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The globus pallidus internus and the subthalamic nucleus are common targets for

deep brain stimulation to alleviate symptoms of Parkinson’s disease and dystonia. In

the rodent models, however, their direct targeting is hindered by the relatively large

dimensions of applied electrodes. To reduce the neurological damage, the electrodes are

usually implanted cranial to the nuclei, thus exposing the non-targeted brain regions to

large electric fields and, in turn, possible undesired stimulation effects. In this numerical

study, we analyze the spread of the fields for the conventional electrodes and several

modifications. As a result, we present a relatively simple electrode design that allows an

efficient focalization of the stimulating field in the inferiorly located nuclei.
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INTRODUCTION

The exact mechanisms of deep brain stimulation (DBS) for Parkinson’s disease and dystonia
treatment still remain unclear. To explore these mechanisms, often experimental approaches
involving stimulation in rodent models such as 6-hydroxydopamine treated rats and genetically
dystonic hamsters are used. However, significantly smaller dimensions of their brain structures, if
compared to human brain, constrain the implantation possibilities. In case of the entopeduncular
nucleus (EPN), the equivalent of the globus pallidus internus in rodents, or the subthalamic
nucleus (STN), even the exact targeting leads to a considerable neurological damage inflicted by the
electrode lead. Therefore, the stimulating electrode is often placed cranial to the targeted nucleus.
However, the resulting proximity of the electrode to the thalamus and the internal capsule (IC)
could cause undesirable effects of the stimulation, which must be avoided, as they would distort
the experimental results, whose interpretation thus becomes very difficult. The primary goal of this
study is to evaluate the theoretical applicability of several electrode designs for the stimulation of
the caudally located nuclei and suggest an optimal solution for a precise focalization of the electric
field in the target.
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METHODS

Volume Conductor Model
For DBS, the electric potential distribution in brain tissue can be
approximated by the electro-quasistatic formulation of Maxwell’s
equations (Plonsey and Heppner, 1967):

∇ ·

[

(

σ (r,ω) + jωε (r,ω)
)

∇ϕ(r)
]

= 0 (1)

where ϕ is the complex electric potential, σ and ε are the
conductivity and the permittivity of the material, ω denotes
the angular frequency and “j” is the imaginary unit. Since the
dielectric properties of brain tissue are frequency dependent
(Gabriel et al., 1996), the Fourier Finite Element method (Butson
and McIntyre, 2005) is applied, where Equation (1) is solved
over the power spectrum of the DBS signal. The amount of
computations can be reduced using the octave band method
(Butenko et al., 2019). Another issue is the high variation of
reported brain conductivities in literature (McCann et al., 2019).
In this study, we define the conductivities of gray and white
matter as the averages of the values reported by Gabriel et al.
(1996) and Koessler et al. (2017) at 50 kHz, and adjust them
over the frequency domain according to Gabriel et al. (1996).
The heterogeneity of brain tissue, in particular, gray and white
matter conductivities, as well as cerebrospinal fluid (2 S/m), is
accounted for by mapping the segmented Waxholm space atlas
of the Sprague Dawley rat brain (Papp et al., 2014) onto the
computational domain (Figure 1A). Furthermore, the anisotropy
of the brain tissue is modeled with conductivity tensors derived
from diffusion-weighted imaging data (Johnson et al., 2012) and
scaled using the normalized mapping approach (Güllmar et al.,
2010). Additionally, we include a 0.1mm encapsulation layer,
where a neural degeneration is assumed (Kelly et al., 2017). The
dielectric properties of the layer do not significantly affect the
current-controlled stimulation (Butenko et al., 2019), and thus
it is simply treated as isotropic gray matter.

The Dirichlet boundary conditions for (1) are given by the
potentials on the exposed electrode contacts, while the rest of
the external surfaces are assumed insulating (∇ϕ · n = 0 with
the outer normal vector n). In case of the current-controlled
stimulation, the electric potential distribution can be scaled to
match the required current using the linearity of (1). In this
study, we simulate a 60 µs 60 µA rectangular pulse delivered by
a bipolar electrode implanted 0.4mm above the center of mass of
the targeted nucleus.

