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Abstract

Retinal fundus photography provides a non-invasive approach for identifying early microcir-

culatory alterations of chronic diseases prior to the onset of overt clinical complications.

Here, we developed neural network models to predict hypertension, hyperglycemia, dyslipi-

demia, and a range of risk factors from retinal fundus images obtained from a cross-sec-

tional study of chronic diseases in rural areas of Xinxiang County, Henan, in central China.

1222 high-quality retinal images and over 50 measurements of anthropometry and biochem-

ical parameters were generated from 625 subjects. The models in this study achieved an

area under the ROC curve (AUC) of 0.880 in predicting hyperglycemia, of 0.766 in predicting

hypertension, and of 0.703 in predicting dyslipidemia. In addition, these models can predict

with AUC>0.7 several blood test erythrocyte parameters, including hematocrit (HCT), mean

corpuscular hemoglobin concentration (MCHC), and a cluster of cardiovascular disease

(CVD) risk factors. Taken together, deep learning approaches are feasible for predicting

hypertension, dyslipidemia, diabetes, and risks of other chronic diseases.

Introduction

Hypertension, hyperglycemia, and dyslipidemia are disorders defined by dircect mesures of

blood pressure, fasting plasma glucose, and triglyceride levels, respectively. These disorders

frequently occur with each other and are among the primary risk factors for cardiovascular

disease (CVD), the leading cause of morbidity and mortality worldwide [1]. As China faces the

ageing of its population, changes in lifestyle and longer life expectancy have led to increased

CVD events. CVD now accounts for more than 40% of deaths from all causes [2, 3]. With a

rise in CVD on this scale, it is not only a serious public health problem but also a substantial

burden on both healthcare systems and budgets. Thus, measures to prevent and control CVD

in China are ugently needed.
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Over the past few years, advances in the field of digital retinal photography and imaging

techniques have made it possible to characterize subtle changes in retinal blood vessels pre-

cisely. From retinal fundus images, early microcirculation changes in chronic diseases prior to

the onset of obvious clinical complications can be detected directly and non-invasively [4].

Changes in the retina have used by physians to assess a patient’s risk of a number of CVD

including diabetes and hypertension [4–7]. That is, these features in the eyes may reflect the

conditions of the cardiovascular system. Poplin et al. [8] showed that retinal images alone were

sufficient to predict several CVD risk factors such as age, gender, smoking status, blood pres-

sure, and body mass index (BMI). In this study, we predicted hypertension, hyperglycemia,

dyslipidemia, and a collection of other risk factors from retinal fundus photographs in a cross-

sectional study of chronic diseases in central China using deep learning approaches. The sub-

jects in this study were mainly from rural areas of Xinxiang County, Henan Province, China.

Deep learning is a family of machine learning algorithms based on learning data representa-

tions. It allows a machine to be fed raw data and to automatically discover the reprnesentations

needed for detection or classification [9, 10]. In recent years, deep learning algorithms such as

convolutional neural networks (CNNs) have been widely applied to medical imaging analysis

[11–15]. Transfer learning with CNNs is a machine learning technology that learning of a new

task (e.g., medical images) relies on the previously learned tasks (e.g., ImageNet, a dataset of

millions of common everyday objects), the learning process can be faster, more accurate and

need less training data [12]. In recent years, transfer learning has become integral to many

applications, especially in medical imaging [12–18]. Many applications on medical imaging

have demonstrated promising results and reached expert-level diagnostic accuracies, such as

assisting classification of Alzheimer’s disease stages using 3D MRI scans [16], detection and

quantification of macular fluid in OCT images [17], breast-mass identification using mam-

mography scans [18], diagnosis of pediatric pneumonia using chest X-ray images [12] and

detection of diabetic retinopathy in retinal fundus photographs [14].

The aim of the present study was to develop automated artificial intelligence models, appli-

cable to large-scale population screening, which could be used to predict hypertension, hyper-

glycemia, dyslipidemia, and other risk factors for CVD based on retinal fundus images [8, 19].

Large-scale detection and early treatment of hypertension, hyperglycemia, and dyslipidemia

enabled by this technology, especially in rural areas, may reduce both cardiovascular events

and the economic burden on national health care systems.

