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Abstract: Excellent pattern matching capability makes artificial neural networks (ANNs) a very
promising approach for vibration-based structural health monitoring (SHM). The proper design of
the network architecture with the suitable complexity is vital to the ANN-based structural damage
detection. In addition to the number of hidden neurons, the type of transfer function used in the
hidden layer cannot be neglected for the ANN design. Neural network learning can be further
presented in the framework of Bayesian statistics, but the issues of selection for the hidden layer
transfer function with respect to the Bayesian neural network has not yet been reported in the
literature. In addition, most of the research works in the literature for addressing the predictive
distribution of neural network output is only for a single target variable, while multiple target
variables are rarely involved. In the present paper, for the purpose of probabilistic structural damage
detection, Bayesian neural networks with multiple target variables are optimally designed, and the
selection of the number of neurons, and the transfer function in the hidden layer, are carried out
simultaneously to achieve a neural network architecture with suitable complexity. Furthermore, the
nonlinear network function can be approximately linear by assuming the posterior distribution of
network parameters is a sufficiently narrow Gaussian, and then the input-dependent covariance
matrix of the predictive distribution of network output can be obtained with the Gaussian assumption
for the situation of multiple target variables. Structural damage detection is conducted for a steel
truss bridge model to verify the proposed method through a set of numerical case studies.

Keywords: structural health monitoring; probabilistic damage detection; truss bridge; model class
selection; Bayesian neural network

1. Introduction

Recent structural damage or component failure has raised public awareness of the need for
improved infrastructure safety and maintenance. It is of great practical significance to regularly
evaluate and assess the service status of civil infrastructure. There has been great interest in the
development of structural health monitoring (SHM) methodology, based on vibration measurements
in recent decades [1]. Structural damage generally leads to the reduction of local stiffness, which
has an influence on the dynamic characteristic parameters, and changes of these parameters before
and after damage are further utilized by the vibration-based structural damage detection methods to
identify the damage location and related extent. Different methods have been developed in various
aspects of this area so far, such as dynamic analysis methods [2–4], probabilistic methods [5–10],
model reduction-based methods [11–13], artificial intelligence methods [14–16], modal identification

Sensors 2018, 18, 3371; doi:10.3390/s18103371 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/10/3371?type=check_update&version=1
http://dx.doi.org/10.3390/s18103371
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3371 2 of 16

methods [17–20], wavelet-based methods [21,22], optimal sensor configurations [23–25], and signal
processing techniques [26], et al.

Among these methods, artificial neural networks (ANNs) have not been specifically developed
for structural damage detection, but their pattern matching capability makes them very promising
to be employed as a tool for this purpose. It is obvious that the complexity of the ANN models,
including the number of hidden layers and the number of hidden neurons, impacts significantly on the
training process of the ANN, as well as the performance of the trained ANN, especially for simulating
a complicated functional relationship. If these numbers are too small, the obtained ANN might not
be able to capture the true behavior of the training data. In contrast, if they are too large, the trained
ANN may produce outputs that will fluctuate in the region between training data points. Thus, proper
design of the structure of ANN models, with suitable complexity, is necessary to ensure the successful
application of ANN-based structural damage detection methods. However, the ANN model is usually
determined by experience or rule of thumb only, and very limited research works exist in the area
of ANN-based damage detection, addressing the issue of designing ANN models properly [27–29].
Other than the number of hidden neurons, the type of transfer (activation) function utilized in the
hidden layer is also a non-negligible factor with respect to the ANN design, since the nonlinearity of
the transfer function has an effect on the generalization ability of neural networks of the trained ANN.