Neural Activation
In this study, the neural tissue activation is primarily
approximated by the magnitude of the electric field (|E| = |∇ϕ|)

and secondly by its divergence (|∇ · E|) as described in Åström
et al. (2015). An alternative to such approximations are
mathematical models of neurons, which, however, require
not only specification of multiple neural parameters, but
also a comprehensive analysis of histological data and fiber
tractography. The arising complexity inevitably increases the
overall uncertainty of the modeling, and might obscure the
electrode performance. Thus, we choose simpler estimators that

are directly derived from the electric field. The thresholds above
which the tissue is considered activated are 0.323 V/mm and
0.309 V/mm2 for |E| and |∇ · E|, respectively. They correspond
to the median values over different voltages defined in Åström
et al. (2015) for 2.5µm axon diameters. The median values are
chosen due to the high differences of impedances among the
considered electrodes. The performance of the electrodes is
evaluated by the ratio of the predicted neural activation in the
targeted nuclei (the STN and EPN) to the total activated volume.
To compute the ratio, we probe the estimators at the points
seeded with 0.05mm resolution in the 2mm vicinity of the lower
electrode (core) contact. All the procedures described above
were conducted within the open-source simulation platform
OSS-DBS (Butenko et al., 2020); the source code of the project is
available at http://doi.org/10.5281/zenodo.4280723.

Electrode Types
Bipolar electrodes such as SNEX-100 and CEAX-100 from
MicroProbe Inc. (MD, USA) are widely used for DBS in rodent
models. However, for cranial implantations, where the electrode
is not placed in the target, their application may raise the
problem that current will bypass the target nucleus to a significant
extent. In this particular case, the electric field is shifted upwards
which can cause additional direct stimulation effects in the
thalamus (Figures 1B,C). This phenomenon can be diminished
using monopolar electrodes, but for rodent models certain issues
arise due to the application of a ground electrode. For example,
intracranial grounding might be strictly limited in size, position
and material, which in turn can lead to high electric fields
and corrosion on its surface. On the other hand, extracranial
grounding can significantly alter the current path due to the
low conductive scull tissue and fixation materials, thus adding
additional uncertainties to the total impedance. Therefore, we
propose a new design for the bipolar electrode based on CEAX-
100, but shifting the outer contact to the upper part of the
shaft (Figure 1A). The exact position and the length of the
outer contact are chosen based on preliminary electrical field
simulations and allow to avoid large field amplitudes near its
surface. Secondly, different shapes can be considered for the tip
of the core electrode. Taking into account its relatively small
diameter (0.125–0.250mm), and, consequently, the processing
complexity, we investigate two designs: a spherical rounding and
a blunt end (Figure 1B). For the latter, the platinum/iridium
core is exposed only at the bottom of the electrode and
covered laterally by the insulating tapering that is required to
facilitate the implantation. For completeness, we also tested a
concave tip, which manufacturing, however, is more challenging.
The design did not demonstrate an improved performance in
comparison to the blunt end, and thus was excluded from the
study. The detailed information on the designs is presented in
Supplementary Material.

RESULTS AND DISCUSSION

The analysis reveals a distinct difference in performance
among the electrodes (see Table 1, Figures 1B,C). For |E|

metric, stimulation with SNEX-100 shows the expectedly lowest
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FIGURE 1 | Modeling rodent deep brain stimulation for different electrode designs. (A) Fragment of the volume conductor model. The distribution of cerebrospinal

fluid, white and gray matter (blue, white and gray colored, respectively), is based on Papp et al. (2014), and the electrode’s encapsulation due to inflammation and

subsequent scarring is depicted in orange. The electrode tip is placed 0.4mm above the entopeduncular nucleus (EPN) to avoid neurological damage of the target.

The electrode contacts are highlighted in black, while the rest of the surface is insulated. (B) Electrode designs (from left to right: SNEX-100, CEAX-100, spherical

rounding, blunt end) and predicted neural activation by |E| >0.323 V/mm in the vicinity of the subthalamic nucleus (STN), coronal view. For visualization purposes, the

thalamus (Th) and the zona incerta are hidden. The roughness of the activation surfaces is due to the resolution of the array points, at which the electric field is probed.