Materials and methods

Study population

The dataset in this study was generated from April to June, 2017 through recruiting 625 partic-

ipants, aged 24–83 years, across several rural villages of Xinxiang County, Henan province in

central China to assess the relationships between retinal vascular profiles and chronic diseases.

The protocol of this study was reviewed and approved by the Ethics Committee of Xinxiang

Medical University for Human Studies (IRB registration number XY-HS04). Each subject

signed an informed consent form and went through a series of health measurements and ques-

tionnaires. Blood samples of each subject were collected to assess biochemical alterations from

April 20 to June 6, 2017.

Trained physicians collected the subjects’ blood samples in the morning after overnight

fasting using standard methods. Trained and certified medical students measured resting

blood pressure using an automated OMRON HEM-7071 professional portable blood pressure

monitor with the participant seated. Anthropometric measurements, including height, waist-

line, and hip circumference, were measured twice with a tape. Body weight was obtained using
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an automated weight monitor following the manufacturer’s instruction. Body weight and the

average of the height, waistline, and hip circumference were used to calculate the BMI and

waist-hip ratio (WHR).

Smoking, alcohol drinking, and salt intake statuses were obtained using a questionnaire.

For smoking and drinking, the participants were asked to self-identify as a current drinker

(drinking more than 12 times in the past year) or smoker (having smoking habits in the past

six months), former drinker or smoker, or non-drinker or non-smoker. Those who had a

drinking or smoking history were then asked for additional details. For the purpose of this

study, the population was binarized into those who were current drinkers or smokers and

those who were not. For salt intake status, the participants were asked to self-identify whether

their eating habits were salty, and the options included four categories (light, general, salty,

very salty). The subjects were also classified into two groups, salty and non-salty intake

population.

Paired color retinal fundus photographs of the participants were taken using the Canon

CR-2 Digital Non-Mydriatic Retinal Camera. For each subject, we selected the paired 2 images,

separately from left and right eyes. However, 28 subjects only have one image be selected since

the other one is missing or with low quality. Finally, we obtained 1222 images from 625 sub-

jects. Fundus images of this dataset are consistently sized (2736×1824 pixels).

Risk factors selected to develop classification models

The primary application of the deep neural network models was in the detection of hyperten-

sion, hyperglycemia, and dyslipidemia from retinal fundus images. Besides, we aimed to train

deep neural network models to predict a variety of risk factors that are related to the develop-

ment of hypertension, hyperglycemia and dyslipidemia from retinal fundus images, which

included age, BMI, WHR, lifestyle data (drinking, smoking and salty taste status) and bio-

chemical parameters from blood samples (hematocrit (HCT), total bilirubin (T-BIL), direct

bilirubin (D-BIL), mean corpuscular hemoglobin concentration (MCHC), total cholesterol

(TC) and low-density lipoprotein cholesterol (LDL-C)). The subjects and their corresponding

retinal images for each diagnosis category of the above three disorders and other risk factors

were separately divided into two classes based on their corresponding classification criterion.

For example, for variable ‘hypertension’, the subjects whose systolic BP� 130 or diastolic

BP� 85 mmHg or treatment of previously diagnosed hypertension are classified into abnor-

mal group and all other subjects are grouped into normal group; for variable ‘smoking’, the

subjects were divided into smoking or none-smoking based on their self-reported information.

When training models for each factor, only the subjects with corresponding risk factor out-

come information and their fundus images were selected. Classification criterion of each

above risk factor are available in S1 Table.

Model development

In this study, we used a transfer learning strategy to process retinal images and to develop

models having an accurate diagnosis of hypertension, hyperglycemia, dyslipidemia and other

related risk factors. For training and testing processes, we used the open source machine learn-

ing platform TensorFlow (https://www.tensorflow.org/) [20]. All the experiments were run on

a machine learning workstation with an Intel i7-6850K CPU @ 3.60 GHz with 16 GB of RAM

memory and 4 NVIDIA GeForce Titanxp GPU card of 12 GB.