In the traditional ANN approach as mentioned above, the values of the network parameters,
including weights and biases, are estimated from the training data set by minimizing the sum of
squared errors, representing the error between the target variables and the output of the neural
network. More importantly, neural network learning can also be presented in the framework of
Bayesian inference. Starting from the early research works related to Bayesian neural network [30,31],
there has been a growing interest in the application of Bayesian inference theory in the field of neural
networks [32–37]. By noting the significance of the ANN design as mentioned previously, the selection
of the number of neurons in the hidden layer for the Bayesian neural network has been addressed [28];
however, to the best of our knowledge, the issues of selection of the transfer function, with respect
to the Bayesian neural network, has not yet been addressed in previous studies. In addition, one of
the significant features of the Bayesian neural network is the capability of quantifying the error or
uncertainty of the network output, by employing the Bayesian inference approach. Nevertheless, most
of the research activities in the literature for addressing the predictive distribution of neural network
output only deal with a single target variable [38–40], whereas the distribution over network output
for multiple target variables is seldom mentioned.

In this paper, the Bayesian neural networks with multiple target variables is optimally designed
for the purpose of probabilistic structural damage detection; additionally, the simultaneous selection
of numbers of neurons and the corresponding transfer function in the hidden layer to obtain a neural
network with suitable complexity is well addressed. Furthermore, by assuming that the posterior
distribution of network parameters is approximated as a sufficiently narrow Gaussian, so that the
nonlinear network function is approximately linear with respect to the network parameters over the
region of parameter space, the input-dependent covariance matrix of predictive distribution, being
approximated also as a Gaussian, can be obtained for the case of multiple target variables. The
feasibility and validity of the proposed method is verified by the numerical case studies of a steel truss
bridge model.

2. Theoretical Development

The multi-layer feedforward neural network is commonly employed for ANN-based structural
damage detection in the literature [41], and it has been proved to be capable of approximating any
functional relationship between inputs and outputs with only one hidden layer [42]. In the present
paper, without loss of generality, the proposed method focuses on the design of the structure of the
hidden layer for a single-hidden-layer feedforward Bayesian neural network, since a linear function
is always utilized as the transfer function in the output layer. This thus involves the selection of the
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number of neurons in the hidden layer, as well as the corresponding transfer function of the neurons
in the same layer. The Bayesian neural network investigated in this paper updates the weight and bias
values according to Levenberg–Marquardt optimization routine through the Bayesian regularization
procedure by minimizing a linear combination of squared errors and weights.

The set of model classes for the Bayesian neural network in the present paper are defined as
M1,M2, · · · ,MNM , representing the network model with the different number of neurons and various
types of transfer functions in the hidden layer, and NM is the total number of model classes considered.
Consider the problem of predicting multiple target variables t ∈ RNO×1 from a vector x ∈ RNI×1 of
inputs by utilizing the Bayesian neural network approach. NI and NO are the number of neurons
in the input and output layers. Let DN = {{x1, t1}, {x2, t2}, · · · , {xN , tN}} denote the input–output
training data set which is generated from the finite-element analysis of target structure, and N is the
total number of training data sets. For the structural damage detection problem investigated in this
paper, the changes of natural frequencies and normalized partial mode shapes corresponding to the
measured degrees of freedom (DOF) for the first few modes before and after damage are utilized as
pattern features for the damage, which correspond to the ANN input. The damaged members that are
to be identified relate to the ANN output. Thus, the aim of the Bayesian neural network design is to
select the most plausible class of models by using data DN from NM prescribed classes of Bayesian
neural network models to approximate the functional relationship defined by the input and output
data set.

It is assumed that for the jth class of model Mj, that the conditional distribution p(t|x, wj;Mj)

is Gaussian with an x-dependent mean given by the output of a neural network model y
(
x, wj;Mj

)
.

Also, the multiple target variables t are assumed to be independent conditional on the inputs x and
network parameters wj including weights and biases with shared noise precision parameter β j, which
represents the precision of the Gaussian noise. Then, the conditional distribution of the target values
with respect to the jth class of models is given by [38]:

p(t|x, wj, β j,Mj) = N
(

t|y
(
x, wj;Mj

)
, β−1

j INO

)
(1)

where INO is an identity matrix in dimension NO.
Given the input−output training data set DN , one can construct the corresponding likelihood

function as:

p
(
DN |wj, β j,Mj

)
=

N

∏
n=1
N
(

tn|y
(
xn, wj;Mj

)
, β−1

j INO

)
=

=

(
β j

2π

)NNo/2

exp

(
−

β j

2

N

∑
n=1
‖y
(
xn, wj;Mj

)
− tn‖2

) (2)

where ‖·‖ represents the Euclidean norm.
Similarly, a prior distribution can be chosen to be Gaussian over the uncertain network parameters

wj as the following:

P
(
wj|αj,Mj

)
= N

(
wj|0, α−1

j IWj

)
=

(
αj

2π

)Wj/2
exp

(
−

αj

2
‖wj‖2

)
(3)

where IWj is a Wj ×Wj identity matrix. Wj = NI + NO + NH is the dimension of the weight vector,
and NH is the number of neurons in the hidden layer.

