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Autism spectrum disorder (ASD) is a neurodevelopmental syndrome

characterized by impairments in social perception and communication.

Growing evidence suggests that the relationship between deficits in social

perception and ASD may extend into the neurotypical population. In

electroencephalography (EEG), high autism-spectrum traits in both ASD

and neurotypical samples are associated with changes to the mu rhythm,

an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex

which typically shows reductions in spectral power during both one’s own

movements and observation of others’ actions. This mu suppression is

thought to reflect integration of perceptual and motor representations for

understanding of others’ mental states, which may be disrupted in individuals

with autism-spectrum traits. However, because spectral power is usually

quantified at the group level, it has limited usefulness for characterizing

individual variation in the mu rhythm, particularly with respect to autism-

spectrum traits. Instead, individual peak frequency may provide a better

measure of mu rhythm variability across participants. Previous developmental

studies have linked ASD to slowing of individual peak frequency in the alpha

band, or peak alpha frequency (PAF), predominantly associated with selective

attention. Yet individual variability in the peak mu frequency (PMF) remains

largely unexplored, particularly with respect to autism-spectrum traits. Here

we quantified peak frequency of occipitoparietal alpha and sensorimotor mu

rhythms across neurotypical individuals as a function of autism-spectrum

traits. High-density 128-channel EEG data were collected from 60 participants

while they completed two tasks previously reported to reliably index the

sensorimotor mu rhythm: motor execution (bimanual finger tapping) and

action observation (viewing of whole-body human movements). We found

that individual measurement in the peak oscillatory frequency of the mu

rhythm was highly reliable within participants, was not driven by resting vs. task

states, and showed good correlation across action execution and observation

tasks. Within our neurotypical sample, higher autism-spectrum traits were

associated with slowing of the PMF, as predicted. This effect was not likely

explained by volume conduction of the occipitoparietal PAF associated with
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attention. Together, these data support individual peak oscillatory alpha-band

frequency as a correlate of autism-spectrum traits, warranting further research

with larger samples and clinical populations.

KEYWORDS

mu suppression, peak alpha frequency, individual alpha frequency (IAF), action
execution (AE), action observation (AO), mu rhythm, autism spectrum traits

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
syndrome associated with impairments in social perception and
communication. Growing evidence suggests that deficits in the
processing of social information associated with ASD may fall
on a continuum extending into the neurotypical population
(Constantino and Todd, 2003; Skuse et al., 2005). Using self-
report questionnaires such as the Autism-Spectrum Quotient, or
AQ (Baron-Cohen et al., 2001), studies of neurotypical samples
have found that higher endorsement of autism-spectrum traits
is associated with impairments in social judgments (Ingersoll,
2010; Poljac et al., 2013; Becker et al., 2021), as well as changes
to the structure and function of the superior temporal sulcus, a
brain region linked to social perception (von dem Hagen et al.,
2011; Nummenmaa et al., 2012).

In electroencephalography (EEG), differential effects of
autism-spectrum traits have been observed for the mu rhythm,
an alpha-band (8–12 Hz) neural oscillation measured over
sensorimotor cortex. Mu spectral power is typically reduced
during both one’s own actions and observation of others’
movements, suggesting it plays a role in integration of
perceptual and motor representations for understanding of
others’ mental states (for a review, see Fox et al., 2016). Findings
of decreased mu suppression both for individuals with ASD
(Oberman et al., 2005; Oberman and Ramachandran, 2007)
and neurotypical individuals with higher autism-spectrum
traits (Siqi-Liu et al., 2018) have led researchers to propose
that autism-spectrum traits may be linked to disruptions of
sensorimotor action simulation, the idea that we understand
the intentions of others through internal reproduction of their
movements with our own sensorimotor circuits (Barsalou, 2008;
Reed and McIntosh, 2008; Wood et al., 2016; Moody et al.,
2018). Notably, autism-spectrum traits have also been associated
with an increased prevalence of dyspraxia, or impairment in
planning and executing movements, both in neurotypical and
ASD samples (Cassidy et al., 2016). Thus, the integration of
perceptual and motor representations may be disrupted in
individuals with higher autism-spectrum traits.

However, because spectral power is usually quantified
at the group level, this measure has limited usefulness for
characterizing individual variation in the sensorimotor mu

rhythm. For example, despite the existence of a significant
group-level difference in spectral power of the mu rhythm
between high- and low-AQ neurotypical participants (Siqi-Liu
et al., 2018), a correlation analysis on the same data was not
significant (p > 0.2; Harris, 2018 unpublished data). Instead,
individual peak frequency may provide a better measure of
variability in the mu oscillation across participants, particularly
with respect to autism-spectrum traits. An individual or peak
frequency is commonly defined as the most prominent spectral
peak within a specific frequency band for a given participant
(Corcoran et al., 2018). Previous research has examined the peak
alpha frequency (PAF), commonly defined as an individual’s
most prominent spectral peak in the alpha band between 7 and
13 Hz (Posthuma et al., 2001; Grandy et al., 2013). PAF appears
to be a stable and heritable trait in adults, and has been linked
to global cognitive function (Klimesch et al., 1990; Anokhin
and Vogel, 1996; Clark et al., 2004; c.f., Grandy et al., 2013).
Moreover, developmental data suggest that PAF is slower in
individuals with ASD compared to neurotypical controls (Edgar
et al., 2015, 2019; Dickinson et al., 2018), making it a potential
biomarker for ASD (Dickinson et al., 2018). These results
support the idea that individual peak frequency of alpha-band
EEG oscillations could potentially index individual variation in
autism-spectrum traits even within the neurotypical population.