The training process of transfer learning includes loading a pre-trained convolutional neu-

ral network model and its pre-trained weights, and then retraining the parameters of the fully-

connected and softmax layers to classify images [21]. The pre-trained model used in this study
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was the Inception-v3 image recognition neural network, which was trained with a dataset of

1000 classes and more than a million images of common everyday objects from the original

ImageNet database [22, 23]. Though this Inception-v3 model was not developed for medical

image recognition, it has been successfully used for classifying medical images base on transfer

learning methods [12, 24], which include classification of retinal fundus images [8, 14, 25]. In

this study, the convolutional layers from Inception-v3 were frozen and used as fixed feature

extractors. Images were first input to the Inception-v3 neural network, which extracts general

features from input images and converts the image data into feature vectors. Then a classifica-

tion part with fully-connected and softmax layers was trained to classify the images and out-

come the predicted labels.

We trained models separately for each selected risk factors. When training each model, the

whole dataset is retinal images labeled into two classes base on subjects’ corresponding risk

factor outcome information and this risk factor’s classification criterion. Then, the whole data-

set was randomly divided into three portions: a training dataset (80%), a tuning validation

dataset (10%), and a test dataset (10%). The training and tuning validation datasets were used

to develop the model, and the test dataset was used to validate the performance of the final

model. During the training processes, a back propagation algorithm was used to optimize the

network’s internal parameters [22], and L2 regularization technique was used to avoid overfit-

ting [26, 27].

Image preprocessing and augmentation

All images were resized into a consistent size (800 × 800 pixels) before training. To correct

uneven illumination and brightness, and to adjust variations contrast of retinal images, we

pre-processed all the images using the subtractive normalization approach (S1 Fig). The image

normalization formula is as follows:

imageout ¼ image� α þ imagegaussian � βþ γ;

where image is the original image, and image gaussian is the image processed by Gaussian filter,

α = 4, β = -4 and γ = -128.

Training deep neural networks on imbalanced datasets, in which the majority of data

instances belong to one class and far fewer instances belong to others, is an important problem

as imbalanced datasets exist widely in the real world [28, 29]. Classifiers trained with imbal-

anced data are often biased towards the majority class and therefore cause higher misclassifica-

tion rates for the minority class [28]. To overcome this challenge, only hypertension,

hyperglycemia, and dyslipidemia and 13 related risk factors with the ratio of its two classes less

than 4:1 were trained to obtain the classification model in this study (S1 Table). Minority clas-

ses in each variable were oversampled using an augmentation approach until the two classes

were equal. Data augmentation was conducted using Augmentor, which was an image aug-

mentation library designed to aid the artificial generation of image data for machine learning

[30].

Statistical analysis

The output of each prediction model is two continuous numbers from 0 to 1, each referring a

probability of each diagnostic label, whose sum is 1. For example, in the hypertension predic-

tion model, the results were presented as ‘hypertension: 0.897 and non-hypertension: 0.103’.

The final prediction was based on the predicted labels with a higher probability, which meant

that the predicted label in the example above was hypertension. For each risk factor, the accu-

racy of its prediction model was measured by dividing the number of correctly labeled images
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by the total number of images that are available in this risk factor. ROC curves were used to

plot the false positive rate versus the true positive rate of the model in predicting labels of the

test images. The AUC was used to evaluate the model performance for classification of each

binary risk factor.

Results

Study subjects and characteristics used to develop classification models

We obtained 1222 retinal fundus images from 625 subjects from the cross-sectional syidy of

chronic diseases dataset of Henan province in central China. The mean age of the subjects was

54.70 ± 11.67 years, and 55.86% of them were self-identified having at least one ‘chronic dis-

ease diagnosed by doctor,’ such as hypertension, hyperlipidemia, diabetes, or coronary disease.

All characteristics of the subjects are shown in Table 1, which includes 50 variables from blood

tests or self-reported questionnaires. In this study, to overcome the problem of machine learn-

ing generated by imbalanced dataset, only hypertension, hyperglycemia, dyslipidemia and 13

related risk factors with the ratio of its two classes less than 4:1 were trained to obtain the clas-

sification model (S1 Table).

