was used to calculate the effective number of markers. The

effective number was 384875, 255487 and 234071 for the whole, Indica and Aus sets respec-

tively. The resulting suggestive threshold values were 5.37, 5.4 and 5.58, from which a common

down-rounded value of 5.0 was used.

3. Results

3.1 Observation of population structure

The panel of 176 accessions predominantly consist of the Indica and Aus subgroups. Fig 1

shows 114 known geolocations from S1 Table where the labelled varieties have been histori-

cally cultivated. The appropriate number of subpopulations (K) was estimated to be 3. Three

distinct clusters could also be visualized in a scatter plot of the first and second principal com-

ponents. An admixture plot for 3 subpopulations and the NJ tree for the 176 individuals can
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Fig 1. Map of Bangladesh showing the locations where 114 out of 176 rice varieties from this study have been traditionally

propagated and cultivated. The labels in the image are the IRIS codes from S1 Table lacking the common ‘IRIS_313-’ prefix.

https://doi.org/10.1371/journal.pone.0259456.g001

PLOS ONE Novel QTLs for salinity tolerance revealed by GWAS studies of biomass, chlorophyll and tissue ion content

PLOS ONE | https://doi.org/10.1371/journal.pone.0259456 November 5, 2021 6 / 24

https://doi.org/10.1371/journal.pone.0259456.g001
https://doi.org/10.1371/journal.pone.0259456


be seen in Fig 2A and 2B respectively. The red individuals belong to the Aus subpopulation

and the green shaded individuals are members of the Indica subpopulation. We analyzed 2D

and 3D scatter plots for the first three principal components to infer population structure.

Bayesian k-means clustering results can be seen in Fig 2C and 2D. The subpopulations

assigned to the individuals by fastStructure, the groupings calculated by the k-means algo-

rithm, and that inferred by manual inspection were found to be identical. Population structure

inferences from all sources have been tabulated in S1 Table. In the NJ tree and the PCA scatter

plots, the Aus subpopulation was found to cluster more tightly than the individuals belonging

Fig 2. Population structure estimation results for 176 varieties. Three distinct subpopulations can be inferred from these diagrams. (a) An admixture plot

calculated from fastStructure. (b) Neighbor-joining tree drawn from genotype data. The green individuals belong to the Aus subgroup, red individuals are from

the Indica subgroup and black lines denote plants distant from these groups. (c) K-means clustering results of the first two principal components. (d) K-means

clustering results of a three-dimensional plot of the first three principal components.

https://doi.org/10.1371/journal.pone.0259456.g002
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to the Indica subgroup. The third subpopulation lodges only a few individuals that are grouped

as aromatic rice varieties and are locally known as Basmati or Sadri rice. Because of having a

very small number of individuals, the aromatic subpopulation was excluded from subpopula-

tion specific association testing along with three accessions that did not cluster with either sub-

population (S1 Table).

3.2 Comprehensive analysis of phenotypes

Eight additional phenotypes could be derived from the biomass traits. Table 1 lists all basic

and derived phenotypes with the formulations for each derivation from the basic traits. Bio-

mass traits had lower variance across replicates and were more heritable than ion content

traits. Within the biomass category, shoot traits were more heritable than root traits. Marker

derived heritability for all phenotypes and broad-sense heritability for applicable phenotypes

can be found in S2 Table. The means of phenotype values recorded for every genotype is stored

in S3 Table. Narrow-sense heritability could not be calculated from additive marker effects

because the grand mean of the phenotypes could explain more variance than the mixed.solve
prediction model. This could be attributable to the relatively small sample size with diverse

and heterozygous wildtype genotypes used for genomic prediction. The linear Pearson’s

Table 1. Basic and derived phenotypes.