By following the Bayes’ theorem, the posterior distribution of the network parameters wj for the
model class Mj is given by:

p
(
wj|DN , αj, β j,Mj

)
=

p
(
DN |wj, β j,Mj

)
p
(
wj|αj,Mj

)
p
(
DN |αj, β j,Mj

) (4)
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which, however, is non-Gaussian due to the consequence of the nonlinear dependence of the network
function y

(
x, wj;Mj

)
on the network parameters wj.

By utilizing the Laplace approximation, one can seek a Gaussian approximation to the posterior
distribution p

(
wj|DN , αj, β j,Mj

)
in Equation (4) at a (local) maximum of the posterior, say wj,MP,

which can be obtained through the standard nonlinear optimization routine. As usual, it is convenient
to maximize the logarithm of the posterior, which can be written as:

ln
[
p
(
wj|DN , αj, β j,Mj

)]
∝ −

β j

2

N

∑
n=1
‖y
(
xn, wj;Mj

)
− tn‖2 −

αj

2
‖wj‖2 (5)

which corresponds to a regularized sum-of-squares error function, while the two hyperparameters αj
and β j are fixed and known at this moment.

Then, from Equation (5), a local Gaussian approximation can be built in by evaluating the matrix
of second derivatives of the negative log posterior distribution at the maximum of the posterior, and it
is given by:

p
(
wj|DN , αj, β j,Mj

)
= N

(
wj|wj,MP, H−1

j
(
wj,MP

))
(6)

where Hj
(
wj,MP

)
= −∇∇ ln

[
p
(
wj|DN , αj, β j,Mj

)]
|wj=wj,MP

is the Hessian matrix evaluated at wj,MP.

By making use of the evidence framework, together with the Gaussian approximation to the
posterior utilizing the Laplace approximation, the marginal likelihood or evidence for the two
hyperparameters is obtained by integrating the network parameters as:

p
(
DN |αj, β j,Mj

)
=
∫

p
(
DN |wj, β j,Mj

)
p
(
wj|αj,Mj

)
dwj

' p
(
DN |wj,MP, β j,Mj

)
p
(
wj,MP|αj,Mj

)
(2π)Wj/2|Hj

(
wj,MP

)
|−1/2

(7)

In the evidence framework, the point estimates for hyperparameters αj and β j can be obtained by
maximizing ln

[
p
(
DN |αj, β j,Mj

)]
with respect to αj and β j at the maximum of the posterior wj,MP [38],

respectively, as:

1
αj,MP

=
1

γj,MP
‖wj,MP‖2,

1
β j,MP

=
1

NNO − γj,MP

N

∑
n=1
‖y
(
xn, wj,MP;Mj

)
− tn‖2 (8)

where γj,MP = Wj − αj,MPtr
(

H−1
j
(
wj,MP

))
represents the effective number of parameters

corresponding to the jth model class. Equation (8) presents a practical iterative procedure for estimating
the hyperparameters during the training process of Bayesian neural network.

