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Multi‑objective optimization 
and prediction of surface roughness 
and printing time in FFF printed 
ABS polymer
Arivazhagan Selvam1*, Suresh Mayilswamy2, Ruban Whenish3, K. Naresh4, 
Vigneshwaran Shanmugam5,6* & Oisik Das5*

In this study, fused filament fabrication (FFF) printing parameters were optimized to improve the 
surface quality and reduce the printing time of Acrylonitrile Butadiene Styrene (ABS) polymer using 
the Analysis of Variance (ANOVA), it is a statistical analysis tool. A multi-objective optimization 
technique was employed to predict the optimum process parameter values using particle swarm 
optimization (PSO) and response surface methodology (RSM) techniques. Printing time and surface 
roughness were analyzed as a function of layer thickness, printing speed and nozzle temperature. 
A central composite design was preferred by employing the RSM method, and experiments were 
carried out as per the design of experiments (DoE). To understand the relationship between the 
identified input parameters and the output responses, several mathematical models were developed. 
After validating the accuracy of the developed regression model, these models were then coupled 
with PSO and RSM to predict the optimum parameter values. Moreover, the weighted aggregated 
sum product assessment (WASPAS) ranking method was employed to compare the RSM and PSO 
to identify the best optimization technique. WASPAS ranking method shows PSO has finer optimal 
values [printing speed of 125.6 mm/sec, nozzle temperature of 221 °C and layer thickness of 0.29 mm] 
than the RSM method. The optimum values were compared with the experimental results. Predicted 
parameter values through the PSO method showed high surface quality for the type of the surfaces, 
i.e., the surface roughness value of flat upper and down surfaces is approximately 3.92 µm, and this 
value for the other surfaces is lower, which is approximately 1.78 µm, at a minimum printing time of 
24 min.

Digital manufacturing gained attraction among manufacturing industries due to its high accuracy, adapting the 
conditions, design freedom and shortened lead time. Additive Manufacturing (AM) is one of such technologies 
which are expanding its versatility into many present-day applications such as aviation, construction, healthcare, 
food, etc.,1. A three-dimensional CAD (Computer-Aided Design) file of given geometry including complex 
shapes can be built layer by a layered approach with designated process parameters2,3. By incorporating AM 
techniques over traditional manufacturing, it is possible to reduce material waste, reduce design to manufactur-
ing time, and increase design flexibility. AM techniques can build complex geometries with multi-material in a 
single processing phase4–6. Fused Filament Fabrication (FFF) is the well-known extrusion-based AM technique 
that is widely considered for fabricating polymers for prototyping and functional requirements7–9. FFF provides 
the feasibility of printing complex 3D architecture with low cost and limited material wastage.

Numerous researchers worked on the development of processes and materials in FFF, with a focus on 
observing the relationship between FFF process parameters and the printing material, which is related to the 
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mechanical properties of the final part. The impact of various such parameters (either individually or combined) 
on printing material is expressed in mechanical integrity, printing performance, functional behavior, and surface 
characteristics7,10–15. For instance, it was observed that the infill density and layer thickness have significantly 
influenced the tensile strength of ABS polymer16. High infill density gives high tensile strength and good surface 
characteristics for PETG material17. Apart from changes in internal process parameters, some external changes 
were also considered to obtain the expected mechanical performance of printed material by adding carbon fibers 
(short/lengthy) along with polymers18. These compositions may not consistently spread throughout the polymer 
structure which yields non-uniform mechanical performance of printed parts. So, it is necessary to identify the 
suitable process parameters for the defined material with the optimal condition to secure the quality 3D printed 
parts19. The overview of the interaction between materials, process, and part characteristics in the FFF process 
is illustrated in Fig. 1.