Yet, in contrast to the robust literature on individual
variation in PAF, individual variability in the peak frequency
of the mu rhythm, or peak mu frequency (PMF), remains
largely unexplored. The few studies to quantify PMF have largely
focused on its development across the lifespan (Berchicci et al.,
2011; Thorpe et al., 2016). In these experiments, mu rhythms
during motor execution vs. resting baseline were compared
in three groups: infants, children, and adults. In line with
previous research on the developmental trajectory of PMF in
infants (Stroganova et al., 1999), these studies reported an
increase in individual PMF with age, with an average for adults
between 10 and 12 Hz.

These results suggest that variability in the peak frequency
of the sensorimotor mu rhythm may be measurable in adults,
similar to previous reports for PAF (Posthuma et al., 2001;
Grandy et al., 2013). However, one caveat in comparing existing
findings regarding PAF and PMF is that most studies of PAF
have focused on global resting-state oscillations rather than
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task-evoked activity. Although recent evidence suggests that the
same brain networks underlie both types of oscillations (Mierau
et al., 2017), the relation of resting-state and task-evoked alpha-
band rhythms has been debated. Therefore, the extent to which
resting-state and task-evoked peak frequencies measured within
the same participants are correlated remains unclear.

A further question is that of how peak oscillatory frequencies
are correlated across different tasks. Although the mu rhythm
was originally defined by comparing motor execution and rest,
suppression of spectral mu-band power at the group level has
also been reported during observation of others’ actions. These
results have led researchers to link mu suppression to various
aspects of social perception, including observations of other’s
goal-directed movements (Muthukumaraswamy et al., 2004),
social context in hand-game playing (Perry et al., 2011), and
classification of facial emotions (Moore and Franz, 2017). Such
results have been cited as evidence for action simulation theory,
the idea that others’ intentions are understood through internal
sensorimotor simulation of their external actions. If both action
execution (AE) and action observation (AO) depend on the
same neural circuits, the PMF calculated for each participant
individually should be highly correlated across AE and AO tasks.

Finally, previous research on individual peak alpha-
band frequencies has not definitively distinguished between
occipitoparietal alpha oscillations and the sensorimotor mu
rhythm. The spectral power of the more posterior alpha
rhythm is known to be suppressed during attention relative
to baseline (Foxe and Snyder, 2011; Payne and Sekuler, 2014),
and has previously been identified as a potential confound
in many studies of mu suppression (Hobson and Bishop,
2017). For example, a topographic analysis of PMF found
that mu suppression associated with motor execution extended
into parietal regions, perhaps reflecting contributions from the
posterior alpha rhythm (Thorpe et al., 2016). This raises the
question of whether these two measures and their associated
cognitive processes can be separated. Measurement of PMF
could thus potentially be conflated with global alpha-band
oscillations, particularly when computed with resting-state data
that does not strongly control for attention.

To address these questions, the present study explored
individual variation in PMF within a sample of neurotypical
young adults. In this experiment, participants alternated
between blocks of performing a simple finger-tapping motor
task and viewing point-light displays (PLDs) of people
enacting whole-body movements (Figure 1). First, we quantified
individual variation in the sensorimotor mu rhythm, and
measured the correlation between PMF during resting-state
and task-evoked data. Next, we directly tested whether peak
oscillatory frequency of the mu rhythm is correlated across
different tasks by comparing PMF during the AE and AO
conditions. Finally, we examined whether PMF correlated with
self-reported autism-spectrum traits, and how this measure
compared to the PAF. Based on previous research, we predicted

A

B

C

FIGURE 1

Experimental methods. (A) High-density 128-channel EEG was
collected while participants completed separate blocks of two
different tasks: action execution (AE), in which the participant
was instructed to alternate between resting and tapping the
index and middle fingers of both hands against the respective
thumbs; and, action observation (AO), in which the participant
observed point-light display (PLD) animations of whole-body
human movements while continuously monitoring for
immediate repetitions (one-back task). (B) Timeline of
experiment. Participants completed 10 blocks of AE, followed by
two blocks of AO, and another 10 blocks of AE. Following the
EEG recording, participants filled out surveys including the
autism-spectrum quotient (AQ) questionnaire. (C) Sample trials
from the AO task, which included one block each of Coherent
biologically plausible PLDs and Scrambled stimuli in which the
starting locations of the dots were randomly displaced. Each
PLD animation had a duration of 3 s.

that PMF would be slower in individuals with higher autism-
spectrum traits, as indicated by higher AQ.