To select the most plausible model class among NM prescribed model classes for the Bayesian
neural network, the probability of a model class Mj conditional on the given set of input-target training
data DN should be calculated. This can be obtained by following the Bayes’ theorem as:

p
(
Mj|DN

)
=

p
(
DN |Mj

)
π
(
Mj
)

∑Nc
j=1 p

(
DN |Mj

)
π
(
Mj
) (9)

where the prior probability π
(
Mj
)

on the model class Mj, for j = 1 to NM, satisfies
Nc
∑

j=1
π
(
Mj
)
= 1. As

there is generally no prior information about each class of models for the purpose of structural damage
detection, it is simply assumed hereafter that each individual model class possesses the same initial
plausibility, i.e., π

(
Mj
)
= 1/NM. The factor p

(
DN |Mj

)
is the most important term in Equation (9),

and it is known as the evidence for the model class Mj giving the set of input–output training data DN .
Generally, the class of models to be used is the one that maximizes the posterior probability p

(
Mj|DN

)
,

or equivalently, maximizes the model evidence p
(
DN |Mj

)
with respect to Mj.
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It is noted that instead of utilizing the usual Bayesian treatment for hyperparameters involving
marginalization over all possible values, the model evidence p

(
DN |Mj

)
presented in Equation (9)

can be approximated by substituting the values of hyperparameters αj,MP and β j,MP obtained at the
maximum of the posterior wj,MP from the iterative optimization procedure given in Equation (8) into
the marginal likelihood in Equation (7), i.e.,

p
(
DN |Mj

)
' p

(
DN |wj,MP, β j,MP,Mj

)
p
(
wj,MP|αj,MP,Mj

)
(2π)Wj/2|Hj

(
wj,MP

)
|−1/2 (10)

It is important to note that the form of the evidence p
(
DN |Mj

)
given in Equation (10) is

consistent with that given by the authors of [43], that is, the evidence consists of two terms,
p
(
DN |wj,MP, β j,MP,Mj

)
and p

(
wj,MP|αj,MP,Mj

)
(2π)Wj/2|Hj

(
wj,MP

)
|−1/2, namely, the likelihood factor

and the Ockham factor. Specifically, the likelihood factor favors more complex model classes. Thus, it
will be higher for those model classes making the probability of the data DN higher, implying a better
fit to the data. The Ockham factor, however, imposes a penalty against the complexity of the specified
model class. The balance between these two factors allows one to select the most probable model class
through a mathematically rigorous and robust way, which is just complex enough to fit the given data.
In this study, the class of models to be selected is the one possessing the highest value of evidence, i.e.,
maximum posterior probability, among the entire set of model classes for the given set of train data.
It is also noted that because the corresponding numerical values are usually very large, the logarithmic
form of the evidence is taken in order to avoid the computational problem during the procedure of
model class selection. This yields that:

ln
[
p
(
DN |Mj

)]
' NNO

2 ln β j,MP −
β j,MP

2

N
∑

n=1
‖y
(
xn, wj,MP;Mj

)
− tn‖2

+
Wj
2 ln αj,MP −

αj,MP
2 ‖wj,MP‖2 +

Wj
2 ln(2π)− 1

2 ln |Hj
(
wj,MP

)
|

(11)

where the sum of the terms in the first row gives the logarithm of the likelihood factor, and that in the
second row represents the logarithmic expression of the Ockham factor.

In addition, it should be noted that if Equation (9) is applied for identifying the ‘optimal’ class of
Bayesian neural network models by direct comparison of the conditional probability p

(
Mj|DN

)
, the

total number of model classes NM to be considered in the identification process should be specified
at the beginning. If NM is too small, the ‘optimal’ model class might not be included in the study.
However, if this number is too large, the computational consumption would be unaffordable. Thus,
instead of directly comparing the all NM model classes and picking up the ‘best’ one, the number of
neurons as well as the transfer function in the hidden layer is identified by following a computationally
efficient algorithm [29]. Denote NT as the number of transfer functions involved for comparison, and
the main procedure of the algorithm is summarized as following:

1. Initialize the index of the type of hidden layer transfer function i = 1 (outer loop).
2. Initialize the index of number of hidden neurons k = 1 (inner loop), and calculate the

corresponding log evidence ln
[

p
(
DN |Mj(i,k)

)]
in Equation (11), where j depends on both i

and k.
3. Increase the index k by 1, and calculate the log evidences ln

[
p
(
DN |Mj(i,k+1)

)]
, which is compared

with ln
[

p
(
DN |Mj(i,k)

)]
; If ln

[
p
(
DN |Mj(i,k+1)