Group Basic traits Heritability of

basic traits

Derived traits Formula for derivation Heritability of

derived traits

Biomass Root weight 0.519935202 Lost root weight Root weight in control condition—Root weight in stress

condition

0.020508891

Biomass Shoot weight 0.598616239 Lost shoot weight Shoot weight in control condition—shoot weight in

stress condition

0.063502564

Biomass Root length 0.538476891 Lost root length Root length in control condition—Root length in stress

condition

0.186636646

Biomass Shoot length 0.680380481 Lost shoot length Shoot length in control condition—shoot length in stress

condition

0.00847037

Biomass Root weight per unit

length��
Root weight / Root length 0.441443378

Biomass Shoot weight per unit

length��
Shoot weight / Shoot length 0.234151181

Biomass Lost root weight per

unit length

Root weight per unit length in control condition—Root

weight per unit length in stress condition

0.128275455

Biomass Lost shoot weight per

unit length

Shoot weight per unit length in control condition—

Shoot weight per unit length in stress condition

0.021422646

Ion content Root sodium

content

0

Ion content Root potassium

content

0.015590152

Ion content Shoot sodium

content

0.029297234

Ion content Shoot potassium

content

1.05E-09

Chlorophyll

content

Chlorophyll A

content

0.299207727 Lost chlorophyll A

content

Chlorophyll A content in control condition—

Chlorophyll A content in stress condition

0.177123042

Chlorophyll

content

Chlorophyll B

content

0.273868031 Lost chlorophyll B

content

Chlorophyll B content in control condition—

Chlorophyll B content in stress condition

0.181277873

SES SES score� 0.37256389

� traits measured in only one condition.

�� abbreviated as ‘thickness’ throughout the manuscript and applicable to both control and stress conditions.

https://doi.org/10.1371/journal.pone.0259456.t001
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correlation coefficients between the observed phenotypes are shown in the bottom diagonal of

the heatmap in Fig 3 and the correlation between the genotype effects for each phenotype cal-

culated through genomic prediction occupies the upper diagonal of the heatmap. The correla-

tion between the observed phenotypes and additive SNP effects are seen along the white

diagonal of the map. All phenotype estimations made by genomic prediction can be found in

Fig 3. Linear correlations (r) between observed and predicted phenotypes. The bottom triangle of the white diagonal shows correlations between observed phenotype

values and the top part is comprised of correlations between values estimated from genomic prediction. The white diagonal is the correlation between observed and

predicted values for each phenotype. In the highlighted rectangles, C stands for control condition and S stands for stress condition. C1 to S1 and C2 to S2 depicts a

fortification of linear correlation between biomass traits and SES when salt stress is imposed. C3 to S3 show the same trend for chlorophyll traits. C2 to S2 and C3 to S3

further show that the enhancement of linear correlation brought about by salt stress applies to SES as well.

https://doi.org/10.1371/journal.pone.0259456.g003
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S4 Table. An extended figure showing correlation coefficients between observed and estimated

values of all 33 basic and derived phenotypes can be viewed in S1 Fig. A matrix of p values for

the correlations shown in S1 Fig is provided in S5 Table.

In Fig 3, we observe better trait correlations in salt stress conditions relative to control con-

ditions. Rectangle C1 and S1 compare correlations between biomass traits in control and stress

conditions, C2 and S2 compare correlations between chlorophyll, SES and biomass in control

and stress conditions. C3 and S3 compare correlations between chlorophyll and SES in control

and stress. The improved linear correlations between biomass, chlorophyll and SES traits

imply that the encumbrance of salt stress on a plant prevents the disproportionate gain of bio-

mass. Since plant biomass and chlorophyll content is markedly reduced under salt stress (S3

Table), we can conclude that salt stress does not affect all phenotypes for all genotypes at the

same rate and the genetic advantages that any genotype has in terms of tissue growth (root/

shoot) or chlorophyll accumulation will be compromised by the effect of abiotic stress at a

greater magnitude than traits which have near-baseline values. On account of linear correla-

tion, plant root length stands out to be the most independent phenotype, especially in control

conditions.

We derived principal components from the biomass and chlorophyll phenotypes under salt

stress to compare the salt tolerability of our accessions. Since the composite SES score is a

visual score broadly based on stunting of growth, discoloration of leaves and loss of plant

vigor, we expect the pattern of SES scores to mimic the major principal component derived

from the stress phenotypes. The first principal component could explain 69.6% variation in

the data and has been plotted from the top in Fig 4 in the order of ascending SES score. From

the figure, we observe a visible correspondence between SES score and the related stress condi-

tion phenotypes. In terms of SES score, the best performing varieties are IRIS_313–10973,

IRIS_313–11224 and IRIS_313–8244 and the most sensitive varieties are IRIS_313–11063,

IRIS_313–11064, IRIS_313–11400, IRIS_313–12055 and IRIS_313–8641. Based on the axis of

maximum variation, the most tolerant accessions are IRIS_313–11116, IRIS_313–11217 and

IRIS_313–9594 and the least tolerant accessions are IRIS_313–12055, IRIS_313–10606

IRIS_313–10602 and IRIS_313–8641 (S3 Table).