Materials and methods

Participants

Undergraduate students (N = 70; ages 18–23, 45 females)
were recruited from the local college community. Ten
participants were excluded, due to differences in the pilot
version of the experiment (n = 3), recording issues or excessive
noise in the EEG data (n = 4), and poor behavioral performance
(n = 3). Compensation took the form of partial course credit
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or cash payment. All procedures were approved by the college’s
Institutional Review Board, and participants provided informed
consent in writing prior to the start of the experiment.

Stimuli

The AO task employed stimuli from a previous study
(Siqi-Liu et al., 2018), consisting of point-light display videos
displaying actors performing whole-body actions (Figure 1).
PLDs preserve biological motion information while discarding
irrelevant visual body shape cues that can bias the neural
response. The PLDs were 3 s video clips of whole-body actions
used in a previous study (Atkinson et al., 2012), selected
from a larger validated database (Atkinson et al., 2004). The
stimuli included bodily expressions of emotion (happiness,
anger, sadness) and affectively neutral but meaningful actions
(touching toes, marching in place, hopping on one foot)
produced by both male and female actors. To control for
low-level visual input, we also presented “scrambled” versions
of the same stimuli in which the starting positions of the
dots were randomized within the bounds of the original
viewing frame (Atkinson et al., 2012). These scrambled PLDs
contained the same low-level motion cues as the coherent
PLDs, but the dots no longer formed biologically plausible
actions. The PLDs included six different performances of
each emotion (18 different videos total) and two different
performances of each neutral action (6 different videos
total), along with their corresponding scrambled versions.
Thus, there were 24 PLDs per condition, for a total of 48
distinct PLDs.

Procedure

High-density 128-channel EEG was used to record the
participant’s brain activity while he or she engaged in a set of
tasks designed to elicit mu suppression: AE and AO (Figure 1A).
The timeline of the experiment is shown in Figure 1B. Following
application of the EEG head cap, each participant completed 2
runs of the AE task (approximately 5–6 min each), interleaved
with the AO task (approximately 20–25 min).

The AE task consisted of 2 runs of 10 blocks each, in which
participants were instructed to alternate rest with bimanual
finger tapping. The rest condition was cued with a red square on
the computer screen, during which participants were instructed
to remain still. When the red square was replaced by a green
dot, participants tapped their thumbs against their middle and
index fingers repeatedly. Each block of rest and finger tapping
lasted 16 s each, for a total of 32 s per block. The participants
were instructed to place their hands in their laps under a table
such that the finger tapping action could not be observed, and
to maintain visual fixation on the screen.

For the AO task, we used the same parameters described
in Siqi-Liu et al. (2018). Stimuli were presented in MATLAB
using the Psychophysics Toolbox (Brainard, 1997; Kleiner et al.,
2007). Participants viewed a series of PLDs displaying actors
performing whole-body movements that were emotional or
affectively neutral. Each PLD played for 3 s, freezing on
the last frame for the duration of the 2-s intertrial interval
(ITI). To ensure attentive processing of all stimuli, participants
were asked to complete a continuous “one-back” monitoring
task, in which they determined whether the current stimulus
exactly matched the previous stimulus (i.e., whether the specific
dot configuration and motion for each video was presented
twice in a row). If the participant determined the PLD most
recently viewed was a consecutive repeat of the immediately
preceding PLD, they responded via a button press within the
2-s ITI. Participants received 10 practice trials (5 coherent and 5
scrambled, 1 one-back trial each) before beginning experimental
trials for the AO task.

Point-light displays were presented in two separate blocks
of Coherent (biologically plausible actions) and Scrambled
(biologically meaningless, low-level visual motion control)
conditions (Figure 1C). Block order was counterbalanced across
participants. Each of 18 emotional PLDs and 6 neutral PLDs
were presented 3 and 9 times, respectively, resulting in 108 trials
per block. For both blocks, 12 trials were randomly selected to
be followed by one-back repetitions, generating 240 trials total
(216 stimulus presentations plus 24 one-back trials). Within
each block, stimuli were pseudo-randomly interleaved to ensure
the correct number of target “one-back” trials. Participants with
poor behavioral performance (d-prime <1) in either of the AO
conditions were excluded from further analysis.

Following the EEG tasks, participants completed a two-
question, multiple-choice manipulation check to assess their
ability to identify which actions and emotions they had seen, as
well as a digital version of the AQ. The AQ is a self-administered
questionnaire designed to measure autistic tendencies in the
domains of social skills, attention switching, attention to detail,
communication, and imagination (Baron-Cohen et al., 2001).
Although it is not a diagnostic instrument, the AQ has been
used in many studies as a measure of self-assessed autistic trait
expression (e.g., Poljac et al., 2013).

Electroencephalography data
acquisition and analysis

Electroencephalography data was collected using the
BioSemi ActiveTwo EEG system (BioSemi B.V., Amsterdam,
Netherlands) with 128 active electrodes inserted in fitted head
caps. Two additional electrodes were bilaterally placed on the
mastoids to serve as reference channels. EEG signals were
digitized continuously at a sampling rate of 512 Hz with a
hardware low-pass at one-fifth of the sampling rate. Prior to data
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collection, offsets were adjusted to fall between −30 and 30 mV
with no obvious slow drifts in the online data measurement.