The identification of optimal parameters can be possible by applying optimization techniques. Taguchi is 
one of the conventional optimization techniques used to find out optimal process parameters20,21. Afterward, 
many optimization techniques were used by researchers to obtain the precise parameters which directly impro-
vise the mechanical performance of FFF processed polymers. Response surface methodology (RSM), Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO) interacted between different polymer materials and 
process parameters as an outcome of the mechanical performance of FFF fabricated parts22–24. Multi-objective 
optimization brings out even finer optimal values to enhance the mechanical performance of extruded 3D 
parts25. Grey Relational Analysis (GRA) is a beneficial tool to analyze the correlation between sequences with 
minimal data where experiments are time-consuming and expensive26. The compressive strength and hardness 
of zirconia reinforced alumina using GRA reduced the number of trials which helped to save time, cost and 
material wastage and produced accurate optimal values27. In another investigation, GRA coupled with RSM to 
optimize FFF process parameters with a multi-response function which yields precise values of each parameter 
and their significance. Apart from that the experimental runs also decreased which reduced the printing time, 
material usage and cost incurrence28. The function of GRA is to achieve multiple performance characteristics of 
machined or 3D printed parts with fewer experimental runs and considerable economic benefits29. To maximize 
the tensile strength and hardness value of the LM24 Al alloy, the multi-objective function was developed by the 
weighted sum method. The developed mathematical model has used a fitness function for GA which predicts a 
maximum tensile strength of 272.2 (N/mm2) and hardness of 98.01 (BHN)30. The efficiency of the PSO algorithm 
was studied by convergence time and the accuracy of the predicted results. Compared to the results predicted 
by fuzzy set theory, GA and goal programming, the optimum result predicted by PSO was better31. The opti-
mum parameters of the squeeze casting process were predicted by GA, PSO and crowing distance-based multi-
objective PSO are compared to find the best optimization algorithm. The PSO algorithm performs better than 
GA to predict the best combination of parameters in minimum time32. GA is employed to solve multi-objective 
functions developed based on the response weights. The combination of process parameters to minimize sur-
face roughness and maximize YS, UTS and hardness of the squeeze casting process was effectively predicted 
by GA33. The WASPAS method is a combination of WSM and WPM to identify the best alternatives based on 
ranking order. The impact of WPM and WSM on ranking order is controlled by the varying parameter λ value 
from (0 to 1)34. Multi-Criteria Decision Making (MCDM) methods are one of the popularly used tools to solve 
multi-objective problems. The optimum parameters to minimize surface roughness, dimensional deviation and 
material removal rate of the end milling process was effectively predicted through MCDM tools such as WASPAS 
(Weighted Aggregated Sum Method), AHP and VIKOR approach35. To confirm the effectiveness and applicability 
of the WASPAS method, the best combination of variable parameters to attain the output responses of five non-
traditional machining processes is identified through the WASPAS rank order. WASPAS solve both single and 
multi-objective problem effectively, moreover, the effectiveness and the accuracy of the decision-making process 

Figure 1.   FFF materials-process-part performance.
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is varied by giving optimum λ value36. The best combination parameter for the Abrasive Jet Machining process 
was obtained through the WASPAS method. The result showed that the WASPAS method can solve conflict 
multi-objective problems37. The top six Evolution Algorithms such as GA, PSO, BBO, WCA, BA and SMS are 
evaluated by the WASPAS method to solve the multi-objective function of the Karun4 reservoir. The WASPAS 
raking order PSO (1), WCA (2), GA (3), BBO (4), BA (5) and SMS (6) illustrates that compared to other EAs 
PSO secure 1st rank and performance well in solving multi objection function38.

The literature survey conveys that process parameters such as printing speed, layer thickness and nozzle 
temperature are highly influencing the surface quality and printing time of FFF printed components. There 
are limited studies carried about on overall surface finish characteristics with respect to the least printing time. 
Hence, there is a need to find the optimum printing parameters to fabricate high-quality components at minimum 
printing time. There are several studies available related to the experimental characterization of FFF printed ABS 
polymer39–42. However, the studies related to multi-objective optimization techniques and WASPAS ranking for 
predicting and optimizing the FFF process printing parameters of polymers using statistical analysis tools are 
limited. These studies are essential to minimize the number of experiments and reduce the printing time. ABS 
and PLA are being widely used polymers in the FFF technique and ABS is harder to print compared with PLA. 
For mass production, the time consumption for obtaining the product should be minimized without scarifying 
part quality. By considering these aspects, the present research was carried out to find multiple performances 
such as overall surface finish and printing time of FFF processed ABS polymer, which can be used for various 
product development and optimization applications.

