
Journal of

Personalized 

Medicine

Review

The Genetics of Spondyloarthritis

Roberto Díaz-Peña 1,* , Patricia Castro-Santos 2, Josefina Durán 3 , Catalina Santiago 4 and
Alejandro Lucia 4,5

1 Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
2 Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;

patricassan@gmail.com
3 Department of Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile,

Santiago 7690000, Chile; jgduran@uc.cl
4 Faculty of Sport Sciences, European University of Madrid, 28670 Madrid, Spain;

catalina.santiago@universidadeuropea.es (C.S.); alejandro.lucia@universidadeuropea.es (A.L.)
5 Research Institute Hospital 12 de Octubre (‘imas12’), 28041 Madrid, Spain
* Correspondence: roberto.diaz.pena@sergas.es or roberto.diaz@uautonoma.cl; Tel.: +34-981-955-073

Received: 6 August 2020; Accepted: 24 September 2020; Published: 2 October 2020
����������
�������

Abstract: The term spondyloarthritis (SpA) encompasses a group of chronic inflammatory diseases
with common features in terms of clinical presentation and genetic predisposition. SpA is characterized
by inflammation of the spine and peripheral joints, and is also be associated with extra-articular
inflammatory manifestations such as psoriasis, uveitis, or inflammatory bowel disease (IBD).
The etiology of SpA is not completely understood, but it is known to have a strong genetic component
dominated by the human leukocyte antigen (HLA)-B27. In the last few years, our understanding
of genetic susceptibility to SpA, particularly ankylosing spondylitis (AS), has greatly improved
thanks to the findings derived from powered genome-wide association studies (GWAS) based on
single nucleotide polymorphism (SNP) arrays. These studies have identified many candidate genes,
therefore providing new potential directions in the exploration of disease mechanisms, especially with
regard to the key role of the immune system in the pathogenesis of SpA. SpA is a complex disease
where genetic variability, environmental factors, and random events interact to trigger pathological
pathways. The aim of this review is to summarize current findings on the genetics of SpA, some of
which might help to study new treatment approaches.
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1. Introduction

The term spondyloarthritis (SpA) encompasses a group of chronic inflammatory diseases that
exhibit common features in terms of clinical presentation and genetic predisposition. SpA is
characterized by inflammation of the spine and peripheral joints, and can also be associated
with extra-articular inflammatory manifestations such as psoriasis, uveitis, or inflammatory
bowel disease (IBD). The spectrum of SpA includes several conditions, including ankylosing
spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis (ReA), IBD-associated (or ‘enteropathic’)
arthritis, juvenile spondyloarthritis, and undifferentiated SpA.

Genetic variability, environmental factors, and random events can interact to trigger pathological
pathways involved in SpA development [1]. With regard to genetic factors, although the etiology of
SpA is not completely understood, it is known to have a strong genetic component, dominated by
the human leukocyte antigen (HLA)-B27 gene. The association with HLA-B27 has been known since
1973 [2,3]. In the last few years, our understanding of genetic susceptibility to SpA, particularly AS,
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has considerably improved due to an increase in the statistical power of genome-wide association
studies (GWAS) based on single nucleotide polymorphism (SNP) arrays [4]. The aim of this review is
to summarize current state of knowledge on the genetics of SpA. Because AS is the prototype of SpA,
many of the sections will focus on this condition. We also highlight potential future research directions.

2. Genetic Epidemiology of SpA

It is known that SpA runs strongly within families [5]. The recurrence risk ratio of the sibling or
first-degree relative of a patient has been estimated at 80 for AS and 40 for SpA as a whole [6,7]. AS is
indeed highly heritable, with studies of disease recurrence conducted in twins showing a heritability
for this condition of ~90% [8]. There is also high heritability with regard to the clinical manifestations of
the disease [9] (e.g., 40% for radiographic disease severity and 62% for age of symptom onset). Because
of the low prevalence of AS, ranging from 0.1% to 1.4% globally [10] (and thus with a very low number
of twin pairs that can be assessed in research studies), it could be that the reported high values of
heritability are largely due to the small sample size of most studies published in the field. In this regard,
recent developments in heritability estimation have been made using SNP data from unrelated cases
and controls. Thus, in the UK biobank, the heritability of AS has been estimated at 39.9%, vs. 7.4% for
rheumatoid arthritis (RA), 24.1% for Crohn’s disease (CD), 18.6% for ulcerative colitis (UC), and 16.2%
for psoriasis. The differences between the heritability estimations reported in twin and control-case
studies suggest that there are common SNP variants involved in the pathogenesis of AS that are yet to
be identified. The SNPs associated with AS would explain 27.8% of the heritability of this condition,
with greatest contribution coming from the major histocompatibility complex (MHC) loci (i.e., 20.4%,
vs. 7.4% for non-MHC loci) [11,12].