Model performance in detecting hypertension, hyperglycemia and

dyslipidemia

We evaluated the models’ performance in detecting hypertension, hyperglycemia and dyslipi-

demia from retinal fundus images by accessing prediction accuracy and generating the receiver

operating characteristic curve (ROC). In the training process, we used an L2 regularization

technique to prevent overfitting and stopped the training process when both accuracy and

cross-entropy could not be improved further. The accuracy and cross-entropy of the three dis-

orders are shown in S2 Fig and the ROC curves are shown in Fig 1. As a result, we achieved an

accuracy of 78.7% in detecting hyperglycemia, with an area under the ROC curve (AUC) of

0.880; an accuracy of 68.8% in detecting hypertension, with an AUC of 0.766; an accuracy of

66.7% in detecting dyslipidemia, with an AUC of 0.703.

Model performance in classification of cardiovascular disease risk factors

Although hypertension, hyperglycemia, and dyslipidemia can be discriminated from each

other by means of levels of fasting plasma glucose (FPG), systolic blood pressure (SBP) or dia-

stolic blood pressure (DBP), and triglyceride (TG), the diagnosis and prevention of these dis-

orders continues to bother the doctors in clinical practice. The underlying causes of these

disorders include genetics, physical inactivity, aging, a proinflammatory state and hormonal

changes. Obesity, age, smoking and a collection of CVD risk factors can lead to the develop-

ment of hypertension, hyperglycemia and dyslipidemia [31, 32]. These risk factors should be

considered when attempting to manage the prevention of cardiovascular in clinical practice.

We further selected a number of other parameters that appeared to be related to CVD and

trained the deep learning models to classify each parameter via retinal fundus images. Our

models achieved an AUC>0.7 in predicting age, gender, drinking status, smoking status, salty

taste, BMI, WHR, and HCT (Table 2).

Discussion

Changes in retinal vasculature are associated with cardiovascular disorders such as hyperten-

sion, metabolic syndrome, diabetes, and stroke [4, 5, 7]. Long term duration of diabetes and

hypertension are the main factors to the onset of some eye diseases, such as diabetic
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retinopathy (DR) and hypertensive retinopathy (HR) [4]. In recent years, deep learning meth-

ods are increasingly used to improve clinical practice by using medical images including reti-

nal fundus images [9, 12, 15]. The performance of these automated models could achieve as

accurate as and in some cases superior to human experts in diagnosing diseases [14, 15, 25, 33,

34]. Triwijoyo et al. [33] developed a model of predicting HR, which achieved the prediction

accuracy of 0.986. In detecting DR, there were also several studies achieved good performance

with AUC> 0.989 [14, 25, 33, 34, 25]. However, these studies were focused on the complica-

tions of eyes caused by cardiovascular diseases. For DR, Tapp et al. [35] has shown that the

prevalence of DR is less than 10% in those with diabetes duration of less than 5 years. In our

study, we generated a retinal fundus image dataset from a population in rural areas of central

Table 1. Characteristics of 625 subjects in our chronic disease cohort dataset.

Characteristics Datasets Characteristics Datasets Characteristics Datasets

Age: mean, years (s. d.) 54.70(11.67), n = 625 Indirect bilirubin: mean, μmol/L (s.

d.)

12.59(5.99),

n = 623

MO#: mean, 109/L (s. d.) 0.33(0.11), n = 615

Gender (% male) 39.7, n = 625 ALT: mean, U/L (s. d.) 23.33(24.52),

n = 624

EO#: mean, 109/L (s. d.) 0.12(0.11), n = 614

Current Smoker: % 41.19%, n = 624 Alkaline phosphatase: mean, U/L (s.

d.)

88.67(26.21),

n = 624

BASO#: mean, 109/L (s.

d.)

0.03(0.02), n = 614

Drinking: % 26.60%, n = 624 AST: mean, U/L (s. d.) 23.16(14.08),

n = 624

RBC: mean, 1012/L (s. d.) 4.82(0.47), n = 615

Moderate exercise: % 90.24, n = 625 Creatinine: mean, μmol/L (s. d.) 61.13(12.82),

n = 624

Hematocrit: mean, % (s.

d.)