Materials and methods
In this study, ABS polymer was used. The most used materials in the FFF technique are ABS and poly lactic acid 
(PLA) due to their flexibility in manufacturing, availability, and low cost. Compared to PLA material, fabricat-
ing a component with ABS material is challenging. The operating temperature for ABS (220–245 °C) material 
is higher when compared with PLA (180–210 °C). The selection of parameters for this study correlated with 
minimum printing time with enhanced surface quality. Printing speed, layer thickness and nozzle temperature 
are the important parameters in influencing over required criteria of meeting minimum printing time with higher 
quality printed parts43. Hence, there is a need to optimize the input parameters, to enhance the surface quality 
of parts fabricated with ABS material at minimum time. The mechanical properties of ABS are given in Table 1.

Specimen fabrication.  In this research, all the specimens were fabricated using a low-cost FFF Ender3 
3D printer with dimensions of 4 cm x 4 cm x 1.5 cm. To measure the surface roughness and printing time, the 
developed 3D model was converted from .IGES format to .STL (STereoLithogrphy) format. To fabricate speci-
mens, the imported .STL file format was converted to G-code and fed into the 3D printer through an SD card 
port. Specimens were printed by varying the input process parameters, namely printing speed, layer height and 
extruder temperature. The Other parameters namely infill (20%), build orientation, build plate temperature 
(110 °C), shell thickness (1.6 mm), roof thickness (1.1 mm) and raster angle(+ 45°/− 45°) were maintained con-
stant, these values were selected based on the initial experimentation.

Specimen characterization.  In general, the surface quality of the top and bottom surfaces of the FFF part 
is not equal, compared to the side surfaces. Therefore, in this research, the average of top and bottom surface 
roughness values (SRTB) and the average of four sides surface roughness value (SRS) of specimen were measured 
using the surface roughness measuring instrument Surftronic (contact type). The data related to the SRS and 
SRTB are provided in the supplementary files. The dimensions of the fabricated specimen and the measuring 
direction are shown in Fig. 2. The time taken for printing each specimen is measured using a stopwatch and the 
average surface roughness values are given in Table 3.

Design of experiment.  To find out the correlation between the identified process parameters and the out-
put response DoE table was constructed using JMP software. The significant process parameters identified from 
the literature survey such as printing speed (mm/s), layer thickness (mm) and nozzle temperature (°C) values 
are taken at 3 levels − 1, 0 and + 1 as shown in Table 2. The fabricated specimens as per DoE are shown in Fig. 3.

To minimize the number of experiments in Central Composite Design (8 factorial design + 6 axial point + 2 
center points), 16 experiments were conducted and the measured responses, average Surface Roughness SRTB, 
average Surface Roughness SRS and Printing Time (min) are depicted in Table 3. The interaction between FFF 
process parameters with part characteristics is depicted in the interaction plot (Fig. 4).

Figure 4 shows how variables such as surface roughness and printing time depend on one another as seen in 
the interaction plots. Printing speed, layer thickness, and nozzle temperature all show a proportional increase 

Table 1.   Mechanical Properties of ABS.

Properties Unit Value

Tensile strength (MPa) 29.8–43

Young modulus (GPa) 1.79–3.2

Elongation at break (%) 10–15

Flexural modulus (GPa) 1.6–2.4
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with each other for flat upper and lower surfaces in Fig. 4a. A similar pattern was seen in the relationship 
between layer thickness and printing speed forside surface roughness. Printing speed vs. nozzle temperature 
and layer thickness vs. nozzle temperature both exhibits virtually constant values concurrently in Fig. 4b. The 
relationship between layer thickness and printing speed is shown in Fig. 4c. The printing time increases when 
the layer thickness is low, and the printing speed is low. The printing time is greatly decreased while printing at 
the maximum speed with the thickest layer. The effect of the nozzle temperature on printing time is minimal 
when compared to other factors.