AS, PsA, and IBD share a common immunopathogenesis. These disorders are collectively
associated with HLA class I molecules and have similar clinical features [13]. Although the exact
aetiology of PsA remains unclear, cumulative evidence implicates a substantive role for genetic
factors [14,15]. PsA is associated with multiple HLA molecules including HLA-B08, HLA-B27,
and HLA-B38, while HLA-C06 is specific of psoriasis [16]. Besides MHC, a large number of genetic loci
have been described in PsA using GWAS [17,18]. Although the association of IBD-associated arthritis
with HLA is weaker compared to the other types of SpA, the role of genetics in this condition is also
clear. Concordance in monozygotic twins is 50–75% for CD, although the phenotypic concordance of
UC in monozygotic twins is lower (10–20%), suggesting that heritability might be less important [19].
GWAS and their subsequent meta-analyses have improved our understanding of the importance of
genetic susceptibility in IBD, with more than 200 loci currently known to be potentially associated
with this condition [20]. Identifying predisposing genetic polymorphisms in the context of SpA might
provide clues to understanding the pathogenic mechanisms involved in this condition.

3. Major Histocompatibility Complex

The genomic map of the human MHC (HLA) spans about 7.6 Mb located on the short arm of
chromosome 6 (Figure 1a), and encodes core components of the immune system [21]. The classical HLA
loci are labelled -A, -B, and -C (i.e., class I) and -DRB1, -DQB1, and -DPB1 (i.e., class II). HLA class I and
II genes encode proteins that play a key role in the immune system by modulating responses to invading
pathogens. Thus, both HLA class I and II products are involved in disease resistance and susceptibility.
Specifically, the HLA region is known for its association with autoimmune diseases [21]. A hallmark
of the MHC is that it contains highly polymorphic genes that encode different antigen-presenting
molecules [22], with HLA class I genes showing a higher degree of polymorphism than class 2 genes
(Figure 1b). The genes of the HLA class I region encode for a heavy chain of 340 amino acids (Figure 1c),
whose extracellular domains (α1, α2, and α3) are encoded by exons 2, 3, and 4, respectively. Of note,
the gene encoding β2-microglobulin, the light non-polymorphic chain, is located on chromosome 15.
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Figure 1. Schematic representation of the human leukocyte antigen (HLA) region (a), polymorphism 
in HLA class I genes (b) and structure of an HLA class I molecule (c). 
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been demonstrated worldwide [23] and evidence for the specific role in AS of a class I surface 
antigen encoded by the B locus in the MHC and HLA-B27 comes from both linkage and association 
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mechanism(s) by which HLA-B27 participates in the pathogenesis of SpA represents a remarkable 
challenge. Indeed, although it has been almost 50 years since it was first described that the HLA-B27 
gene contributes to SpA susceptibility [2,3], the molecular underpinnings still remain to be clearly 
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The prevalence of HLA-B27 varies between populations and, in general, the prevalence of AS is 
proportional to the frequency of HLA-B27 [24]. Thus, the prevalence of AS averages ∼8% in 
Europeans or North Americans, with this condition being rare among African people and Australian 
Aboriginals. HLA class I molecules present peptides repertoires (derived from the degradation of 
endogenous proteins) to CD8+ T-cells (also known as ‘cytotoxic T-lymphocytes’) and natural killer 
(NK) cells. Therefore, peptide binding determines the features of HLA class I molecules and the 
study of the pathogenic role of HLA-B27 in AS has focused on this phenomenon. More than 200 
subtypes of the HLA-B27 gene have been discovered, some too rare to be investigated for disease 
associations. The resulting HLA-B27 peptide subtypes differ by amino acid substitutions in the 
exons 2 and 3 (alpha 1 and alpha 2 domains, respectively) of the peptide-binding cleft, which has six 
side pockets (conventionally labelled A-F). Differences in antigenic presentation can be largely 
interpreted in terms of the effect of polymorphisms on pocket interactions. 

Not all subtypes are equally distributed in world populations [23]. Thus, AS is relatively more 
frequently associated with HLA-B*27:05 in nearly all populations of the world, being common in 
Caucasians and American Indians [25]. Most of the relatively common HLA-B27 alleles (B*27:02, 
B*27:04, B*27:05, and B*27:07) have been associated with AS [26]: HLA-B*27:02 in Mediterranean 
populations, HLA-B*27:03 in sub-Saharan/Middle East populations, HLA-B*27:04 in Asian 
populations, and HLA-B*27:07 in Southeast Asian populations. Two allele subtypes, B*27:06 

Figure 1. Schematic representation of the human leukocyte antigen (HLA) region (a), polymorphism in
HLA class I genes (b) and structure of an HLA class I molecule (c).

3.1. HLA-B27

AS is one of the best examples of a disease associated with an HLA marker. This association has
been demonstrated worldwide [23] and evidence for the specific role in AS of a class I surface antigen
encoded by the B locus in the MHC and HLA-B27 comes from both linkage and association studies,
and also from research in transgenic animal models [9]. However, identifying the mechanism(s) by
which HLA-B27 participates in the pathogenesis of SpA represents a remarkable challenge. Indeed,
although it has been almost 50 years since it was first described that the HLA-B27 gene contributes to
SpA susceptibility [2,3], the molecular underpinnings still remain to be clearly elucidated.