Data preprocessing was performed offline in MATLAB (The
MathWorks Inc., Natick, MA, United States) using the EEGLAB
toolbox (Delorme and Makeig, 2004). The preprocessing stream
included linear detrending and a high-pass filter of 0.5 Hz to
remove slow voltage drifts. Data epochs were extracted for a time
window of −9 to −1 s pre-action cue and 1 to 9 s post-action
cue in the AE task, corresponding to Rest and Action periods,
and from −400 ms pre-stimulus to 3,200 ms post-stimulus
onset in the AO task. For the AO task, data were resampled
to 500 Hz to enable comparison to other datasets from our
lab; estimates of PMF did not significantly differ between
resampled and original data. Data epochs in the AO task were
also baseline-corrected to the pre-stimulus period (−400 to
0 ms). To exclude potential motor preparatory activity, all one-
back trials and other trials where participants made a motor
response were removed from data analyses. Artifactual signals
in the EEG data (oculomotor, muscle, electrical, and sensor
noise) were identified and removed from the remaining trials
for each participant using independent component analysis via
second-order blind identification (Belouchrani et al., 1997; Tang
et al., 2005). Selections were cross-checked with automated
artifact classifications from the MARA (Winkler et al., 2011) and
ICLabel (Pion-Tonachini et al., 2019) plugins for EEGLAB, and
the task-related components were then projected back onto the
scalp (Jung et al., 2000).

To identify sensors showing a statistically significant
sensorimotor mu suppression effect at the group level, we
performed a spectral decomposition using the Field-Trip
toolbox for time-frequency analysis (Oostenveld et al., 2011)
in MATLAB. For each participant’s data from the AE task,
we separately computed power spectra in the Action (finger
tapping) and Rest (baseline) conditions. Power spectra were
computed for frequencies from 1 to 30 Hz using the fast Fourier
transform with multi-taper method, averaging across both trials
and the entire 8-s epoch. Frequency data was log10 transformed
to normalize the frequency distribution. Preliminary inspection
of the data revealed that the mu suppression effect was localized
to approximately 10 to 14 Hz, so this time window was used for
subsequent statistical analysis. Sensors of interest (SOIs) within
the 10–14 Hz frequency band were identified via a dependent
sample two-tailed t-test with a non-parametric cluster-based
Monte Carlo permutation test (1,000 repetitions) to correct
for multiple comparisons, with significance defined by an
overall threshold of p = 0.05 (p = 0.025 at each tail). SOIs
for the mu rhythm were defined as the cluster of sensors
showing a significant reduction in power during Action relative
to Rest (Action < Rest) conditions, whereas SOIs for the
occipitoparietal alpha rhythm were defined as those showing a
significant positive effect (Action > Rest).

Peak mu frequency for AE (rest and finger-tapping
conditions) and AO (coherent and scrambled conditions) were

FIGURE 2

Scalp topography of t statistics for action execution
(Action–Rest) between 10 and 14 Hz. White markers indicate
sensors of interest (SOIs) associated with significant mu
suppression in this frequency band used as sensors of interest in
the PMF analysis.

calculated separately for each individual using an automated
procedure created by Corcoran et al. (2018). The method uses
a Savitzky-Golay filter to smooth power spectra and detect
spectral peaks. For our analysis, we employed the default settings
of the automated program from Corcoran et al. (2018), which
included band-pass filtering from 1 to 40 Hz and peak search
window ranging from 7 to 13 Hz. However, to ensure that
we had the highest likelihood of identifying a peak frequency
in the alpha band for each individual participant, we set the
minimum number of channel estimates required for cross-
channel averages to 1 (rather than 2 in the original program). For
current source density (CSD) analysis, the data from EEGLAB
were first converted using the CSD Toolbox (Kayser and Tenke,
2006) for MATLAB.

Results

Calculation of peak mu frequency

For our first analysis, we sought to quantify individual
variation in the PMF during our two tasks. To ensure that
we were using appropriate sensor locations associated with the
sensorimotor mu rhythm, we first identified electrodes that
showed a significant reduction in spectral power during the
AE task at the group level. Comparing the Action and Rest
conditions, we observed significant decreases in power from
approximately 10 to 14 Hz over central electrode sites, consistent
with a substantial literature on sensorimotor mu suppression
(Fox et al., 2016). Figure 2 displays the scalp topography of
the mu suppression effect derived from the group comparison,
with sensors reaching significance at p < 0.05 (cluster-corrected
permutation test) indicated in white. For the main analysis,
data for each task and condition in each participant were then
extracted from these SOIs.
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Peak frequency is typically identified as the most prominent
spectral peak based on visual inspection of the power spectrum
(Corcoran et al., 2018). However, the existence of either split
peaks (Chiang et al., 2011) or no peaks at all within the frequency
band is not uncommon (Corcoran et al., 2018). In our analyses,
PMFs for some participants simply could not be determined,
whereas others had PMF estimates only for a subset of the
conditions. Therefore, participants without the relevant PMF
were excluded independently for each analysis, resulting in
different sample sizes for each comparison. Analyzing the subset
of participants with reliable PMFs across all tasks and conditions
(N = 41) revealed a similar pattern of significant results.