Results and discussion
Mathematical model.  To derive an effective regression model and to explore the influence of process 
parameters on the responses, MiniTab software was used. The mathematical model developed to predict the Sur-
face Roughness (µm) and Printing Time (min) of fabricated FFF specimens using Eqs. (1), (2) and (3), respec-
tively.

where SRTB is the average surface roughness (µm) measured on the top and bottom surface of the specimen, SRS is 
the average surface roughness (µm) measured inside the face, PT is the printing Time in (min), h, i and j represent 
the printing speed (mm/s), layer height (mm), and nozzle temperature (°C), respectively. p, q and r represent the 
estimated parameters of the developed model. The experimental error is represented as ɛ.

From the measured responses of 16 specimens in Table 3, a mathematical model for SRTB, SRS and PT 
represented in Eqs. (4), (5) and (6) was developed by estimating the FFF parameter coefficients. Where model 
parameters x1, x2 and x3 represent the printing speed, layer thickness and nozzle temperature, respectively.

The significance of the developed model for SRTB and its parameters were examined by the ANOVA. The 
SRTB model p-value is lower than 0.0001 that indicates that the developed SRTB model and its parameters x1, x2 
and x3 were more significant. The R2 value of the SRTB model was 96% that indicates that the model is reliable.

The R2 value of Eq. (4) SRTB is 96%.
The significance of the developed model for SRS and its parameters were examined using the ANOVA tool. 

The SRS model p-value is lower than 0.0001 which indicates that the developed SRS model and its parameters x1, 
x2 and x3 were more significant. The R2 value of the SRS model is 99% that indicates that the model is reliable.

(1)SRTB
= khpiqjrε

(2)SRs
= khpiqjrε

(3)PT = khpiqjrε

(4)SRTB
= −5.6966+ 0.0064x1 + 5.9x2 + 0.032x3

(5)SRS
= 0.9717+ 0.0036x1 + 0.48x2 + 0.00072x3

Figure 2.   Specimen dimensions and measuring direction.

Table 2.   FFF process parameters and levels.

FFF parameters Units

Levels

− 1 0 + 1

Printing speed mm/s 60 105 150

Layer thickness mm 0.1 0.2 0.3

Nozzle temperature °C 220 232.5 245
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The R2 value of Eq. (5) SRS is 99%.
The significance of the developed model for PT and its parameters were examined using the ANOVA tool. 

The PT model p-value was lower than 0.0001 that indicates that the developed PT model and its parameters x1 and 
x2 are more significant, whereas the p-value of x3 parameter was greater than 0.0001 that indicates that it is not 
an appropriate parameter to fabricate the component based on the printing time. The R2 value of model PT was 
100% that indicates that the model is reliable.

The R2 value of Eq. (6) PT is 100%.

(6)PT = 305− 0.814x1 − 587x2 − 1.23x3 + 0.002427x21 + 841.4x22 + 0.00265x23 + 0.667x1x2

Figure 3.   Fabricated FFF specimens.

Table 3.   Measured surface roughness SRTB, SRS and printing time.

S. No

FFF parameters Responses

Printing speed Layer thickness Nozzle temperature
Average surface 
roughness SRTB

Average surface 
roughness SRS Printing time (PT)

mm/s mm °C Ra(µm) Ra(µm) (min)

1 105 0.2 232.5 3.5 1.6 34

2 150 0.1 220 2.9 1.75 55

3 60 0.2 232.5 3.2 1.45 45

4 60 0.3 220 3.4 1.49 34

5 105 0.3 232.5 4.1 1.67 26

6 60 0.3 245 4.5 1.53 34

7 105 0.2 245 3.8 1.61 34

8 60 0.1 245 3.2 1.4 77

9 105 0.2 220 3.1 1.59 34

10 105 0.1 232.5 3.1 1.56 58

11 105 0.2 232.5 3.5 1.6 34

12 150 0.3 220 4.3 1.79 24

13 150 0.2 232.5 3.8 1.78 32

14 60 0.1 220 2.5 1.41 77

15 150 0.1 245 3.7 1.73 55

16 150 0.3 245 5 1.85 24
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From the ANOVA table based on the R2 value, P-value and lack of fit, the effectiveness of the developed 
model was validated and used as a fitness function for optimization. To achieve a high surface quality finish at 
the lowest printing time, 50% weightage is given to Printing Time (PT), and 25% of weightage is given to Top and 
Bottom Surface Roughness ( SRTB ) and 25% weightage is given to Surface Roughness of the side face ( SRS ). The 
weightage has been assigned by following the Equal-weights method (50% for printing time & 50% for surface 
roughness) as the total number of responses is 240.The regression model developed to predict surface roughness 