)]
< ln

[
p
(
DN |Mj(i,k)

)]
, then Mj(i,k) is the model

class with ‘optimal’ number of hidden neurons as for the ith transfer function, and the inner loop
will stop; Or, the algorithm will increase the index k by 1 and repeat this step; Record the log
evidence ln

[
p
(
DN |Mj(i,ki)

)]
related to the ‘optimal’ number of hidden neurons for the present

transfer function.
4. Increase the index of transfer function i by 1, repeat steps 2 and 3, and record the log evidence

ln
[

p
(
DN |Mj(i+1,ki+1)

)]
related to the ‘optimal’ number of hidden neurons for the (i + 1)th
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transfer function; Compare ln
[

p
(
DN |Mj(i+1,ki+1)

)]
with ln

[
p
(
DN |Mj(i,ki)

)]
, and record the

larger one.
5. If i < NT , set i = i + 1, and repeat step 4; Otherwise, if i = NT , the whole algorithm will stop, and

output the ‘optimal’ number of hidden neurons ki∗ as well as the related hidden layer transfer
function index i∗ corresponding to the ‘optimal’ model class Mj(i∗ ,ki∗ )

with recorded largest log

evidence ln
[

p
(
DN |Mj(i∗ ,ki∗ )

)]
.

On the other hand, it is assumed that the identified most plausible model class through the above
design procedure is MK, and K = j(i∗, ki∗). Then, the posterior of the network parameters given in
Equation (6) can be employed to produce a distribution over the network outputs, and the predictive
distribution is obtained by marginalizing with respect to this posterior distribution, given as:

p(t|x,DN ,MK) =
∫

p(t|x, wK, βK,MP,MK)p(wK|DN , αK,MP, βK,MP,MK)dwK (12)

It is noted that this integration is analytically intractable due to the nonlinearity of the network
function y(x, wK;MK) as a function of the network parameters wK. Under such circumstances, an
approximation to evaluate this integral is generally required. To make progress, it is assumed that
the covariance of posterior distribution of network parameters is small, so that the network function
is approximately linear with respect to the parameters over the region of parameter space for which
the posterior probability is significantly nonzero [38]. By making a Taylor series expansion of the
network function around the maximum of the posterior wK,MP and retaining only the linear terms, the
conditional distribution of the target values can be written as:

p(t|x, wK, βK,MP,MK) ' N
(

t|y(x, wK,MP;MK) + JK(x, wK,MP)(wK −wK,MP), β−1
K,MPINO

)
(13)

where the mean is a linear function of wK, and JK(x, wK,MP) = ∇y(x, wK;MK)|wK=wK,MP
is the

x-dependent Jacobian matrix of the vector-valued network function evaluated at the maximum of the
posterior wK,MP, and can be calculated by utilizing the finite difference approach.

Then, by noticing that the posterior distribution of weights is approximated as a sufficiently
narrow Gaussian, one arrives at a Gaussian distribution over the outputs of the network as the
following:

p(t|x,DN ,MK) ' N (t|y(x, wK,MP;MK), ΣK(x, wK,MP)) (14)

where the predictive distribution is approximated as a multivariate Gaussian, the mean of which
is given by the network function y(x, wK,MP;MK) with the network model parameters set to their
maximum of the posterior -estimate. The corresponding x-dependent covariance matrix is given by:

ΣK(x, wK,MP) = β−1
K,MPINO + JK(x, wK,MP)H−1

K (wK,MP)JT
K(x, wK,MP) (15)

It is apparent that the x-dependent covariance matrix ΣK(x, wK,MP) consists of two terms. The
first one reflects the intrinsic noise on the target variable, whereas the second is an x-dependent term
expressing uncertainty, due to the uncertainty of the weights.