The prevalence of HLA-B27 varies between populations and, in general, the prevalence of AS is
proportional to the frequency of HLA-B27 [24]. Thus, the prevalence of AS averages ∼8% in Europeans
or North Americans, with this condition being rare among African people and Australian Aboriginals.
HLA class I molecules present peptides repertoires (derived from the degradation of endogenous
proteins) to CD8+ T-cells (also known as ‘cytotoxic T-lymphocytes’) and natural killer (NK) cells.
Therefore, peptide binding determines the features of HLA class I molecules and the study of the
pathogenic role of HLA-B27 in AS has focused on this phenomenon. More than 200 subtypes of
the HLA-B27 gene have been discovered, some too rare to be investigated for disease associations.
The resulting HLA-B27 peptide subtypes differ by amino acid substitutions in the exons 2 and 3
(alpha 1 and alpha 2 domains, respectively) of the peptide-binding cleft, which has six side pockets
(conventionally labelled A-F). Differences in antigenic presentation can be largely interpreted in terms
of the effect of polymorphisms on pocket interactions.

Not all subtypes are equally distributed in world populations [23]. Thus, AS is relatively more
frequently associated with HLA-B*27:05 in nearly all populations of the world, being common in
Caucasians and American Indians [25]. Most of the relatively common HLA-B27 alleles (B*27:02,
B*27:04, B*27:05, and B*27:07) have been associated with AS [26]: HLA-B*27:02 in Mediterranean
populations, HLA-B*27:03 in sub-Saharan/Middle East populations, HLA-B*27:04 in Asian populations,
and HLA-B*27:07 in Southeast Asian populations. Two allele subtypes, B*27:06 (common in Southeast
Asian populations) and B*27:09 (described only in Sardinia and Southern Italy) appear to be exceptions,
as they do not seem to be associated with SpA [27,28].

There are several hypotheses about the influence of the underlying mechanism of HLA-B27
and the involvement of the different B27 alleles on SpA susceptibility [26,29]. The oldest or
‘classic’ theory focuses on canonical functions of HLA-B27 in antigenic presentation. It suggests
that the disease arises from the capacity of HLA-B27 to present an ‘arthritogenic peptide’ to CD8+
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T-cells (Figure 2A), which ultimately leads to chronic inflammation. Due to the differential disease
associations, HLA-B*27:06 and B*27:09 support the theory that a “molecular mimicry” between
foreign and self-peptides may unleash a cytotoxic immune response (i.e., of CD8+ T-cells), leading to
the autoimmune destruction of self-tissues [30]. As discussed later, some support the idea of the
implication of an aberrant peptide presentation, with the influence of different types of HLA-B27 alleles.
However, absolute binding preferences of HLA-B27 fail to entirely explain disease association [31].
An alternative mechanism might be that HLA-B27 contributes to SpA through its propensity to form
HLA-B27 misfolding or heavy chain homodimerization, thereby inducing endoplasmic reticulum stress
caused by the inefficient folding [32], or by interaction of B27 homodimers with receptors of innate
immunity [33] (Figure 2B,C, respectively). In addition, alterations in intestinal bacterial communities
(i.e., ‘dysbiosis’) have been identified in SpA [34,35], placing the microbiome as an emerging area in
SpA [36]. HLA-B27-induced immunological (pro-inflammatory) changes in gut mucosa might be also
implicated, with an early and sustained expansion of T-helper 17 (Th17, also known as CD4+) cells,
a subset of pro-inflammatory T lymphocytes defined by their production of interleukin 17 [IL-17)] [37].
Perturbation of the interleukin (IL)-23/Th17 axis is a fundamental trigger of chronic inflammation,
with Ciccia et al. showing that overexpression of IL-23, but not of IL-17, in the terminal ileum
(particularly in Paneth cells) is a pivotal feature of subclinical gut inflammation in AS [38].
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Figure 2. Hypotheses explaining the influence of HLA-B27 in ankylosing spondylitis (AS). According to
the ‘classic’ arthritogenic peptide hypothesis, molecular mimicry between foreign and self-peptides
could unleash CD8+ T-cell cross-reactivity [30], leading to AS (A). In turn, the HLA-B27 misfolding
hypothesis enunciates that the accumulation of incompletely-assembled HLA-B27 molecules in the
endoplasmic reticulum (ER) causes a proinflammatory unfolded protein response (UPR) that leads
an increased production of interleukin (IL)-23, together with activation of T-helper (Th17) cells [26]
(B). HLA-B27 has a propensity to form homodimers that can be recognized by specific receptors
expressed on the surface of natural killer (NK) and CD4+ T-cells [33], increasing the expression of the
proinflammatory cytokines IL17 and IL23 [39] (C).

3.2. Other HLA Class I Genes

Discovery of non-B27 HLA associations with SpA is challenging. The huge linkage disequilibrium
(LD) within the HLA region of B27 haplotypes makes it difficult to identify independent contributions
of specific allelic variants. However, there is evidence suggesting that the presence of other HLA-B
alleles (including B14, B38, B39, B40, and B52) might also confer greater susceptibility to AS [29].
Cortes et al. have identified other HLA-B alleles associated with AS [40] in a large study with 9069 cases
and 13,578 controls of European descent. In addition to HLA-B27, several other HLA-B alleles increased
disease susceptibility (i.e., the ‘risk’ alleles B*13:02, B*40:01, B*40:02, B*47:01, and HLA-B*51:01),
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whereas B*07:02 and B*57:01 seemed to be ‘protective’ alleles. Multiple associations of non-HLA-B27
alleles have been replicated in cohorts of patients of Asian ancestry [41] and independent associations
with variants in the HLA-A and HLA-C loci have also been observed [40,42].