Figure 4.   Interaction plot between FFF parameters versus part characteristics.
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and printing time was coupled to create a single regression model using the weighted sum method. The multi-
objective function (X), to minimize printing time and surface roughness value, is given in Eq. (7)

where W1 = 0.5,W2 = 0.25 and W3 = 0.25 represents the corresponding weights of responses PT, SRTB and SRS.

The above Eq. (9) is used as a fitness function to perform PSO to predict the optimum parameters in enhanc-
ing the overall surface quality of 3D printed parts at minimum printing time.

Particle swarm optimization.  Dr. James Kennedy, Dr. Russel and Eberhart inspired by the birds foraging 
behavior developed an algorithm to predict optimum values for the given objective function. To improve the 
surface quality of FFF parts at minimum printing time PSO technique is employed.

The following steps are coded in MATLAB software in order to find the optimum solution for the multi-
objective function given in Eq. (10).

Step 1: Program Start.
Step 2: Generate random values to initialize the particle.
Step 3: PSO parameters Setting Inertia Weight (w) = 0.5, Acceleration co-efficient (C1 = 1, C2 = 1) and maxi-

mum iteration (ni)) is set to 300 and population (np) is set to 100.
Step 4: Minimization Objective Function (X = W1 (PT) + W2 ( SRTB) + W3 ( SRS).
Step 5: Find the global best and the local best.
Step 6: Update new velocity (vi(k + 1) = vi(k)+ C1(pi − xi(k)+ C2(G − xi(k)) and new position 

( xi(k + 1) = xi(k)+ vi(k + 1)).
Step 7: Identify Min(X) and its optimum parameters.
Step 8: Print Min(X) and its minimum parameters.
Step 9: Program Stop if Max iteration reached or Min(X) reached.
The significant parameters of the PSO algorithm are the number of a particle (np), number of iterations (ni) 

and inertia weight (w). The number of particles was set to 100 which were sufficient to minimize the objective 
function. On the other hand, the maximum iteration was set to 300, since the PSO algorithm converged in less 
than 300 iterations. In this research, the inertia weight (w) which controls the convergence speed was set to 0.5. 
The acceleration co-efficient C1 that controls the local best position and C2 that controls the global best posi-
tion, were set to a value equal to 1.To predict the optimum process parameters, the range is given in Eqs. 11(a), 
(11b) and (11c).

The PSO algorithm predicted minimum value for the objective function (10) is given in Eq. (12).

The PSO predicted top 5 optimum parameters given in Table 4 are printing speed (x1), layer thickness (x2) 
and nozzle temperature (x3) which were within the given parameter range.

(7)Multi - objective function (Minimization)X = W1(PT)+W2(SR
TB)+W3(SR

S)

(8)
X = 0.5

(

305− 0.814x1 − 587x2 − 1.23x3 + 0.002427x21 + 841.4x22 + 0.00265x23 + 0.667x1x2
)

+0.25(−5.6966+ 0.0064x1 + 5.9x2 + 0.032x3)+ 0.25(0.9717+ 0.0036x1 + 0.48x2 + 0.00072x3)

(9)X = 149.95−0.4038x1−290.55x2−0.599x3+0.0012135x21+420.7x22+0.001325x23+0.333x1x2

(10)(Minimize)X =W1(PT)+W2(SR
TB)+W3(SR

S)

(11a)60 ≤ x1 ≥ 150

(11b)0.1 ≤ x2 ≥ 0.3

(11c)220 ≤ x3 ≥ 245

(12)
149.95− 0.4038(125.86)− 290.55(0.295)− 0.599(225.7)+ 0.0012135(125.86)2

+ 420.7(0.295)2 + 0.001325(225.7)2 + 0.333(125.86)(0.295) = 13.915

Table 4.   PSO Algorithm predicted results.