44.61(4.69),

n = 615

Salty Taste: % 23.40, n = 624 Urea: mean, mmol/L (s. d.) 4.90(1.32), n = 624 MCV: mean, fL (s. d.) 92.64(6.87),

n = 616

PSQI: mean, (s. d.) 3.84(2.73), n = 619 Uric acid: mean, μmol/L (s. d.) 280.85(82.18),

n = 624

MCH: mean, pg (s. d.) 29.25(2.12),

n = 616

Body mass index: mean, kg/m2

(s. d.)

25.59(3.45), n = 624 Total cholesterol: mean, mmol/L (s.

d.)

5.32(1.06), n = 624 MCHC: mean, g/L (s. d.) 316.28(17.50),

n = 616

Basal metabolism: mean, kcal (s.

d.)

1427.96(219.76),

n = 624

Triglyceride: mean, mmol/L (s. d.) 1.72(1.26), n = 623 Hemoglobin: mean, g/L (s.

d.)

141.09(16.44),

n = 615

Waist-hip ratio: mean, (s. d.) 0.89(0.07), n = 624 LDL-C: mean, mmol/L (s. d.) 2.95(0.78), n = 624 RDW-CV: mean, % (s. d.) 13.50(1.33),

n = 615

Body fat ratio: mean, % (s. d.) 31.05(6.51), n = 624 HDL-C: mean, mmol/L (s. d.) 1.34(0.34), n = 624 RDW-SD: mean, fL (s. d.) 44.56(4.91),

n = 616

Visceral fat index: mean, (s. d.) 10.07(4.40), n = 625 FPG: mean, mmol/L (s. d.) 6.01(1.59), n = 624 MPV: mean, fL (s. d.) 11.05(0.97),

n = 615

Current chronic disease: % 55.86, n = 623 Glycated hemoglobin: mean, % (s.

d.)

5.61(1.03), n = 612 PLT: mean, 109/L (s. d.) 249.90(64.24),

n = 615

Systolic BP: mean, mmHg (s. d.) 133.02(20.02),

n = 625

Insulin: mean, μU/L (s. d.) 8.77(7.17), n = 623 Plateletcrit: mean, % (s. d.) 0.27(0.07), n = 613

Diastolic BP: mean, mmHg (s.

d.)

84.11(11.42), n = 625 White blood cell count: mean, 109/L

(s. d.)

6.06(1.46), n = 615 PDW: mean, % (s. d.) 12.63(2.03),

n = 614

Total bilirubin: mean, μmol/L (s.

d.)

16.61(7.43), n = 623 NEUT#: mean, 109/L (s. d.) 3.55(1.15), n = 614 P-LCR: mean, % (s. d.) 46.32(2.32),

n = 615

Direct bilirubin: mean, μmol/L

(s. d.)

4.02(1.63), n = 624 Lymphocyte count: mean, 109/L (s.

d.)

2.03(0.57), n = 615

n is the number of subjects for whom that measurement was available.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BASO#, basophil absolute count; BP, blood pressure; EO#, eosinophil absolute count;

FPG, Fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MCH, mean corpuscular hemoglobin; MCHC,

mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MO#, monocytes absolute count; MPV, mean platelet volume; NEUT#, neutrophil

absolute count; PDW, platelet distribution width; P-LCR, platelet large cell ratio; PLT, platelet concentration; PSQI, pittsburgh sleep quality index; RBC, red blood cell

count; RDW-CV, red blood cell distribution width-coefficient of variation; RDW-SD, red blood cell distribution width-standard deviation.

https://doi.org/10.1371/journal.pone.0233166.t001

PLOS ONE Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0233166 May 14, 2020 6 / 11

https://doi.org/10.1371/journal.pone.0233166.t001
https://doi.org/10.1371/journal.pone.0233166


China, and demonstrate that deep learning models have the ability to predict hypertension

(AUC = 0.766), hyperglycemia (AUC = 0.880), and dyslipidemia (AUC = 0.703) using retinal

fundus images alone. This result achieved a higher accuracy when comparing with a recent

published study by Dai et al. [36], which used a different population in China as well and

showed that hypertension can be predicted using fundus images with an accuracy of 0.609.