(C) Predicted neural activation in the vicinity of the EPN. For visualization purposes, the internal capsule (IC) between the EPN and the thalamus is hidden. Directly

induced neural activation of the thalamus is predicted for all four electrodes, but the effect is considerably higher for SNEX-100 and CEAX-100. (D,E) 2-D sagittal

views at the predicted neural activation for the STN and the EPN stimulation, respectively. The former reveals a possible activation in the brain stem (BS), while the

latter indicates an activation in the portion of the IC.

TABLE 1 | Electrode performance assessed as a share (%) of the target

(STN/EPN) in the total activated volume predicted by the electric field metrics.

Electrode type |E| |∇ · E |

SNEX-100 3.5/9.9 3.0/20.4

CEAX-100 6.0/13.5 2.5/16.7

Spherical rounding 16.4/28.3 23.3/38.3

Blunt end 34.2/48.3 27.5/49.6

targeting: the size of the outer contact and its proximity to
the core contact create the electric field large enough to expect
the neural activation occurring along the whole current path.
The same is observed for CEAX-100, but since the contacts are
located more closely, the activation in the non-targeted regions is
reduced. One possible downside is that due to the sharp tip, this
electrode design will create relatively large current flow at this
site, which may lead to additional damage due to electrophoresis
effects or outright coagulation. The modified design with the
spherical rounding shows a distinctly better performance: the
remoteness and the large surface of the outer contact diminish
the electric field away from the core contact, thus preventing

the neural activation in the superior brain regions, in this case
the ventral portion of the thalamus (including the zona incerta).
However, for these three electrodes, the predicted activation in
the target is negligibly small (Figures 1B,C), especially for the
STN. This parameter is significantly increased when using the
blunt end design (Figures 1B–E). For comparison, the predicted
activated volume in the STN is 0.173 and 0.362 mm3 for the
spherical rounding and the blunt end, respectively. For the EPN,
the corresponding values are 0.371 and 0.602 mm3. At the same
time, the blunt end core contact, insulated on the sides, generates
even lower fields above the target. A more conservative but
still compelling improvement is estimated by |∇ · E|. In general,
this metric predicts a lower activation: 0.045 and 0.117 mm3

in the STN and 0.218 and 0.318 mm3 in the EPN for the
spherical rounding and the blunt end designs, respectively. This
leads to the conclusion that while a relative performance of the
electrodes can be assessed with the electric field metrics, accurate
predictions of the neural activation require application of detailed
neuron models. It can be also noted that for all electrodes and
both fieldmetrics the targeting of the EPN ismore efficient, which
is explained by its smaller lateral extent in comparison to the
relatively oblate shape of the STN.
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As previously mentioned, the DBS electrode not only
stimulates neural structures, but also inflicts mechanical damages
on brain tissue. For the implantation positions considered
in the study, the damage occurs mostly in the cortical and
the thalamic areas. Its extent in the ventral portion of the
thalamus differs depending on the electrode type, and this
factor must be considered by researchers. Among the presented
designs, the electrode with the blunt end is expected to inflict
the largest damage. This is not necessarily the worst case
scenario: in principle, a limited neurological damage may
lead to more predictable effects rather than an undesired
fragmentary stimulation.

In this study, the diameter of platinum/iridium core for the
modified electrodes was set to 0.240mm.Depending on the target
dimensions, the parameter can be adjusted, but it is important
to keep in mind that additional neural damage can occur if a
certain charge density per phase limit is exceeded (McCreery
et al., 1990) or the electrode impedance is too high. The latter
will also lead to a quick battery depletion in case of a current-
controlled stimulation. The study does not report the computed
impedances, since the major low-frequency contributor, the
electrical double layer, was not modeled. This parameter and the
electrode impedances will be investigated in the upcoming in
vitro and in vivo studies.

In conclusion, we propose two improved designs optimal for
focal stimulation of small rodent brain nuclei—a spherical tip
likely inflicting less damage, but also resulting in about 50% less
focal stimulation, and a relatively blunt one offering the arguably
best focal stimulation at the cost of slightly larger tissue damage.

In either case, the manufacturing advantage may be seen in the
fact that the reference electrode, i.e., the outer contact, does not
need any sophisticated design.
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