3. Case Studies

To verify the proposed methodology, numerical case studies are conducted in this section for a
simply-supported steel truss bridge model, as shown in Figure 1. The space steel truss bridge, including
11 crossbeams, has a total length of 2.8 m, a width of 0.48 m and a height of 0.4 m, respectively. Except
for the cross-section of the crossbeams being the I-steel type, the other components, including the
upper and lower chords, and the diagonal and vertical rods, are all made of a pair of angle irons with
the same size. Sectional and material properties of the truss bridge model are shown in Table 1. Each
component of the truss bridge model is discretized into one beam finite element, and the total number
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of such elements for the entire finite element model is 85. The configuration of measurement points
on the bridge deck is shown in Figure 2, and the ten measurement points, evenly located on the both
sides of bridge deck, measure the vertical motion of the bridge structure. The first six mode shapes
of the steel truss bridge deck in intact status are shown in Figure 3, including the first three vertical
vibration and torsional modes.
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The damage is considered on the lower chord of the steel truss bridge model by reducing the
bending stiffness, which is achieved by reducing the Young’s Modulus of the potentially damaged
structural member with a scaling factor in the present study, and there is a total of 20 potential damage
locations, which are denoted by E1 to E20, as shown in Figure 4, respectively. However, the excessive
number of damaged locations to be identified will result in too many output neurons, which is not
conducive to Bayesian neural network training and subsequent damage identification procedures.
Thus, one can consider combining these 20 possible damage locations into 5 groups, represented by
EG1 to EG5, respectively, and each group consists of 4 lower chord elements, as shown in Figure 4
and Table 2. In this way, the number of output neurons in the neural network is greatly reduced,
from 20 to 5. For example, the element group EG2 includes four individual elements E3, E4, E13, and
E14. In such circumstances, if any one or more of the four elements in the same element group are
damaged, the damage is only reflected by the overall bending stiffness reduction of the element group
EG2. In addition, considering the fact that in the initial stage of the damage development, the number
of simultaneously damaged elements would be very few, it is reasonably assumed herein that there
are, at most, two damaged elements at the same time for the truss bridge model. Furthermore, three
damage extents of 0, 20%, and 40% with respect to the element group, respectively, are utilized to
generate the training data for the Bayesian neural network. It is also noted that for each sample of
training data, the differences of the natural frequencies and mode shapes before and after the damage
for the steel truss bridge model is stacked into a vector and used as the network input. It is noted that
although all modes can be calculated from the finite element model, only modal parameters of the first
two modes are utilized for damage identification of the steel truss bridge model, in order to evaluate
the proposed method with limited information to mimic reality, and the total number of input neurons
is 22.
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Table 2. Definition of element groups for the steel truss bridge model.

Element Groups Number of Elements Included Elements

EG1 4 {E1, E2, E11, E12}
EG2 4 {E3, E4, E13, E14}
EG3 4 {E5, E6, E15, E16}
EG4 4 {E7, E8, E17, E18}
EG5 4 {E9, E10, E19, E20}