These results demonstrate that early microcirculatory changes may reflect the disorders of

some cardiovascular risk factors before the onset of clinical cardiovascular diseases or compli-

cation eye diseases. Besides, our study is not limited to predict the above three disorders. Con-

sistent with the study by Poplin et al. [8] in a mainly Caucasian and Hispanic population, we

found that cardiovascular risk factors like age, gender, smoking status, and BMI can be pre-

dicted directly using retinal fundus images of rural population in central China. Since most of

Fig 1. ROC curves for predicted models in detecting three disorders.

https://doi.org/10.1371/journal.pone.0233166.g001

Table 2. Classification criterion and the model performance of each variable.

Risk factors used for the prediction Status or cutoff value Prediction accuracy (%) AUC

Hyperglycemia Fasting plasma glucose > 6.1 0.787 0.880

Hypertension Systolic BP > 140 mmHg or Diastolic BP > 90 mmHg 0.688 0.766

Dyslipidemia Triglyceride > 1.71 0.667 0.703

Age >55 0.748 0.850

Gender Male/Female 0.624 0.704

Drinking Drinkers/non-drinkers 0.863 0.948

Salty Taste High-salt diet/lower-salt diet 0.757 0.809

Smoking Smoker/non-smoker 0.732 0.794

BMI ≦24.0 kg/m2 0.712 0.731

WHR Male<0.9, Female<0.85 0.646 0.704

HCT Male 40–50%, Female 35–45% 0.698 0.759

MCHC 316–354 g/L 0.605 0.686

T-BIL 3.4–17.1 μmol/L 0.700 0.764

D-BIL 0–3.4 μmol/L 0.650 0.703

Abbreviation: BMI, body mass index; BP, blood pressure; D-BIL, direct bilirubin; HCT, hematocrit; MCHC, mean corpuscular hemoglobin concentration; T-BIL, total

bilirubin; WHR, waist-hip ratio

https://doi.org/10.1371/journal.pone.0233166.t002
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the cardiovascular risk factors can be reflected by retinal fundus images alone, our deep learn-

ing methods may, therefore, offer a novel, noninvasive measurement of early changes in the

vasculature and allow the identification of people at risk of cardiovascular diseases. Impor-

tantly, our results show that applying deep learning to retinal fundus images can also predict

blood erythrocyte parameters, including HCT and MCHC (Table 2). Previous studies have

confirmed that erythrocyte parameters are associated with cardiovascular diseases, such as

metabolic syndrome [37] and that elevated blood erythrocyte parameters can have adverse

effects on retinal vessel calibers [38].

CVD, the major cause of death in China, has become a major public health concern [3, 39,

40]. The increasing prevalence of CVD in China is closely linked to a number of risk factors,

including hypertension, dyslipidemia, diabetes, smoking, obesity, and metabolic syndrome

[31, 39]. An efficient and accurate identification of these risk factors is essential to ensure the

prevention and control of CVD. For example, stroke can be reduced by 50% by controlling

hypertension [3]. In this study, we applied a deep learning algorithm to analyze retinal fundus

images to develop models that, without anthropometry and biochemical data, predicted many

cardiovascular risk factors. This technology, coupled with informed policy and intervention

strategies, offers a potentially automated approach to preventing and controlling CVD in large

populations, especially in rural areas of China.

Despite the good performance of our models, our study has several limitations. Our dataset

size is relatively small, although transfer learning algorithm can achieve a highly accurate

model with a relatively small training dataset [11–13]. A larger population with more cardio-

vascular events would make deep learning models that could be trained and evaluated with

more accuracy and higher confidence. In addition, employment of the datasets from other

sources to validate our models would be beneficial for all these predictions. Overcoming these

limitations using these datasets also provides an opportunity to iteratively re-train the deep

learning algorithms and improve model performance.

In conclusion, we show that the application of deep learning to retinal fundus images is use-

ful in the prediction of the important CVD risk factors of hypertension, dyslipidemia, diabetes.

More importantly, it makes cardiovascular risk assessment of a large population both techni-

cally and economically feasible. Our work also suggests that deep learning model analysis of

retinal fundus images is useful to diagnose widespread systemic vascular diseases.
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