Density plots for all processed and derived phenotypes with subgroup specific curves for 82

Indica and 78 Aus varieties are tiled in S2 Fig. The biomass related traits we measured mostly

followed a normal distribution with the exception of plant shoot length in both control and

stress conditions. The ion content and chlorophyll content traits displayed large skews with few

extreme values in both poles. Out of the ion content phenotypes, only shoot sodium content in

stress condition exhibited a gaussian distribution (S2 Fig). Filtering out few extreme values

mended the majority of the distributions to fit a normal curve. S6 Table lists the Shapiro-Wilk

statistics for all phenotypes prior to filtering and the number of data points that needed to be

omitted to improve the distribution. We did not use the filtered data in the primary association

testing as it would compromise statistical power and risk spurious associations. Instead, data

was transformed using an appropriate warping function and the changes in the distributions

are shown in S3 Fig. Scatter plots of residuals from genomic estimates of phenotypes calculated

before and after transformation can be seen in S4 Fig. The transformation method improved

the centered clustering of residuals around zero and their uniformity in dispersion.

3.3 Genome-wide association studies

The BLINK algorithm [27] implemented in the GAPIT software package [28] is a recent inno-

vation for powerful statistical association testing at considerably lower computational cost.

BLINK achieves enhanced computational time by employing a linkage disequilibrium (LD)
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based iterative marker pruning strategy that fits two fixed effect models with a filtering step

involving the second model. The algorithm is discussed in detail in the methods section. We

also fit a more commonly used compressed mixed linear model (CMLM) to our phenotypes

with optimum compression level to compare and confirm significant associations. Three inde-

pendent studies on the whole population and Aus and Indica subpopulations were carried out

respectively. 33 individual Manhattan and QQ plots each from three independent sets associa-

tion tests are stored in the git repository under the ‘GWAS’ folder name. Table 2 lists 13 total

QTLs identified and grouped into biomass or salt tolerance categories on the basis of their sig-

nificant association to multiple traits belonging to the mentioned trait class. The first identified

QTL, qCDP1.1, was observed in plant shoot length measured at stress conditions in the Indica

subpopulation (Fig 5A). A suggestive peak on the same loci is found in the Manhattan plot for

SES in the same subpopulation (S5 Fig). Two other associations noted for biomass traits were

Fig 4. Complementarity between SES scores and principal component 1 derived from biomass and chlorophyll content in stress conditions. The principal

component along the axis of maximum variation could explain 69.6% of the total variation. Metrics derived from simple numerical phenotypes could substitute for SES

scores when a more objective index of salt injury is desired.

https://doi.org/10.1371/journal.pone.0259456.g004
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qCDP12.1 and qCDP12.3. Like qCDP1.1, qCDP12.3 can also be found associated with stress

tolerance traits (S5 Fig). qCDP3.1 relates to potassium content in plant shoots (Fig 6A).

Because of the central role of potassium and other cations in salinity tolerance, we observe

qCDP3.1 as a stress tolerance trait. Four more signals, qCDP5.1, qCDP6.1, qCDP8.1 and

qCDP9.1, relating to the effect of salinity on plant shoots shown in Fig 6B and 6C were discov-

ered. qCDP7.1, qCDP9.2 and qCDP9.3 concerning root and biomass traits are observed in Fig

7. Fig 8 shows that apart from qCDP3.1, two more loci, qCDP10.1 and qCDP12.2 are associ-

ated with ion content phenotypes in stress conditions. 10 out of 13 QTLs in our findings were

previously discovered by GWAS studies with similar phenotype connotations (Table 2). An

extended version of Table 2 with peak marker locations, original phenotype names and refer-

ences [10, 11, 31–44] can be found in S7 Table.