The prevalence of SpA is lower in Blacks and Africans than in other ethnic groups [43,44].
This could be attributable, at least partly, to a lower frequency of HLA-B27 in the former. However,
the influence of HLA markers other than B27 (e.g., different HLA-B alleles) has not been investigated
thoroughly in these regions. In this regard, we have conducted studies in sub-Saharan populations
(i.e., Burkina Faso, Togo, and Zambia) that showed genetic evidence for an implication of HLA-B*1403
in AS [45,46]. The influence of HLA class I allotypes in AS was homogeneous in the sub-Saharan
populations we studied, suggesting a common mechanism of predisposition to AS. The pathogenic
behavior of B*14:03 and B*27:05 might be related to a common feature but further research is required
to clarify this issue. It would be interesting to investigate the HLA-B distribution among patients with
SpA in countries where the influence of B27 on the pathogenesis of this condition is less important,
such as Latin American countries [47], and also to study more African countries.

3.3. Recognition by NK Cell Receptors

Besides interacting with the T-cell receptor (TCR), HLA class I molecules bind to several
other immunomodulatory molecules, including members of the killer immunoglobulin-like receptor
(KIR, also known as CD158) family. KIR genes present a great diversity in terms of gene content and
expression, and also of allelic polymorphism, encoding both activating and inhibitory receptors [48].
The presence of different combinations of KIR genes can generate inhibitory or activation signals to
NK and T-cells, and the effector function is considered to result from the balance of these signals.
The contribution of each KIR gene to signaling is not clear, but their relevance in SpA has been
supported by different genetic studies (Table 1).

KIRs are unique in terms of their diversity and of their capacity to recognize specific HLA class
I allotypes. Notably, KIR3DL1 binds to the HLA-B α1 helix around residues 76–80, with specificity
for all Bw4 alleles containing isoleucine at heavy chain residue 80 [49]. KIR3DL1 has been shown to
recognize HLA-B27 [50], whereas in vitro-refolded B27 dimers were shown to interact with KIR3DL1
and KIR3DL2 [51]. It actually seems that both KIR receptors (KIR3DL1 and KIR3DL2) are able to bind
to HLA-B27 through both the classical beta2m/heavy chain (HC) and the beta2m/free HC homodimers
(HC-B27), which are independent of the sequence of the bound peptide [51]. KIR3DL2 is present on
the membranes of NK and Th17 cells, and several studies have shown that HC-B27 can interact with
KIR3DL2 to promote the survival and growth of both NK and Th17 cells [39,52]. This could activate the
IL-23/IL-17 axis to launch the inflammatory reaction in SpA patients, but this mechanism of activation,
originally derived from the HLA-B27 misfolding, needs to be characterized.

KIRs and HLA class I molecules might have a modulating effect on SpA development, through a
genetic imbalance between activating and inhibitory signals. This could be caused by upregulation
of activation or by the loss of inhibition or by a combination thereof, with a relevant role played
by specific KIR receptors. There are also studies reporting a genetic influence of KIR genes in PsA
(Table 1) [71]. A positive association has been found between the activating KIR2DS1 and KIR2DS2
genes, as well as the inhibitory KIR2DL2 gene and PsA susceptibility. HLA-C1 allotypes (Ser77/Asn80)
are ligands for the inhibitory receptors KIR2DL2 and KIR2DL3, as well as the activator receptor
KIR2DS2, whereas HLA-C2 allotypes (Asn77/Lys80) are ligands for KIR2DL1 and KIR2DS1. Thus,
the absence of ligand for inhibitory KIR (HLA-C1 for KIR2DL2) might involve a lack of inhibitory
signal, which would increase susceptibility to PsA. However, despite the fact that there are promising
results, to date and from a genetic perspective, most hypotheses are somewhat speculative because of
the small number of samples taken into account, at least in the studies performed in PsA.
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Table 1. Basic research studies showing the associations of different types of killer immunoglobulin-like receptor (KIR) with spondyloarthritis (SpA).

Reference Participants, Main Assessments Conclusions

[53] 366 patients with PsA and 299 controls. KIR and
HLA genotyping.

The activating KIR2DS1 and/or KIR2DS2 genes were more frequent in
patients, showing their association with disease risk, but only when
HLA ligands for their homologous inhibitory receptors, KIR2DL1 and
KIR2DL2/3, were missing.

[54]
220 patients positive for psoriasis vulgaris, 75 also
diagnosed as positive for PsA, and 90 controls.
KIR genotyping.

The activating KIR2DS1 gene was more frequent in patients with PsA,
compared to those with psoriasis negative for PsA, and to
unaffected controls.

[55]

396 patients with psoriasis and 372 controls.
Psoriasis vulgaris without joint symptoms was
diagnosed in 241 patients, guttate (or ‘eruptive’)
psoriasis in 80 patients, and PsA in 75 patients. KIR
and HLA-C genotyping.

There was a trend towards a higher KIR2DS1 gene frequency among
patients with PsA.

[56]

Two HLA-B27–positive Caucasian populations were
selected (Spain: 71 patients with AS and 105
controls; and Azores, Portugal: 55 patients with AS
and 75 controls). HLA-B and
KIR3DS1/3DL1 genotyping

The activating KIR3DS1 gene was associated with AS compared with
B27 controls, whereas the inhibitory KIR3DL1 gene was decreased in
patients with AS compared with B27 controls. The effect of KIR3DL1
(protection) or KIR3DS1 gene (susceptibility) on AS might stronger
when the corresponding ligand Bw4-I80 is present.