Since our research question seeks to quantify individual
variation in a neural measure, a first question was whether
estimation of the PMF is reliable within individual participants.
In particular, comparing even and odd trials allows
measurement of reliability across trials while accounting for
potential confounds over time (e.g., fatigue, practice). Therefore,
we computed the correlation of even- and odd-numbered trials
from the Coherent biological motion condition in the AO task.
In this analysis, PMFs were successfully computed in both even
and odd trials for 45 out of 60 participants. We found a large,
significant correlation of individual PMF between even and odd
AO trials [r(43) = 0.94, p < 0.001]. To account for the reduction
in reliability due to effectively halving the number of trials we
further applied the Spearman-Brown correction, yielding an
estimated reliability of r = 0.97. These results support high
internal reliability of the PMF measurement within participants.

Resting-state vs. task-evoked peak mu
frequency

Although we successfully identified individual variation in
PMF, one caveat is that task-evoked alpha-band activity may
have different properties from the resting-state alpha rhythm
characterized in previous studies. Therefore, our next question
concerned whether the PMF identified for an individual
differed as a function of resting state vs. task demands. We
compared the PMF in the AE task during Action (finger-
tapping) vs. Rest (baseline). At only 16 s each, rest blocks were
shorter than a typical extended resting-state EEG recording,
though across 20 blocks of trials they added up to a similar
duration (approximately 5 min). Data from 52 participants
contributed to this analysis. Strikingly, the PMF identified
for each individual during Action vs. Rest was strongly
correlated [r(50) = 0.8, p < 0.001]. Thus, oscillatory alpha-band
rhythms over sensorimotor cortex appear similar regardless
of whether participants are sitting quietly or actively engaged
in finger tapping.

We also tested whether a similar correlation of resting-
state and task-evoked peak frequency could be observed for
the posterior alpha rhythm. Since the majority of previous

studies of PAF in ASD have looked at resting-state data (Edgar
et al., 2015, 2019; Dickinson et al., 2018), it is an important
question whether these effects generalize across resting states
and task demands. Individual PAF was computed for each
participant from EEG data extracted at occipitoparietal sensors.
Data from 52 participants contributed to this analysis. Again,
the correlation of Action and Rest was highly significant
[r(50) = 0.96, p < 0.001]. This suggests that the use of task-
evoked rather than resting-state data is unlikely to limit the
generalizability of our findings.

Peak mu frequency across tasks:
Action execution vs. action observation

Having demonstrated that sensorimotor PMF is highly
similar across resting and task states, we next examined whether
the individual PMF varies as a function of task demands.
Previous research has shown that decreases in spectral power
of the mu rhythm occur both for one’s own motor movements
and for observation of others’ actions (Fox et al., 2016).
If the mu rhythm across these conditions reflects the same
underlying neural circuits, as proposed by action simulation
theory, then we would predict that the PMF calculated for
each participant individually would be significantly correlated
across the two tasks.

First, to verify that we had replicated the finding of mu
suppression in our AE and AO tasks, we examined spectral
power data at the group level. AE was associated with a
peak centered between 10 and 11 Hz, though an additional
clustering of individual PMF around 9 Hz was also present
in the AE condition (Figure 3A). However, only the 10–
11 Hz peak showed the predicted pattern of greater suppression
during motor execution (Chatrian et al., 1959). Supporting
this observation, statistical testing showed that reductions in
power during Action relative to Rest achieved significance for
individuals with a PMF greater than 10 Hz (t(18) = −2.3,
p = 0.03, [95% CI: −2.16 to −0.1]), but not for those with
whose PMF was below 10 Hz (t(32) = −1.27, p = 0.21, [95%
CI: −1.11 to 0.26]). This finding is consistent with other reports
that the sensorimotor PMF predominantly reflects spectral
power in the upper alpha band (Thorpe et al., 2016). In
contrast, during AO we found only a single peak in the 10–
11 Hz range (Figure 3B), which was significantly larger during
observation of scrambled vs. coherent PLDs (t(45) = −2.18,
p = 0.03, [95% CI: −0.52 to −0.02]), replicating previous
reports of mu suppression during observation of PLDs (Ulloa
and Pineda, 2007; Siqi-Liu et al., 2018). Further supporting
these observations, histograms of the frequency distribution
across individuals showed a distribution centered between 10
and 11 Hz for PMF in both AE and AO conditions, but with
an additional clustering around 9 Hz in the AE condition
(Figures 3C,D).
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FIGURE 3

Peak mu frequency for action execution (left) and action observation (right). Grand average power spectrum for (A) action execution, action
(blue) vs. rest (red), and (B) action observation, coherent (purple) vs. scrambled (orange) movement. Histogram of individual measurements of
peak mu frequency for (C) action execution, action (blue) vs. rest (red), and (D) action observation, coherent (purple) vs. scrambled (orange)
movement. The varying width of the bars for each condition reflects the number of bins for the histogram, selected automatically via algorithm
to best cover the range of values while revealing the shape of the underlying distribution.