3.4 QTL mapping

The extent of linkage disequilibrium in rice has been found consistently in the range of 100kb

to 200kb [44], although some authors suggest that it could extend over 500kb for some

Table 2. Identified major QTLs.

Locus

name

Trait class Chromosome Lead SNP

position

P value Traits where observed Traits previously linked to by GWAS

qCDP1.1 Biomass 1 38423605 7.22E-

07

Stress shoot length, SES Shoot length, shoot to root ratio and potassium concentration

in salt stress [Leon et al. 2016]; root weight under phosphate

starvation [Mai et al. 2020]; shoot weight, plant weight [To et al

2019]; shoot length, shoot length under zinc stress [Zhang et al.

2016]; shoot height in control and under aluminium stress [Tao

et al. 2018]; root length under salt treatment, relative dry shoot

weight, relative biomass [Zhang et al. 2020]

qCDP3.1 Salt

tolerance

3 1528621 2.65E-

08

Shoot potassium

qCDP5.1 Salt

tolerance

5 17632907 2.26E-

07

Lost shoot length, lost shoot weight Root length under phosphate deprivation [Mai et al. 2020];

total dry weight under salt stress [Yu et al. 2017]

qCDP6.1 Salt

tolerance

6 20760852 2.23E-

06

Stress shoot length, stress root

thickness

Salt injury score, plant dry weight under salt stress [Leon et al.

2016]

qCDP7.1 Salt

tolerance

7 21913935 1.05E-

06

Stress root thickness, stress shoot

thickness

Seed imbibition under salt stress [Cui et al. 2018]; relative

maximum leaf length in salt stress [Frouin et al. 2018]; biomass,

panicle dry weight, grain yield [Diop et al. 2020]

qCDP8.1 Salt

tolerance

8 27323749 2.47E-

06

Lost shoot weight Root length in salt stress[Leon et al. 2016]; spikely sterility

[Dingkuhn et al. 2017]; resistance to bacterial blight [Delorean

et al. 2016], potassium content and sodium-potassium ratio in

salt stress [Frouin et al. 2018]

qCDP9.1 Salt

tolerance

9 9438999 7.54E-

06

Lost shoot length Low temperature seedling survivability [Schläppi et al. 2017]

qCDP9.2 Salt

tolerance

9 11455731 1.91E-

06

Shoot potassium, chlorophyll A,

chlorophyll B, lost root length,

shoot sodium content

Seed germination rate under salt stress [Cui et al. 2018]

qCDP9.3 Salt

tolerance

9 20273741 1.46E-

06

Stress shoot thickness, stress shoot

weight, stress chlorophyll A

qCDP10.1 Salt

tolerance

10 18641874 1.07E-

06

Stress root potassium, root weight SSI score, green leaves, shoot biomass, root biomass in salt

stress [Rohila et al. 2019]

qCDP12.1 Biomass 12 2854998 6.51E-

06

Shoot thickness Shoot weight to length ratio [To et al. 2019]

qCDP12.2 Salt

tolerance

12 16595682 5.50E-

06

Stress root potassium, stress root

sodium

qCDP12.3 Biomass 12 25769505 7.57E-

06

Stress root length Shoot length in salt stress [Leon et al. 2016]; low temperature

seedling survivability and survival [Schläppi et al. 2017]

https://doi.org/10.1371/journal.pone.0259456.t002
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subpopulations [45]. In our experiments, LD decay to half maximal value of r2 was observed at

a distance of ~70kb in the whole population, ~100kb in the Aus subpopulation and ~50kb in

the Indica subpopulation (S6 Fig). Based on these assumptions, we defined the range of our

QTLs to be from 100kb upstream of the peak SNP up to 100kb downstream for association

mapping. 313 markers showing significant and suggestive associations within the sequence

range of known rice genes are described in S8 Table with metadata from the RAP-DB database

[13]. All significant and suggestive markers from validation tests using the CMLM model can

be found in S9 Table. We reviewed the annotations for genes situated in the vicinity of these

significant associations for the elucidation of functional roles in regards to the implied pheno-

types. From these annotations, 52 genes with notable functional roles corresponding to their

associated phenotypes are included in the supplementary notes.