This example considers two commonly used types of hidden layer transfer functions, i.e., tansig
and satlins [44], labeled as TF1 and TF2 respectively. Figure 5 shows the iterative curve of the proposed
Bayesian neural network design procedure. The abscissa represents the number of iterations, while
the ordinate denotes the logarithm of evidence. This curve can be clearly divided into two segments,
related to the hidden layer transfer functions TF1 and TF2, respectively. It is clear from the results
corresponding to TF1 that, as the number of neurons in the hidden layer increases, the log-evidence
value gradually increases. Specifically, as shown in Figure 5, when the number of hidden neurons is
less than five, the increase of log evidence along with the number of hidden neurons is particularly
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significant, whereas after that, this increase becomes very gentle. It can thus be seen that, the number of
neurons in the hidden layer has a great influence on the performance of the Bayesian neural network,
especially when the number of hidden neurons is small; however, as the number increases to a certain
extent, the influence becomes less obvious. This clearly indicates that the number of neurons in the
hidden layer cannot be too small; otherwise, the Bayesian neural network might not work well. As the
number of hidden neurons increases to 12, the log-evidence value reaches the maximum value with
respect to the hidden layer transfer function TF1, and the continuous increase of the number of hidden
neurons results in a decrease in the log evidence. Thus, the network design algorithm switches to the
next candidate transfer function TF2. Similarly, with the increase of number of hidden neurons, the log
evidence increases significantly when the number of hidden neurons is relatively small, and gradually
reaches its local maximum value. This, however, is smaller than the largest log-evidence value found
previously for TF1, and the algorithm stops and finally determines TF1 as the best transfer function
under consideration, and the corresponding optimal number of hidden layer neurons is found to be 12
at the same time.Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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In order to interpret the principle of the proposed network design approach more clearly, taking
the hidden layer transfer function TF1 as an example, Figure 6 shows the full picture of the log evidence,
the likelihood factor, and the Ockham factor when the number of neurons in the hidden layer gradually
increases from 1 to 20, with the number of input and output neurons remaining unchanged. It can
clearly be seen from this figure that, as the number of neurons in the hidden layer gradually increases,
the structure of the Bayesian neural network model becomes more complex, and network model is
expected to better fit the training data, which is reflected by the increase of likelihood factor. At the
same time, the absolute value of the Ockham factor gradually increases, which represents a gradual
increase in penalty for the complexity of the network model, and the detailed numerical results are
also presented in Table 3 for reference (the results corresponding to the ‘optimal’ numbers of hidden
neurons for both TF1 and TF2 are shown in bold). Therefore, under the joint influence of these two
factors, the Bayesian network model with the optimal number of hidden neural can be reasonably
determined. In addition, it should be realized here that the network performance is sharply increased
for a small number of hidden neurons, and then gradually decreased after the log evidence reaches
its maximum value, but the magnitude of the decrease is not too obvious. This clearly indicates that
the normal operation of the Bayesian neural network requires a sufficient number of hidden neurons,
and it also shows that the network optimization design is particularly important in the case of fewer
neurons in the hidden layer.
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Table 3. The results of model class selection for the Bayesian neural network.

Transfer Functions Number of Hidden
Neurons NH

Logarithm of

Evidence Likelihood Factor Ockham Factor

TF1 (tansig) 8 1172.42 1724.16 −551.74
9 1187.23 1780.93 −593.70

10 1197.86 1849.99 −652.12
11 1199.74 1905.59 −705.85
12 1199.93 1986.27 −786.34
13 1195.72 2037.02 −841.30
14 1186.62 2083.90 −897.28
15 1178.15 2183.16 −1005.01

TF2 (satlins) 1 560.74 588.01 −27.27
2 584.43 633.46 −49.03
3 625.17 705.89 −80.73
4 754.87 895.72 −140.84
5 1002.49 1265.83 −263.34
6 999.30 1280.24 −280.94
7 995.60 1290.60 −295.00
8 993.11 1302.23 −309.12

In this paper, three damage cases are considered for the steel truss bridge model. As shown in
Figure 7 and Table 4, the damage is simulated by reducing bending stiffness of the corresponding
individual element. Specifically, Case 1 considers the single damage situation, and the damage only
occurs in element E3, which belongs to the 2nd element group EG2. Case 2 relates to a double-damage
condition, and the damage exists simultaneously in E3 and E14. The last one is a multi-damage case,
based on Case 2, where the simultaneous damage on E19 and E20 is further involved. Referring to
the element group configuration as shown in Table 2 and Figure 4, both Case 1 and Case 2 represent
damage that occurred in EG2, whereas the latter shows a relatively greater damage extent. At the
same time, Case 3 assumes that EG2 and EG5 are simultaneously damaged. Without loss of generality,
the modal parameters utilized for the training data of the neural network involve 1% Gaussian
white noise, and the previously optimized Bayesian neural network is employed for the network
training and subsequent probabilistic damage detection process. The prediction results of the network
output are shown in Table 5. It can be seen from this table that the results of each damage case



Sensors 2018, 18, 3371 12 of 16

and the corresponding degree of uncertainty can be successfully identified. Comparing the damage
identification results of Case 1 and Case 2, it is clearly seen that the uncertainty of identified damage is
not much different under both cases, but the identified damage extent of EG2 for Case 2 is significantly
larger than Case 1. This is consistent with the prescribed damage for each case as defined in Table 4,
i.e., in Case 2, element group EG2 contains two damaged individual elements at the same time. For
the last case, the proposed method also successfully identifies the actually damaged element groups
EG2 and EG4, and the uncertainty associated with the damage identification results in such a case is
also successfully quantified.Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 
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Case 3 (E3 and E14 and E19 and E20).