[57]
Two HLA-B27–positive Asian populations were
selected (China: 42 patients with AS and 30 controls;
and Thailand: 30 patients with AS and 16 controls)

KIR3DS1, KIR2DS5, and KIR2DL5 genes were more frequent in
patients with AS. The frequency of 3DL1/3DL1 and 3DL1/3DS1
genotypes was lower and higher in patients, respectively.

[58] 200 patients with AS and 405 controls.
KIR genotyping.

No differences in KIR genotype frequencies between patients
and controls.

[59]
83 patients with AS and 107 controls, all
HLA-B27–positive. KIR3DL1 and KIR3DS1
subtyping (genes and alleles).

The frequency of the inhibitory KIR3DL1 gene was lower in patients
than in B27 controls. The KIR3DL1 gene was negatively associated
with AS at the expense of alleles encoding functional receptors
(KIR3DL1*F) but not of KIR3DL1*004 (not functional).

[60]
115 patients with AS and 119 controls, all
HLA-B27–positive. KIR and HLA-C genotyping.
KIR and HLA-C genotyping.

The frequency of the inhibitory KIR2DL1 and KIR2DL5 gene was
higher in patients than in controls.

[61]

270 patients with AS and 435 controls, all
HLA-B27–positive. KIR3DL1 and KIR3DS1
subtyping (genes and alleles), and
HLA-B genotyping.

The activating KIR3DS1*013 allele was more frequent in patients
independent of the presence of the HLA-Bw4I80 epitope, whereas the
presence of inhibitory allotypes such as KIR3DL1*004 demonstrated a
negative association in patients in the presence of HLA-Bw4I80.
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Table 1. Cont.

Reference Participants, Main Assessments Conclusions

[62] 35 patients with AS and 200 controls. KIR and HLA
genotyping.

The telomeric KIR2DL5A, KIR2DS1, and KIR3DS1 genes were more
frequent in patients compared to controls. KIR3DL1/Bw4I80 and
KIR2DS1/C2 compound genotypes showed association with AS.

[63] 60 patients with AS and 60 controls. KIR
genotyping.

The activating KIR3DS1 gene was more frequent in patients than in
controls. The frequency of KIR3DL1/KIR3DL1 genotype was lower in
patients than in controls.

[64] 110 patients with AS, 86 patients with Behçet
disease, and 154 controls. KIR genotyping.

Compared with controls, the frequency of the inhibitory gene KIR3DL1
was lower in patients with AS and also in those affected by uveitis.

[65] 678 patients with PsA and 688 controls. KIR and
HLA genotyping.

The activating KIR2DS2 gene was more frequent in patients than
in controls.

[66] 176 patients with AS and 435 controls. KIR
genotyping.

The frequency of the KIR2DS1 and KIR3DS1 genes was higher in
patients than in controls.

[67] 200 patients with PsA and 200 controls. KIR and
HLA genotyping.

The inhibitory KIR2DL3 gene was more frequent in patients than in
controls, whereas the frequency of the inhibitory KIR2DL5
gene was lower.

[68]

Successful genotyping in 392 patients with PsA, 260
patients with cutaneous psoriasis and with no
arthritis, and 371 controls. KIR3DL1 subtyping
(alleles).

The non-functional KIR3DL1 allele was associated with psoriatic
diseases (i.e., higher frequency in both types of patients
compared to controls).

[69] 653 patients with AS and 952 controls. KIR and
HLA-C genotyping.

The frequency of the inhibitory KIR2DL5 gene was lower in patients.
In addition, KIR2DL5 combined with the HLA-C1/C2 heterozygous
genotype showed a protective effect against AS.

[70] 138 patients with ReA and 151 controls. KIR and
HLA-C genotyping.

The inhibitory KIR2DL2 and KIR2DL5 genes were less frequent in
patients than in controls. The activating KIR2DS1 alone or in
combination with the HLA-C1C1 genotype was associated with
susceptibility to ReA, whereas KIR2DL2 in combination with the
HLA-C1 ligand was associated with protection against ReA.

Abbreviations: HLA, Human Leukocyte Antigen; PsA, psoriatic arthritis; ReA, reactive arthritis.
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3.4. MHC Class II Region

Several studies have investigated genes involved in antigenic presentation by HLA class I
molecules, such as latent membrane protein 2 (LMP2) and LMP7, and transporters associated with
antigen processing (TAP) [29]. These findings are interesting as they show how aberrant events in
antigenic presentation may explain the pathogenesis of AS. However, the results have proven difficult
to replicate. In addition, HLA class II molecules might be also involved in AS development [41]:
HLA-DRB1*01:03, HLA-DRB1*11, HLA-DRB1*15:01, HLA-DQB1*02:01, HLA-DQB1*06:02. and
HLADPB1*03:01. We conducted a study of high-resolution genotyping in the HLA region enrolling
B27-positive patients with AS and healthy controls [72]. The results suggested that HLA-DPA1
and HLA-DPB1 alleles contributed to AS susceptibility. These findings have been replicated
subsequently [40,73], providing further evidence for the possible involvement of HLA class II (DP)
molecules in the development of AS. HLA-DPA1 and HLA-DPB1 forms the HLA-DP heterodimer,
which functions as a receptor for processed peptides derived predominantly from membrane and
extracellular proteins, and displays them to CD4+ T-cells. The strongest association has been found
for an amino acid substitution in the peptide-binding cleft of HLA-DP [40], suggesting the impact on
the peptide repertoire presented by HLA-DP. However, functional experiments are needed to confirm
these finding