S. No

FFF parameters Output responses

Printing speed 
(mm/s)

Layer thickness 
(mm)

Nozzle 
temperature (°C)

Surface roughness 
SRTB (µm)

Surface roughness 
SRS (µm)

Printing time PT 
(min)

1 125.86 0.29 225.7 4.03101 1.73 23.20

2 126.42 0.29 224 3.94752 1.73 23.31

3 125.61 0.29 221 3.84666 1.72 23.47

4 125.83 0.29 226 4.00798 1.73 23.24

5 122.40 0.30 225.9 4.0432 1.72 23.22
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RSM solution.  Using JMP software, the goal of output response was set to minimization with the impor-
tance of 0.25 of SRTB, 0.25 of SRS and 0.5 of PT. The parameters range and levels are assigned to construct a CCD. 
The RSM predicts the parameter values to print a high surface quality component at a minimum printing time, 
as given in Table 5.

Evaluation of RSM and PSO results using WASPAS ranking method.  Compared to the result of 
the Weighted Sum Model (WSM) and Weighted Product Model (WPM), the ranking accuracy was enhanced by 
combining both WSM and WPM. The efficiency of the RSM and PSO algorithms was evaluated by employing 
the WASPAS method. The optimum parameters predicted for the output responses (SRTB of 25% weightage, SRS 
of 25% weightage and PT of 50% weightage) by RSM and the PSO, which are given in Table 6. These values are 
compared using the WASPAS method to select the best algorithm and the optimum solution.

The steps followed for the WASPAS method are shown below.
Step 1: Initialize of decision Matrix: The decision matrix Y is given in Eq. (13) where ‘p’ represents the No. 

of alternatives and ‘q’ represents the No. of criteria.

To initialize the decision matrix, the top 5 optimum results were predicted by PSO and RSM algorithms, 
minimum SRTB, SRS and PT values predicted by the mathematical model are taken to form a decision matrix as 
given in Table 7.

Step 2: Normalization of decision matrix using Eq. (14)

(13)Y =







y11 y12 . . . y1q
.
.
.

.

.

.
.
.
.

.

.

.

yp1 yp2 · · · ypq







(14)Minimization criteriaYij =
min yij

yij

Table 5.   RSM predicted results.

S. No

FFF parameters Output responses

Printing speed 
(mm/s)

Layer thickness 
(mm)

Nozzle 
temperature (°C)

Surface roughness 
SRTB (µm)

Surface roughness 
SRS (µm)

Printing time PT 
(min)

1 76.98 0.25 220 3.23 1.51 32.15

Table 6.   RSM and PSO predicted results.

Optimization 
technique

FFF parameters Output responses

Printing speed (mm/s) Layer thickness (mm)
Nozzle temperature 
(°C)

Surface roughness SRTB 
(µm)

Surface roughness SRS 
(µm) Printing time PT (min)

PSO

125.86 0.29 225.7 4.03101 1.73 23.20

126.42 0.29 224 3.94752 1.73 23.31

125.61 0.29 221 3.84666 1.72 23.47

125.83 0.29 226 4.00798 1.73 23.24

122.4 0.3 225.9 4.0432 1.72 23.22

RSM 76.98 0.25 220 3.23 1.51 32.15

Table 7.   WASPAS Method calculated Rank and alternatives scores. Significant values are in bold.