To determine whether individual sensorimotor PMF was
similar across different tasks, we correlated the PMF obtained
during the AE and AO tasks across participants. Specifically,
we compared Action in the AE task and Coherent PLD in
the AO task, since these conditions were associated with the
largest reductions in mu power. Figure 4A displays a scatterplot
of individual PMF for the 45 participants for whom it could
be calculated in both AE and AO tasks. There was a clear
positive relationship between PMF in the two conditions, with
higher values of PMF during AE associated with higher values
of PMF during AO as well. Statistical analysis confirmed a
highly significant correlation between PMFs for finger tapping
and observing coherent PLDs [r(43) = 0.61, p < 0.001]. Thus,
these results are consistent with the idea of common neural
circuits underlying mu rhythms across both motor execution
and observation of others’ actions, in line with the predictions
of action simulation theory.

Peak mu frequency as a function of
autism-spectrum quotient

In our previous analyses, we verified that there is
measurable individual variation in the sensorimotor PMF,
that this variability is similar across resting and task-evoked
data, and that the PMF is significantly correlated during
independent tasks previously associated with mu suppression.
Our last question concerned whether individual variation
in PMF correlates with differences in self-reported autism-
spectrum traits.

For this analysis, we focused on the PMF for the Coherent
PLD condition in the AO task, as the AQ indexes social
communication skills but not motor capabilities per se. Forty-
eight participants were included in this sample on the basis
of the PMF calculation in this condition. For this sample, the
average AQ score was 17.6 (median = 17, SD = 4.82). These
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FIGURE 4

Individual variation in peak mu frequency. (A) Correlation of
individual peak mu frequency for action execution, action
condition vs. action observation, coherent condition.
(B) Individual peak mu frequency for action observation,
coherent condition vs. autism-spectrum quotient (AQ) score.

values fall within the typical range of social functioning for
this measure (i.e., 11–21), as determined from previous studies
(Baron-Cohen et al., 2001). One potential issue was that our
sample included a relatively high number of females (32 out of
48). Since ASD is more prevalent in males than females, this
gender imbalance may limit the distribution of autism-spectrum
traits measured in our sample. Indeed, there was a trend for
AQ scores to be higher in male (mean = 19.5, SD = 5.89) vs.
female (mean = 16.7, SD = 3.98), which approached significance
[t(46) = −1.94, p = 0.06].

Nonetheless, as predicted, we observed a negative
correlation between PMF and AQ score within our neurotypical
sample, such that participants who scored higher on the AQ
had a decreased PMF (Figure 4B). Because initial inspection
of the data revealed a data point with high leverage and
Cook’s distance scores, we calculated the correlation with

Spearman’s rank test, which is more robust against observed
outliers. This analysis yielded a significant negative correlation
[Spearman’s ρ(46) = −0.34, p = 0.017]. Analyzing just the
subset of 41 participants with measurable PMF across all
conditions confirmed the direction and significance of this
effect [Spearman’s ρ(39) = −0.46, p = 0.003].

For the sake of comparison, we also computed the
correlation of spectral mu power and AQ score in our current
dataset for the same frequency band (9 to 12 Hz) and time
window (1 to 2 s post-stimulus onset) used our previous
analysis (Siqi-Liu et al., 2018). Again, the correlation was not
significant (p > 0.4), suggesting that group-level differences in
spectral power are suboptimal for capturing individual variation
in the mu rhythm.

Peak mu frequency vs. peak alpha
frequency

Our finding of a negative correlation between sensorimotor
PMF and AQ is broadly consistent with previous reports of
slower global peak alpha-band rhythms in ASD (Dickinson
et al., 2018; Edgar et al., 2019). However, one potential concern
is that our results could simply reflect transmission of the
occipitoparietal alpha rhythm via volume conduction. Volume
conduction of the EEG signal is particularly problematic in
recordings of oscillatory activity because different rhythms at
the same frequency may be conflated across recording sites
(Tenke and Kayser, 2015).

To assess this possibility, we computed the individual PAF
across participants from EEG data extracted at occipitoparietal
sensors. In fact, the PAF computed at occipitoparietal sensors
during observation of Coherent PLDs was highly negatively
correlated with AQ [r(40) = −0.46, p = 0.002]. This
extends previous findings of slowed PAF in children with
ASD to autism-spectrum traits in the neurotypical adult
population. However, it also raises concerns about the
contribution of PAF to the measured PMF. Therefore, we
also computed the PMF for the current source density
(CSD), or surface Laplacian, transformation of the EEG data
(Kayser and Tenke, 2006). CSD provides a spatially sharpened
signal that is less influenced by volume conduction (Tenke
and Kayser, 2012). Accordingly, CSD-transformed signals
measured over central sensors should more closely reflect
neural generators in sensorimotor cortex (e.g., Burle et al.,
2015).

Peak mu frequency calculations for the CSD-transformed
data are shown in Figure 5. Similar to the original analysis,
the grand average power spectrum revealed a peak between 10
and 11 Hz that was larger for observation of Scrambled, as
opposed to Coherent, whole-body PLDs (Figure 5A). Notably,
using the CSD-transformed data we were also able to identify
an individual PMF in response to the Coherent PLDs in
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FIGURE 5

Current source density (CSD) analysis of (A) grand average
power spectrum and (B) correlation of individual PMF during
action observation of biologically plausible PLDs with AQ score.

an overwhelming majority of participants, with only four
participants excluded from this analysis.