Table 4. Damage cases considered for the steel truss bridge model.

Cases Damaged Elements (Stiffness Reduction) Element Groups

Case 1 E3 (30%) EG2
Case 2 E3 (30%) & E14 (50%) EG2
Case 3 E3 (30%) & E14 (50%) & E19 (30%) & E20 (50%) EG2 & EG5

Table 5. Prediction results of the Bayesian neural network.

Network Output
Case 1 Case 2 Case 3

Identified STD Value Identified STD Value Identified STD Value

t1 (EG1) 0.0095 0.06 0.0052 0.06 −0.0049 0.10
t2 (EG2) 0.1408 0.14 0.2938 0.15 0.2689 0.29
t3 (EG3) 0.0175 0.05 0.0161 0.06 0.0182 0.10
t4 (EG4) 0.0523 0.10 0.0287 0.12 −0.0812 0.20
t5 (EG5) 0.0047 0.06 0.0066 0.07 0.4202 0.10

Additionally, the damage probabilities [45] for this truss bridge model are further quantified to
seek a better interpretation of the damage detection results, the data of which are shown in Figure 8
for all three cases under consideration. It can be found for Case 1 that the 2nd element group of the
truss bridge model has the greatest probability of damage, as indicated in Figure 8(a1−e1), since
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the corresponding probability value is somewhat more significant than others. But it is also realized
that, as compared to the relatively small extent of damage in EG2, EG4 also possesses a certain
degree of damage probability due to the symmetry of the steel truss bridge model. This might not
be virtually revealed by directly inspecting the results presented in Table 5, and it will possibly cause
some interference to the damage judgment for the present case. As for Case 2, there are also similar
observations derived from Figure 8(a2–e2), i.e., EG2 is also the most likely damaged, as compared
to the remaining element groups. The probability of damage in EG2 is much more significant than
others, since it is a more serious damage configuration as compared to Case 1. For Case 3, it is very
obvious from Figure 8(a3−e3) that both EG2 and EG5 have a relatively large possibility of damage,
which coincides well with the actual damage configuration prescribed for this case.Sensors 2018, 18, x FOR PEER REVIEW  13 of 15 
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4. Conclusions

For the purpose of probabilistic damage detection based on vibration measurements, the artificial
neural network embedded with Bayesian inference for multiple target variables is optimally designed
through simultaneous selection of the number of hidden neurons and the type of transfer functions in
the hidden layer to obtain a network model with suitable complexity. The validity of the proposed
methodology is verified by the numerical case studies conducted for a steel truss bridge model. The
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obtained results clearly show that under the joint influence of the likelihood and Ockham factors, the
proposed network design procedure allows one to determine the optimal architecture of Bayesian
neural network model, including a suitable hidden layer transfer function, as well as the optimal
number of hidden neurons at the same time via a mathematically rigorous and robust way, which is
just complex enough to fit the training data. In addition, it is also revealed that for the present example,
regardless of the specific form of the hidden layer transfer function, the normal operation of the
Bayesian neural network requires a sufficient number of neurons in the hidden layer, and the network
optimization design is particularly important in the situation of fewer neurons in the hidden layer.
Furthermore, in addition to the successful identification of damage locations and relative extents, the
multivariate predictive distribution of the Bayesian neural network output derived in this paper can be
efficiently utilized for quantifying the uncertainty associated with the statistical damage identification
results. It should be pointed out that both the Hessian matrix of the logarithm of the posterior and the
input-dependent Jacobian matrix of the vector-valued network function evaluated at the maximum
of the posterior of weight vector, are calculated by the finite difference approach, which is very time
consuming, especially for the weight vector with high dimension. Thus, one of the directions of
future work will focus on reducing such computational cost for the purpose of practice application.
Furthermore, only numerical examples are employed in the present paper, and the proposed method
will be further validated by the experimental case studies in the coming publications.
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