S. No

Optimum result 
prediction 
method

FFF parameters Output responses

Q
(1)

i Q
(2)

i Qi(λ = 0.5) Rank
Printing speed 
(mm/s)

Layer thickness 
(mm)

Nozzle 
temperature 
(°C)

Surface 
roughness SRTB 
(µm)

Surface 
roughness SRS 
(µm)

Printing time 
PT (min)

1

PSO

125.86 0.29 225.7 4.03101 1.73 23.20 0.8437 0.8230 0.8334 5

2 126.42 0.29 224 3.94752 1.73 23.31 0.8444 0.8255 0.8349 2

3 125.61 0.29 221 3.84666 1.72 23.47 0.8454 0.8286 0.8370 1

4 125.83 0.29 226 4.00798 1.73 23.24 0.8438 0.8237 0.8337 3

5 122.4 0.3 225.9 4.0432 1.72 23.22 0.8439 0.8232 0.8336 4

6 RSM 79.6 0.25 220 3.24 31.60 1.52 0.7732 0.7691 0.7711 6
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Step 3: Calculating ( Q(1)
i  ) the total relative importance through WSM using Eq. (15)

Step 4: Calculating ( Q(2)
i  ) the total relative importance through WPM using Eq. (16)

Step 5: Calculating the total relative significance of alternatives using Eq. (17)

The highest value of Qi represents the best alternative44. The WASPAS ranking method given in Table 7 shows 
that the 3rd alternative got the highest Rank − 1 when compared with other alternatives. Hence 3rd alternative 
predicted by PSO was taken as an optimum solution to enhance the surface quality of 3D printed components at 
minimum printing time. The WASPAS result shows that the PSO algorithm predicted result got the top 5 ranks, 
whereas the RSM predicted result got the 6th rank. From this, it was clearly understood that PSO is an effective 
algorithm to solve multi-objective functions when compared to RSM.

Evaluation of PSO results with the experiment results.  To evaluate the PSO predicted result a speci-
men was fabricated for the printing speed of 125.6 mm/s, the layer thickness of 0.29 mm and the nozzle tempera-
ture of 221 °C. The measured average Surface Roughness SRTB (µm), average Surface Roughness SRS (µm) and 
Printing Time PT (min) were depicted in Table 8, and compared the PSO predicted results with the experimental 
results. The error % between the PSO predicted results and experimental results were also calculated, which are 
less than 4%.

The error % less than 4 indicates that the developed model can predict the optimal solution. Moreover, 
compared to RSM, applying the PSO algorithm is an effective approach to solve the multi-objective problem.

Effect of process parameters on output responses.  The objective of this research is to predict opti-
mum FFF process parameters to enhance the FFF component surface quality at minimum printing time. The 
effect of process parameters, such as printing speed (mm/s), layer thickness (mm) and nozzle temperature 
(°C) on output responses (Surface Roughness SRTB, Surface Roughness SRS and Printing Time (min)) was ana-
lyzed using the ANOVA statistical analysis tool.

Process parameters versus surface roughness SRTB.  The ‘F’ (91.81) value of the model developed 
for SRTB derived through the ANOVA tool, and the R2 value of 96% implies that the model is reliable. Moreo-
ver, the ‘p’ value of all three process parameters was less than 0.0001 which indicates that all three parameters 
influence the SRTB. Compared to the printing speed ‘F’ (39.1) value and the nozzle temperature ‘F’ (74.4) value, 
the ‘F’ (161.9) value of layer thickness was higher which indicates that the parameter layer thickness has a high 
influence on SRTB. Moreover, compared to high printing speed (160 mm/s), the specimen printed at low speed 
(60 mm/s) exhibits high surface quality. On the one hand, higher printing speed with low extruder tempera-
ture induces under extrusion which increases the surface roughness. Similarly, the high printing speed with 
high extruder temperature causes over extrusion which produced a stringing effect with poor surface quality. 
Higher printing speed also induced vibration while printing which causes dimensional inaccuracies and poor 
surface quality. Compared to high nozzle temperature (245 °C), the specimen printed at low nozzle temperature 
(220 °C) exhibits high surface quality. At high nozzle temperature over extrusion take place which increases 
the surface roughness. Also, the surface roughness value was highly influenced by varying layer thickness. The 
surface roughness values were minimal on top and bottom surfaces compared to side surfaces due to stair casing 
effect. The specimen fabricated with a minimum layer thickness (0.1 mm) exhibited high surface quality, com-
pared with a specimen fabricated with a maximum layer thickness (0.3 mm). Due to over extrusion at maximum 
layer thickness, the surface quality was reduced on FFF printed components.