One significant marker from qCDP3.1 associated with shoot potassium content could be

mapped to OsGSL10 (MSU ID: LOC_Os03g03610), a metabolic enzyme having 2-fold higher

expression in shoots than any other tissue. In the same QTL, a cation antiporter associated to

shoot potassium content, LOC_Os03g03590, could be mapped by a highly significant marker.

This gene is also ubiquitously expressed with significantly higher expression in leaves and

shoots. Based on its peptide sequence, the transporter protein is annotated to be localized in

the chloroplast (Uniprot ID: Q10SB9). Within the same locus, two notable genes: OsCP29

(MSU ID: LOC_Os07g37240) and OsPetC (MSU ID: LOC_Os07g37030), are also localized in

the chloroplast. Both these genes are expressed all throughout the plant in markedly higher

expression levels and have almost 10-fold higher expression in leaf tissues. The presence of a

chloroplast localized cation transporter adjacent to two particularly important chloroplast

related genes in a gene locus identified through shoot potassium content suggests a role of this

transporter protein and chloroplasts in the regulation of potassium ion content in plants.

From the MSU7 brief loci annotations, genomic copies of the OsNAC6 gene (MSU ID:

LOC_Os01g66120) which is known to have a functional role in plant development and stress

tolerance, could be mapped to 4 identified QTLs: qCDP1.1 (LOC_Os01g66120), qCDP3.1

(LOC_Os03g03540), qCDP12.1 (LOC_Os12g05990) and qCDP12.3 (LOC_Os12g41680).

qCDP1.1, qCDP12.1 and qCDP12.3 are QTLs belonging to our biomass category (Table 2).

This is good evidence to suggest that OsNAC6 might have a prominent role in embryogenesis,

germination and biomass gain in rice. The gene had also been implicated in stress response

and abiotic stress tolerance which holds to its presence in the salt stress related QTLs:

qCDP1.1, qCDP3.1 and qCDP12.3.

4. Discussion

4.1 Biomass traits and chlorophyll content could be valuable indices for the

screening of salinity tolerance

There lies significant ambiguity in the extrapolation of salt tolerance mechanisms in rice [46].

Gregorio et al. 1997 [19] popularized visual injury scoring for the screening of salinity toler-

ance. The application of SES for assessment of salinity tolerance has gathered some criticism

since then [14]. We found the SES score to have meaningful correlations with all observed

traits except for ion content (S1 Fig). Our ion content traits are among the least heritable phe-

notypes (Table 1 and S2 Table) and their distributions deviate the most from a normal gauss-

ian distribution (S2 Fig). They are also the most variable across genotypes and among

Fig 5. Manhattan and Q-Q plots for qCDP1.1, qCDP12.1 and qCDP12.3. Horizontal red and blue lines show the significant and suggestive thresholds

respectively. Vertical black dotted lines show the locations of the three QTLs in the three Manhattan plots.

https://doi.org/10.1371/journal.pone.0259456.g005
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Fig 6. Manhattan and Q-Q plots for qCDP3.1, qCDP5.1, qCDP6.1, qCDP8.1 and qCDP9.1. Horizontal red and blue lines show the significant and

suggestive thresholds respectively. Vertical black dotted lines show the locations of the five QTLs in the three Manhattan plots.

https://doi.org/10.1371/journal.pone.0259456.g006
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Fig 7. Manhattan and Q-Q plots for qCDP7.1, qCDP9.1 and qCDP9.3. Horizontal red and blue lines show the significant and suggestive thresholds

respectively. Vertical black dotted lines show the locations of the three QTLs in the three Manhattan plots.

https://doi.org/10.1371/journal.pone.0259456.g007
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Fig 8. Manhattan and Q-Q plots for qCDP10.1 and qCDP12.2. Horizontal red and blue lines show the significant and suggestive thresholds respectively. Vertical

black dotted lines show the locations of the two QTLs in the three Manhattan plots.

https://doi.org/10.1371/journal.pone.0259456.g008
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replicates (S3 Table), least applicable for genomic prediction (S4 Fig) and the least correlated

between two test conditions and with the other phenotypes, including the composite SES score