4. Genome Wide Association Studies

4.1. Current Status of Variant Discovery

As mentioned above, disease-associated SNP markers explain 27.8% of the heritability of AS,
with the greatest contribution (20.45) coming from MHC loci and 7.4% from non-MHC loci [11,12].
However, there are likely common SNP variants involved in AS pathogenesis that remain to be
identified. In this regard, GWAS are considered to be one of the primary tools for determining
genetic links to diseases [74]. Before the possibility of performing GWAS, “candidate gene studies”
based on a priori hypothesis were essentially unsuccessful due to our limited understanding of the
genetics of complex traits and yielded many false positive results. The emergence and development
of high-throughput genotyping platforms, and analysis methods, enabled to move to the next stage,
hypothesis-free GWAS.

The first GWAS involving patients with AS identified two loci, located in endoplasmic reticulum
aminopeptidase 1 (ERAP1) and IL23 receptor (IL23R) genes, associated with this disease [75]. Since then,
there has been an exponential increase in the number of genes associated with AS (Figure 3). To date,
over 100 non-MHC loci have been associated with the development of this condition [76]. The largest
case–control association study in AS included genotyping of ~130,000 SNPs (Illumina Immunochip,
which has incomplete genome-wide coverage) in 8726 patients with AS and 34,213 controls [11]. In this
study, Ellinghaus et al. were able to identify 113 AS-associated genome-wide significant variants. Many of
the genes implicated can be assigned to different categories according to their biological function and their
possible role in disease (Figure 4). GWAS in SpA revealed the potential involvement of mechanisms and
pathways that were previously unsuspected, particularly with regard to aminopeptidases or IL23/IL17
pathways. Three M1-aminopeptidases are associated with AS: ERAP1, ERAP2, and puromycin-sensitive
aminopeptidase (NPEPPS). ERAP1 and ERAP2 cleave the peptides before their binding to HLA-B27 [77],
which alters their function and might change the antigenic pool expressed by HLA-B27 molecules [78].
Moreover, genotypes of ERAP1 and ERAP2 have a considerable impact on the levels of functional enzymes
in cells and on the expression of different forms of HLA-B27 on the cell surface [79]. Although the
mechanism/s involved remain to be determined, ERAP-inhibition represents a potential therapeutic
option [80]. There is a high percentage of genetic variants involved in the IL23 pathway that can
influence AS susceptibility [75,81,82]. This has generated great interest in relation to drugs that target this
pathway and their potential pharmacogenetic value. However, studies carried out to date were devoid of
robustness. Only a randomized double-blind proof-of-concept study has shown an association between
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IL23R and ERAP1 variants, and the response of patients with AS to treatment with an IL17 inhibitor
(i.e., secukinumab) [83]. Another cytokine involved in AS is tumor necrosis (TNF)α, a pro-inflammatory
molecule that plays a central role in autoimmune disease pathogenesis. As with IL-23 pathway, variation in
TNFα pathway genes could influence the response to (and adverse effects of) TNFα-inhibiting treatments,
but the design of these studies is challenging given the multitude of environmental factors and inherent or
genetic factors that can affect the drug response. The rest of loci associated to AS can be divided into the
following categories: transcription factors and intergenic regions. Among transcription factors is RUNX
transcription factor 3 (RUNX2) [12,84], which also has been associated with PsA [85]. RUNX3 plays
a prominent role in the development and differentiation of CD8+ T-cells [86], but also has important
functions in many other cell types, including chondrocytes, Th1 helper cells, dendritic cells, and NK
cells [87]. Thus, understanding the pleiotropic effects of RUNX3 could be relevant to identify key aspects
in the pathogenesis of AS, potentially revealing new targets for therapy.
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Figure 4. Associated genome-wide association studies (GWAS) genes grouped by categories in
ankylosing spondylitis (AS). Abbreviations: ERAP, endoplasmic reticulum aminopeptidase; IL1R1,
interleukin-1 receptor 1; IL2R2, interleukin-2 receptor 2; IL6R, interleukin 6 receptor; IL10, interleukin
10; IL12B, interleukin 12B; IL19, interleukin 19; IL23R, interleukin 23 receptor; JAK2, janus kinase
2; NFKB, nuclear factor kappa-light-chain-enhancer of activated B cells 1; NFKBIA, nuclear factor
kappa-light-chain-enhancer of activated B cells inhibitor alpha; NPEPPS, puromycin-sensitive amino
peptidase; TNFAIP3, TNF alpha induced protein 3; TNFRSF1A, TNF receptor superfamily member 1A;
TNFSF8, TNF superfamily member 8; TYK2, non-receptor tyrosine-protein kinase.