A scatterplot of the PMF during observation of Coherent
whole-body PLDs by AQ score again showed a negative
relationship between PMF and AQ (Figure 5B), suggesting
that neurotypical participants with higher AQ scores tended
to have slower mu rhythms. Consistent with this observation,
the correlation coefficient was significantly negative [Spearman’s
ρ(54) = −0.41, p = 0.002]. Whereas the correlation of PMF
and AQ remained strong using CSD-transformed data, the
correlation between PAF and AQ became weaker following
CSD transformation [r(48) = −0.28, p = 0.051]. Thus, it
seems unlikely that the connection between PMF and autistic
tendencies in our neurotypical sample can be explained merely
by volume conduction of the occipitoparietal alpha rhythm.
This further supports the idea that differences in sensorimotor
action simulation may be tied to variability in autism-spectrum
traits, along with more general differences in global alpha-band
oscillations among these individuals.

Discussion

Although impairments in social perception are a diagnostic
hallmark of ASD, converging evidence suggests that differences
in social perception indexed by autism-spectrum traits may
extend into the neurotypical population. Findings from
behavioral (Ingersoll, 2010; Poljac et al., 2013; Becker et al.,
2021), neuroimaging (Nummenmaa et al., 2006; von dem Hagen
et al., 2011), and EEG (Siqi-Liu et al., 2018) studies suggest that
higher endorsement of autism-spectrum traits is associated with
alterations of social perception and associated brain structure
and function, even within neurotypical samples. In particular,
we focused here on the mu rhythm, an alpha-band oscillation
previously hypothesized to index sensorimotor simulation of
others’ external actions in order to understand their internal
states. Differences in mu suppression during AO have previously
been described at the group level for neurotypical individuals
with high and low autism-spectrum traits (Siqi-Liu et al., 2018).
In this study, we extended this research by examining individual
variability in the peak frequency of the sensorimotor mu
rhythm, measured across neurotypical individuals as a function
of autism-spectrum traits.

Previous research has suggested that individual peak
frequency of the occipitoparietal alpha rhythm may be a
biomarker for cognitive function, with some studies showing
slower PAF in individuals with ASD (Edgar et al., 2015;
Dickinson et al., 2018). However, comparison of PAF and PMF
is complicated by the fact that much of the research on PAF
relies on resting-state data, whereas PMF is typically defined by
task-evoked activity (Berchicci et al., 2011; Thorpe et al., 2016).
Additionally, previous studies of PMF have focused largely on
mu rhythms elicited by motor execution, whereas research on
social perception suggests that changes in the spectral power
of the mu rhythm are also produced by observation of others’
actions. Therefore, we performed a series of analyses to explore
individual variation in the PMF during both resting and task
states, as well as across AE and AO tasks. Finally, we correlated
peak frequency of the mu rhythm with AQ score, to determine
whether this measure indexes individual differences in social
perception associated with autism-spectrum traits.

We first verified that variability in the PMF was measurable
in our sample of neurotypical adults. Consistent with previous
descriptions of sensorimotor PMF between 10 and 12 Hz
(Berchicci et al., 2011; Thorpe et al., 2016), we observed that the
frequency distribution of peak mu was centered between 10 and
11 Hz for both AE and AO tasks. However, we also identified
two separate alpha-band peaks at central sensors during AE: one
from approximately 8–10 Hz, centered around 9 Hz, and one
from 10 to 12 Hz, centered between 10 and 11 Hz. Although
some previous research has distinguished between low and high
bands of rhythmic mu activity during motor movement and
AO (Andrew and Pfurtscheller, 1997; Pfurtscheller et al., 2000;
Frenkel-Toledo et al., 2013), recent developmental data suggest
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that PMF in adults is best fit by a single broad peak (Thorpe
et al., 2016). Nonetheless, when Thorpe et al. (2016) compared
the upper and lower alpha bands across all age groups, they
found that mu suppression effects during AE were concentrated
in the upper alpha band. Our findings are consistent with this
observation, as only the upper-band PMF in our participants
showed a specific decrease in spectral power during action
relative to rest.

Yet, it should be noted that there is substantial heterogeneity
in the empirical evidence regarding the functional significance
of upper and lower sub-bands for the mu rhythm. Whereas
some studies report selective mu suppression associated with the
upper 10–12 Hz band (Pfurtscheller et al., 2000), other results
conversely implicate the lower band from 8 to 10 Hz (Marshall
et al., 2009; Frenkel-Toledo et al., 2013). One study specifically
investigated mu suppression across lower and upper sub-bands
in neurotypical individuals vs. individuals with ASD (Dumas
et al., 2014). Both groups displayed similar mu suppression
for the lower sub-band while suppression in the higher sub-
band was specifically reduced for individuals with ASD, which
the authors attribute to differences in inhibitory control rather
than sensorimotor function per se. However, aside from Thorpe
et al. (2016), the majority of these studies have averaged
mu spectral power across frequencies within set bands rather
than identifying individual peak frequencies. Further research
indexing individual PMF may thus potentially provide new
insights into the functional relationships between different sub-
bands of the mu rhythm.