(S1 Fig). There are however, significant near-binary differences in tissue sodium content for

control and stress counterparts and the magnitude of this change greatly outweighs the vari-

ance observed across genotypes (S3 Table). This proved that in spite of being the most signifi-

cant physiological alteration with the most deleterious metabolic consequences, changes in

sodium content for individual genotypes between control and stress conditions could not be

an informative variable for prediction models. This lack of correlation and lack of reliable dif-

ference across genotypes was previously observed by Pires et al. 2015 [14]. Pires et al. also

found that potassium content in roots and leaves were not significantly altered between con-

trol and stress group plants and thus, could not be a reliable predictor of salt tolerance in statis-

tical models. There has already been ample criticism against the traditional application of the

K+/Na+ ratio for evaluation of stress tolerance [14, 47] and our observations incurred further

scrutiny to the conventional practice of evaluating salinity tolerance across different genotypes

using tissue ion content and K+/Na+ ratios. For these reasons, we did not derive any further

phenotypes from sodium and potassium content traits.

Although ion content is linearly independent to salt injury, very high correlation between

sodium and potassium content in roots under salt stress is observed (S1 Fig). The lack of this

correlation in shoots under stress conditions suggests that sodium exclusion from plant leaves

might be critical for survival in salt stress. Chlorophyll A and B are not independent variables

and although relatively less heritable, show high degree of correlation in both control and

stress conditions and correlate strongly to salt injury. This was reported in Pires et al. 2015 and

our findings confirm their observations. The relationship observed between biomass traits and

salinity tolerance in our studies is noteworthy. It is always the combination of a number of salt

tolerance strategies that a plant employs to cope with stress. Intuitively, salinity tolerance

benchmarks are depicted by the ability of plants to accumulate and retain biomass and color.

We observed that proportional losses of shoot and root biomass is instilled by salt stress.

Whereas plant genotypes that had more chlorophyll in control conditions, did not retain more

chlorophyll in stress conditions (Fig 3). Hence for chlorophyll, how much a plant has under

normal conditions is not much relevant to how much a plant of the same genotype could

maintain under salt stress conditions. How much biomass a plant of certain genotype retains

in salt stress is however, linearly correlated to how much biomass it can put on in control con-

ditions. Greater biomass in stress conditions correlates strongly and negatively to damage

scores. It was also found by other researchers that the effect of salinity on biomass is more pre-

dominant in the shoots compared to roots [48]. It has previously been shown that response to

salt stress in the tolerant landrace Pokkali takes place swiftly at the transcriptional level,

whereas there is a delayed response in sensitive IR29 [49]. The homeostatic adjustments in tol-

erant plants allows them to continue growth, photosynthesize and ultimately set grains [50]. In

light of these observations, and on the basis of GWAS results, we place much emphasis on bio-

mass traits and chlorophyll content for the assessment of salinity tolerance in rice.

4.2 Some Bangladeshi landraces exhibit high degrees of salt tolerance

Two local endemic landraces, Kala Digha (IRIS_313–10973) and Kala Muna (IRIS_313–

11115) are known to be highly salt tolerant. Similar degrees of tolerance were shown by Lal

Digha (IRIS_313–11487) and Patnai 31–679 (IRIS_313–11224). The salinity tolerance of these

accessions was in par with that of the tolerant landrace Pokkali (IRIS_313–8244) which is rou-

tinely cultivated in the coastal areas of Sri Lanka and Southern India. All of these accessions

belong to the Ind2 subpopulation in the 3KRG database. The majority of our Ind2 plants are
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moderately or highly salt tolerant whereas the sensitive plants mostly belong to the Aus sub-

population (S3 Table). The varieties Chitraj (IRIS_313–11220), Kola Muchi (IRIS_313–10975)

and Patnai 31–675 (IRIS_313–9049) stand out by having relatively high shoot biomass in spite

of being highly salt sensitive. Kortik Kaika (IRIS_313–11116), Kal Shuli (IRIS_313–11113) and

Pokkali (IRIS_313–8244) had the highest shoot biomass in stress conditions. The traditional

varieties were overall more tolerant than the developed varieties. This is expected because

developed varieties are generally bred and selected for yield traits rather than their wildtype

characteristics that confer tolerance to environmental stress. In many places across the country

where drought is common and along the southern coast where soil is saline, these local landra-

ces are predominantly farmed as they perform better than the sensitive elite varieties.