Similar to AS, the strongest genetic signal of susceptibility to psoriasis and PsA comes from the
MHC region, mainly HLA-B27 and HLA-C06 [16], although there is a need for a better understanding of
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the relevance of HLA alleles in this condition. Three GWAS have been reported [90–92], identifying 13
regions associated with PsA. More recently, Stuart et al. carried out a GWAS on a very large cohort
patients with PsA and unaffected controls (n = 1430 and 1417, respectively), and combined their original
results with those of previously published data (yielding a total of 3061 cases and 13,670 controls) [18].
They detected 10 additional regions associated with PsA at genome-wide significance. To date,
the results of GWAS and subsequent meta-analyses, as well as fine-mapping studies, have allowed
identification of 50 susceptibility non-HLA genes associated with PsA [93]. Many of the genes implicated
can be grouped into immune/inflammation-related genes, involving biological signalling pathways:
IL23/Th17, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), janus kinase
(JAK)/signal transducers and activators of transcription (STAT), and mitogen-activated protein kinase
(MAPK). The most prominent genes are IL23A, TNFAIP3-interacting protein 1 (TNIP1), ERAP1,
ERAP2, non-receptor tyrosine-protein kinase (TYK2), signal transducer and activator of transcription
4 (STAT4), interleukin 12 B (IL12B), RUNX3, toll-like receptor 4 (TLR4), interleukin 13 (IL13), IL23R,
TRAF3 interacting protein 2 (TRAF3IP2), and protein tyrosine phosphatase, non-receptor type 22
(PTPN22)—some of them shared with other diseases, such as AS, IBD, ReA, RA, and systemic lupus
erythematosus. There is a strong need for more GWAS to be conducted in patients with PsA.

Genomic diversity among populations can offer new opportunities to identify genetic variants
associated with AS. Recently, Bergström et al. reported a high level of genetic variation restricted
by geographical regions [94]. They found an excess of previously undocumented common
genetic variation private to the Americas, Southern Africa, Central Africa, and Oceania, which are
usually underrepresented populations in GWAS, and absent in the rest of geographical regions
(Europe, East Asia, the Middle East, or Central and South Asia). Figure 5 shows the proportion of
individuals with different ancestries represented in GWAS carried out in AS. In this Figure, we have
included a total of 114,306 individuals extracted from the GWAS Diversity Monitor [95]. There is a
disproportionate contribution of data from African American, Afro-Caribbean, and Hispanic or Latin
American populations compared to the total number of individuals included in GWAS, with Asians
having a significant representation. The percent of people of European ancestry used for initial phase
is higher than in replication studies (p value < 10−5), to the detriment of Asians.
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4.2. Missing Heritability

Although our understanding of genetic susceptibility to disease has greatly improved thanks to
GWAS [74], the loci described in these studies tend to have small effect sizes, being able to explain only
a modest proportion of the heritability predicted from traditional genetic epidemiology studies [96].
The case of SpA is not an exception, with only 27.8% of AS heritability being explained to date [11].
Some factors might explain this “missing heritability” [97].

First, it has been suggested that rare and ultra-rare, or low-frequency variants could explain the
substantial unexplained heritability of many complex diseases. In this regard, the majority of SNPs
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included in GWAS are common variants, and thus SNP array-based GWAS are unable to detect ultra-rare
variants associated with disease. In addition, few reports have been published that identify rare variants
related to SpA. Robinson et al. analyzed the role of rare variants using whole-genome genotyping in 5040
patients with AS and 21,133 healthy controls of European descent [98]. Despite the large sample size, they
were unable to identify rare coding variants with a large effect. Only one novel association achieving
genome-wide significance was noted at CDK5 regulatory subunit associated protein 1 like 1 (CDKAL1) gene.
By contrast, studies using a family-based design combined with next-generation sequencing technologies
might be more appropriate to identify rare variants. In this regard, O’Rielly et al. showed that the
presence of rare syntenic deletions in SEC16 homolog A, endoplasmic reticulum export factor (SEC16A)
and MAM domain containing 4 (MAMDC4) genes increased susceptibility to Axial SpA in family members
who carried the HLA-B27 allele [99]. In addition, rare variants have been identified in insulin receptor
substrate 1 (IRS1) [100], ankyrin repeat and death domain containing 1B (ANKDD1B) [101], and triggering
receptor expressed on myeloid cells like 2 (TREML2) [102]. However, these variants have not been
robustly replicated or studied from a functional point of view. Collectively, these reports suggest that rare
variants likely contribute to disease pathogenesis, but highlight the need for more studies on additional
rare variants. Structural variants, such as copy number variations (CNV), deletions, and inversions,
could be important contributors to complex diseases [103], but they have been poorly investigated.
In SpA, a genome-wide microarray study performed in a large family with AS revealed segregation of
the UDP glucuronosyltransferase family 2 member (B17UGT2B17) gene CNV among all affected family
members [104]. In another study, Jung et al. detected 227 CNV regions significantly associated with the
risk of AS [105]. The identification of association(s) between rare/ultra-rare or low-frequency variants,
even structural variants and a given disease phenotype, should become more tractable using the GWAS
approach, especially when whole-genome sequencing (WGS) will become cheaper.