In addition to quantifying PMF across individuals, we
also compared peak frequencies of the mu rhythm within
participants as a function of resting state and task demands.
We found that individual measurement of the PMF was
highly reliable, was not affected differentially by resting vs.
task states, and showed good correlation across different tasks.
These results support the idea that reductions in the mu
rhythm over central electrodes during AE and AO reflect the
same underlying neural sources, a fundamental assumption
underlying action simulation theory. Our data also join growing
evidence that trait variability in the peak frequency of alpha-
band activity is directly related to state-dependent activation
of neural populations (Mierau et al., 2017). Although much
of the data on short-term state-dependent changes has looked
at the occipitoparietal alpha rhythm, the sensorimotor mu
rhythm could conceivably be investigated in a similar manner.
Future studies could further tease apart the trait- and state-
dependent elements of the mu rhythm by comparing PMF
elicited across a variety of task demands (e.g., increasing physical
or cognitive effort), as well as the role of factors such as mood,
age, or physical exercise. Inasmuch as PAF and PMF both index
individual variation in cognitive processing, these measures
also provide complementary information given their association
with specific underlying neural circuits for selective attention vs.
sensorimotor planning and execution.

For our final analysis, we investigated the relationship
between individual variability in the PMF and endorsement
of autism-spectrum traits. Neurotypical participants who
self-reported higher autism traits tended to display slower
PMFs, consistent with previous findings of slowed PAF
in ASD samples (Edgar et al., 2015, 2019; Dickinson
et al., 2018). These results are all the more striking given
that the average score in our neurotypical sample fell
within the normal functioning range of the AQ. Indeed,
only two participants had AQ scores (30 and 31) that
approached the threshold indicative of a high likelihood
of diagnosable ASD (AQ = 32). Therefore, any differences in
PMF across our sample are unlikely to reflect undiagnosed
ASD or other gross impairments in social perception
and communication.

However, the AQ is not a clinical tool, and despite its
widespread use in neurotypical samples, recent analyses
suggest that responses to certain items differ by gender and
age (Agelink van Rentergem et al., 2019). In this study, the
highly skewed gender ratio was of particular concern, with
two-thirds of our sample composed of females. Further
work should explore whether the correlation reported
here replicates in larger and more diverse neurotypical
samples, as well as in individuals with a clinical diagnosis
of ASD. Other measures of autism-spectrum traits such
as the Broad Autism Phenotype Questionnaire (BAPQ)
could also be administered to supplement characterization
of autism-spectrum traits in neurotypical samples (Hurley
et al., 2007). Finally, the correlation between PMF and other
behavioral differences associated with higher autism-spectrum
traits could be explored in the future. For example, given
the finding of higher levels of dyspraxia in neurotypical
individuals high in autism-spectrum traits (Cassidy et al.,
2016), it may be of interest to measure individual PMF
under conditions of postural instability, which have
previously been demonstrated to affect individual PAF
(Hulsdunker et al., 2015).

One limitation to the current findings is that the
variability in PMF across individuals also meant that a peak
frequency could not be identified for all participants in all
experimental conditions. In our sample, the automated peak
frequency calculation developed by Corcoran et al. (2018)
could not identify a PMF for at least one condition in nearly
one-third of our participants. Interestingly, this number is
roughly in line with a previous report that included null
findings for mu suppression effects during motor imagery
and AO (Tangwiriyasakul et al., 2013). Thus, there may
be fundamental differences in the stability of alpha-band
activity across individuals that make measurements of the PMF
more reliable in some individuals than others. More broadly,
growing research suggests that contributions of alpha-band
oscillations may be dissociable from underlying aperiodic (1/f -
like) activity (Donoghue et al., 2020), which is ignored in
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many studies including our own. In some cases, accounting
for aperiodic activity has been shown to remove or reduce the
predictive power of alpha oscillations, such as for cognitive
processing speed (Ouyang et al., 2020) and aging (Donoghue
et al., 2020). On the other hand, separating periodic and
aperiodic components of the EEG signal has been suggested
to produce rich and reliable data for distinguishing ASD and
neurotypical populations (Levin et al., 2020). Additionally,
because these methods are data-driven and do not require
a priori definitions of the frequency bands of interest, these
approaches may be valuable both for detecting peaks outside of
the predefined alpha range and for exploring a wider space of
oscillatory brain rhythms.

In conclusion, our results provide new insights into how
the sensorimotor mu rhythm varies across individuals within
a neurotypical sample. Individual measurement in the peak
oscillatory frequency of the mu rhythm is highly reliable, is
not differentially driven by resting vs. task states, and shows
good correlation across different tasks associated with mu
suppression. As predicted, higher autism-spectrum traits were
associated with slowing of the mu rhythm, extending previous
developmental findings linking peak alpha-band frequency to
ASD. Further research with larger samples, both in neurotypical
and clinical populations, is warranted to further explore how
individual peak oscillatory alpha-band frequencies vary as a
function of autism-spectrum traits.
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