(15)Q
(1)
i =

n
∑

j=1

yij .wj

(16)Q
(2)
i =

n
∑

j=1

(yij)
wj

(17)Qi = �.Q
(1)
i + (1− �).Q

(2)
i

Table 8.   PSO results versus experiment results.

S. No

FFF parameters Output responses

WASPAS rankPrinting speed (mm/s) Layer thickness (mm)
Nozzle temperature 
(°C)

Avg. surface roughness 
SRTB (µm)

Avg. surface roughness 
SRS (µm)

Printing time PT 
(min)

1
125.6 0.29 221

PSO predicted result

1

3.84 1.72 23.47

Experimental result

3.92 1.78 24

Error % 2 3.4 2.2
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Process parameters versus surface roughness SRS.  The ‘F’ (313.42) value of the model developed for 
SRS through the ANOVA tool, and the R2 value of 99% implies that the model is reliable. Moreover, the ‘p’ value 
of printing speed and layer thickness were less than 0.0001 which indicate that these parameters highly influ-
ence the SRS. The ‘p’ value of nozzle temperature was 0.128  that indicates it is not significant to response SRS. 
Compared to layer thickness ‘F’ (75.67) value, the ‘F’ (161.9) value of printing speed was high, which indicates 
the parameter printing speed has high influence on the SRS. Compared to high printing speed (160 mm/s), the 
specimen print at low speed (60 mm/s) exhibited better surface quality. At higher printing speed under extrusion 
take place which increased the surface roughness and bonding strength between layers. The specimen fabricated 
with a minimum layer thickness (0.1 mm) exhibits better surface quality, compared with the specimen fabricated 
with a maximum layer thickness (0.3 mm).

Process parameters versus printing time PT.  The ‘F’ (212.62) value of the model developed for PT 
derived through ANOVA, and the R2 value of 100% implies that the model is significant. Moreover, the ‘p’ value 
printing speed and layer thickness were less than 0.0001 which indicates that these parameters highly influence 
the PT. The ‘p’ value of nozzle temperature is 1.00 that indicates it is not significant to response PT. Compared 
to the printing speed ‘F’ (11.14) value, the ‘F’ (29.7) value of layer thickness was higher which indicates the 
parameter layer thickness has high influence on PT. The specimen fabricated with maximum print speed and 
minimum layer thickness reduces the print time drastically. The specimen fabricated with maximum print speed 
and maximum layer thickness exhibit minimum printing time.

Conclusions
In this research, multi-optimization techniques were applied to predict the optimum FFF parameters in improv-
ing the surface quality of the flat upper and down, and side surfaces of FFF components at minimum printing 
time. Two important methods, such as RSM and PSO methods were employed in this research, to predict the 
optimum printing parameters using the ANOVA statistical analysis tool. The weightage of 0.25, 0.25 and 0.5 was 
assigned for the output responses SRTB, SRS and PT using the Equal-weights method. For the given weightage, the 
RSM predicts the printing speed of 76.98 mm/sec, nozzle temperature of 220 °C and layer thickness of 0.25 mm 
and the corresponding output response was SRTB of 3.23 µm, SRS of 1.51 µm and PT of 32.15 min. For the given 
weightage, the PSO predicts the printing speed of 125.6 mm/sec, nozzle temperature of 221 °C and layer thickness 
of 0.29 mm and the corresponding output response was SRTB of 3.84 µm, SRS of 1.72 µm and PT of 23.47 min. 
The WASPAS ranking method was employed to compare the RSM and PSO to identify the best output responses. 
Moreover, through the WASPAS ranking method, it was understood that compared to RSM, the PSO algorithm 
is more effective to solve multi-objective problems. The predicted results were compared with the experimental 
results, and obtained good correlations with the percentage of deviation of less than 4%. The results presented 
in this study will be useful to develop several optimization-based statistical models for minimizing the number 
of experimental trials by controlling the additive manufacturing process parameters.

Data availability
All data generated or analyzed during this study are included in this article [and its supplementary information 
files.
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