4.3 Potential genes of interest were found in the identified QTLs

Studies on previously published rice gene expression data and functional annotations highlight

a number of genes in the identified QTLs (S1 Text). Expression data of annotated genes within

the QTLs taken from MSU7 are provided in S10 Table and processed RNA-seq data from the

roots and shoots of a representative tolerant rice variety, Baldo and a sensitive variety, Vialone

Nano adapted from Formentin et al. 2018 [51] are given in S11 Table. A heatmap of differen-

tially expressed genes is shown in S7 Fig (see S1 Text for details). Effects of the natural poly-

morphisms at the protein level can be found in S12 Table. Significant differences in

phenotypes between the variant alleles are observed by ANOVA in S13 Table and by the Stu-

dent’s t-test in S14 Table.

Variant alleles of the chloroplast transporter gene discussed in the QTL mapping section

(section 3.4), LOC_Os03g03590 found in qCDP3.1 did not exhibit significant differences in

phenotype. OsPRX86 is a peroxidase precursor protein belonging to the QTL qCDP6.1. The

locus has been previously found to be associated with salt injury scores in rice [10]. A polymor-

phism causing a nonsense consequence in the gene was found to affect multiple salinity toler-

ance traits, namely, SES score, shoot length under stress and normal conditions and shoot

weight. Another unannotated gene, LOC_Os09g15389.2, belonging to another previously

identified locus, qCDP9.1 [52], was observed to affect salt injury score, shoot weight and shoot

length when the protein is truncated. OsPIL (MSU ID: LOC_Os12g41650.4) is a phytochrome

interacting helix-loop-helix protein gene present in qCDP12.3 that has 5 to 10-fold greater

expression levels in plant leaves, and is known to play a part in abiotic stress response [53].

Our observed SNP only affects transcript 4 out of 5 known transcripts of this gene.

LOC_Os09g19160 is an uncharacterized serine/threonine kinase from qCDP9.2, that belongs

to a cluster housing another serine/threonine kinase gene, LOC_Os09g19229. These kinases

were found to affect root length in normal and stress conditions and also show significant dif-

ferential expression under control and stress conditions. Similar kinases have been observed to

play an important part in root development and nodulation [54]. An SNP variation in the

6-phosphogluconolactonase gene from qCDP8.1, LOC_Os08g43370.1 disrupted root length

and shoot weight in stress condition. This gene also exhibits significant differential expression

under control and stress conditions. These genes appear to be promising subjects for discrete

functional studies to find any contributions they might have in abiotic stress tolerance.

5. Conclusion

We have mapped 13 QTLs for various traits including 3 novel QTLs. The novel QTLs

qCDP3.1 and qCDP12.2 are associated with tissue ion content and qCDP9.3 is associated with

plant biomass and chlorophyll content under stress conditions. The 10 other identified QTLs

had previously been reported in literature against identical quantitative traits. When mapped
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to the genome, these QTLs were found to harbor many genes implicated in abiotic stress

response and tolerance. Supplementary analysis of gene expression and functional annotations

assumes potential roles for a number of genes within the identified QTLs. A number of acces-

sions from Bangladesh display high degree of salt tolerance. Some resilient and notable landra-

ces include Kala Digha (IRIS_313–10973), Kala Muna (IRIS_313–11115) Lal Digha

(IRIS_313–11487) and Patnai 31–679 (IRIS_313–11224). Although it is well established that

biomass and chlorophyll related traits alongside tissue ion content aids the assessment of salin-

ity tolerance, our studies show that the numerical values of plant biomass and chlorophyll con-

tent could manifest themselves into an objective index of salt injury unabated by human error.

GWAS studies are convenient protocols for novel genetic discoveries. They have become

even more popular with the subsistence and growth of publicly available genomic data. The

automation of genomic studies is more relevant today because of recent advancements in

mechanical and drone-based phenotype imaging technologies. Public documentation of our

experimental design on GitHub will assist future researchers and facilitate GWAS and other

studies in plant genomics.
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