The great challenge in detecting complex (i.e., gene by gene and gene by environmental) interactions
makes it difficult to fully explain the heritability of complex traits at the moment. Interactions between
alleles at different loci, namely epistasis, could be an important component of the genetic architecture
of complex traits [106]. In AS, the existence of an interaction between the ERAP1 SNP rs30187,
HLA-B27, and HLAB*40:01 alleles has been demonstrated [40,89]. Similar interactions have been
described for Behçet’s disease (BD) and HLA-B*51 [107], psoriasis and HLA-C*06:02 [108], and IBD and
HLA-C07 [109]. All of these disorders share genetic susceptibility factors. The finding is biologically
interesting, since ERAP1 trims amino terminal residues of precursor peptides to an optimal length in the
endoplasmic reticulum, for HLA class I loading. HLA-B27 positive and negative AS cases differ in their
association with the ERAP1 gene [89], so it is possible that ERAP1 might be involved in the generation
of autoimmunogenic peptides prior to HLA-B27 assembly and peptide presentation. In addition to this
finding, no gene by gene interaction study at the whole-genome level has been yet published. Like most
rheumatic diseases, SpA is a multifactorial condition where many genetic factors and a high number of
diverse environmental factors are involved in disease development [8]. Genetic susceptibility to SpA
should be analyzed in the context of environmental risk factors, since different subsets of genes could
play relevant roles depending on the risk environment. However, these environmental exposures
are not easy to measure and, particularly in SpA, they have been poorly identified beyond microbial
agents. In addition, because environmental exposures are not constant over time, a follow-up of SpA
patients is needed. Moreover, the expression of genetic variants is modified by environmental factors
and the significance of ethnicity in genetics is controversial [110].

5. Conclusions and Future Directions

GWAS approaches have increased our understanding of the role of genetic factors in the
susceptibility to SpA. Yet, a remaining challenge is to identify those variants that are responsible for the
unexplained (or ‘missing’) heritability. Besides the influence of gene by gene and gene by environment
interactions, as well as copy number/rare variants, some authors have suggested that SNPs account for
most of the ‘missing’ heritability in some health or disease traits [111,112]. In this regard, the benefits of
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GWAS for identifying new SNPs associated with disease phenotypes are undeniable [74] and increasing
the sample size of this type of studies should facilitate the identification of new loci associated with
SpA. Notably, sample sizes of over 1 million participants are being included for some conditions
(e.g., insomnia [113]) and international collaborations are needed to include large patient cohorts.
Efforts underway in many populations worldwide [94,114] should lay the foundation to uncover rare
variants that are specific to some ethnic groups or populations, and to study their association with
complex phenotypes (an example of which is SpA). On the other hand, advances in NGS techniques and
in statistical approaches will allow the integration of multiple “-omics” technologies (transcriptomic,
epigenomic, proteomic, metabolomic, and microbiome profiling), and thus to improve the current
knowledge on SpA [115].

Approximately one third of the genetic risk in AS has been explained and, except for ERAP1,
IL23R, or RUNX3, further studies are needed to confirm the associations discovered, and also to define
their involvement in the disease process. Similarly, there is a need for comprehensive case-control
studies analyzing the association of all KIR genes with AS, together with a complete HLA class I typing
and a rigorous clinical characterization of patients—including also their response to treatment. On the
other hand, a better understanding of the genetics of SpA will allow identifying genes that encode
proteins representing potential therapeutic targets in SpA. In this regard, the GWAS performed up to
date have revealed previously unsuspected players like ERAP1 or IL23/IL17 pathways, which have
led to the development of drugs targeting aminopeptidases like ERAP1 and IL-23 pathway inhibitors,
respectively. Another factor to consider, which has not been addressed in this review, is the functional
mechanisms underpinning genetic associations. This is a challenge in itself, particularly in the case
of SpA, where the journey is just at its beginning. Of note, the majority of disease-associated loci
are located in non-coding regions of the genome, suggesting a regulatory effect of these variants on
gene expression.

Beyond gene identification, GWAS data have enabled a wide range of applications,
including development of polygenic risk scores (PRS). The effects of individual SNP markers are
limited, but collectively they provide meaningful insights into underlying pathways and contribute to
models of risk-stratification for some common diseases [116]. It has been proposed that it is time to
consider the inclusion of polygenic risk prediction in clinical care [117]. Rostami et al. found that a
genetic risk score based on 110 susceptibility SNPs had a slightly higher ability to predict AS risk than
HLA-B27 testing alone [118], albeit the improvement associated with the proposed PRS was small and of
uncertain clinical value. Recently, Knevel et al. assessed the conversion of genotype information prior
to clinical visit into an interpretable probability value for inflammatory arthritis, including SpA [119].
They demonstrated that genetic data might discriminate different diseases associated with similar clinical
signs and symptoms. Thus, PRS are of potential use in early diagnosis or prediction of likelihood
of the development of SpA, although further research is required. As more powerful GWAS are
performed, future PRSs will allow for a more accurate risk stratification, with integration of familial and
environmental risk factors, thereby conforming a global risk score that will improve the prediction of
individual risk. In a rheumatology setting, genetic information adds value to the clinical information
obtained at the initial encounter, even when serologic data are also available [120]. However, it will
be necessary to ensure that all ethnic groups have access to genetic risk prediction, which will require
undertaking or expanding GWAS in non-European ethnic groups. Otherwise, the clinical use of PRS
might actually contribute to increase health disparities [120].
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