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Differential gene analyses on gastric cancer usually focus on expression change of single genes between tumor and adjacent normal
tissues. However, besides changes on single genes, there are also coexpression and expression network module changes during the
development of gastric cancer. In this study, we proposed a pipeline to investigate various levels of changes between gastric cancer
and adjacent normal tissues, which were used to repurpose potential drugs for treating gastric cancer. Specifically, we performed a
series of analyses on 242 gastric cancer samples (33-normal, 209-cancer) downloaded from the cancer genome atlas (TCGA),
including data quality control, differential gene analysis, gene coexpression network analysis, module function enrichment
analysis, differential coexpression analysis, differential pathway analysis, and screening of potential therapeutic drugs. In the end,
we discovered some genes and pathways that are significantly different between cancer and adjacent normal tissues (such as the
interleukin-4 and interleukin-13 signaling pathway) and screened perturbed genes by 2703 drugs that have a high overlap with
the identified differentially expressed genes. Our pipeline might be useful for understanding cancer pathogenesis as well as
gastric cancer treatment.

1. Introduction

Despite the development of science and technology, cancer is
still a major disease we have to face. According to statistics,
each year, more than 18 million new cancer cases are diag-
nosed worldwide. Among the living patients who have been
diagnosed with cancer, about 44 million patients are told that
they have less than five years of life. Cancer is also a disease
with a high mortality rate. Nearly 10 million people die from
cancer each year [1]. Among various cancers, gastric cancer is
one of the most prevalent ones and gastric cancer patients
mostly suffer from the poor prognosis of malignancy.
Though there are a few anticancer drugs specifically designed
for gastric cancer, more novel drugs are required to treat gas-
tric cancer patients with different disease status.

Through the screening and testing of model organisms,
more and more potential anticancer drugs have been discov-
ered. Since most potential anticancer drugs are identified in
model organisms with little human data support, their effec-
tiveness in promoting human health remains unknown, and
this uncertainty brings costly clinical trials to the pharmaceu-
tical industry [2].

In the past 60 years, only about 130-180 kinds of antican-
cer drugs have been approved by the US FDA. There are
about 1,300 to 1,500 kinds of various anticancer drug prepa-
rations formulated with these drugs. The research and devel-
opment of new drugs and rational and effective medication
guidance are still a big scientific problem.

At present, the most common drug development of gas-
tric cancer is mainly through a large number of experimental
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screening, and its strategy may be slightly different, such as
using some of the histological data for correlation, so as to
achieve better efficacy [3]. But this method is very expensive
for early drug screening, especially when the number of
potential drugs is large. It has also been reported that using
drug data and clinical case characteristics for machine learn-
ing to build software to guide drug use [4], such strategies
have limited understanding of the pathogenesis of cancer,
and the precise treatment of cancer is limited.

Several methods of computer-aided anticancer drug
development have been reported. For example, many pro-
teins have been resolved by X-ray or nuclear magnetic reso-
nance (NMR) spectra and are available from the Open
Access Protein Database (http://www.rcsb.org). This infor-
mation enables researchers to understand and characterize
many physiological processes based on the interactions
between proteins or between proteins and small molecules
(ligands), such as when drugs bind to targets. In addition to
the 3D structure of the molecule, van der Waals radii, the
parameters of covalent bonds, torsions, and dihedral angles
were also considered, so people can quickly develop some
anticancer drugs based on specific receptor proteins on the
surface of cancer cells [5].

For the effective use of anticancer drugs, a more elegant
solution does not seem to have been proposed at present.
In this article, we will provide a new idea for cancer research
and drug treatment. Here, we will compare gene expression
before and after cancer and changes in gene regulatory net-
works, construct key sets of cancer genes, and provide poten-

tial medication guidance through drug regulatory data. In
this article, we will focus on gastric cancer.

2. Materials and Methods

2.1. Data Collection and Processing

2.1.1. Gene Expression Data. The sample data (gastric cancer)
are all from The Cancer Genome Atlas (TCGA) database. We
used the R package of “RTCGAToolbox” to download the
RNA sequencing data (reads counts data) of gastric cancer.
After excluding some irregular sample data, we obtained a
total of 242 gastric cancer samples (33 normal samples, 209
cancer samples).

2.1.2. Drug Regulatory Gene Data. Justin Lamb once pro-
posed a network pharmacogenomic approach based on the
concept of Connectivity Map (CMap) [6]. The CMap project
contains more than 6,000 drug-perturbed gene expression
profiles generated from multiple human cell lines, including
more than 1,309 compounds. CMap can be used to query
gene expression profiles related to various diseases, thereby
identifying drugs that may “reverse” the expression of these
genes. Such drugs have potential application value for treat-
ing corresponding diseases. The CMap concept has been suc-
cessfully applied to disease research [7, 8], and these
successes have stimulated researchers to build a larger-scale
perturbation-induced expression database, e.g., The Library
of Network-Based Cellular Signatures (LINCS) Program
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Figure 1: An overview of the pipeline. Four major steps are (1) differential expression genes analysis (DEGs) using TCGA dataset; (2)
construction of gene coexpression network using WGCNA R packages to obtain clustering module; (3) perform functional enrichment
analysis for each module, select cancer-related functional modules for subnetwork analysis, and screen for key genes; and (4) compare the
gene expression characteristics induced by drug disturbances in CREEDS with DEGs, key modules, and key genes and select drugs with
high overlap into the candidate list.
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Figure 2: Principal component analysis (PCA) of three cancer samples. Through the matrix decomposition method, we can obtain the
distribution of the samples on the principal component axis. Through the distribution, we can preprocess the sample data and remove
outliers. Original sample distribution (a); filtered sample distribution (b).
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[9], and a crowd extracted expression of differential signatures
(CREEDS) [10]. Here, we used 8590 drug perturbation-
induced gene expression signatures collected in Crowd
Extracted Expression of Differential Signatures (CREEDS)
for our analysis (http://amp.pharm.mssm.edu/creeds).

2.2. Analysis of Gene Expression Differences between Cancer
and Normal Samples. Read counts were used to call differential
expression genes by DESeq2 [11] between cancer and normal
samples (adjusted p value less than 0.05 was set as threshold).
Before using DESeq2 for analysis, we used principal compo-
nent analysis (PCA) to screen all samples of gastric cancer,
excluding some outlier points to reduce sample disturbance.

2.3. Construction of Cancer and Normal Gene Coexpression
Network. We divided gastric cancer samples into normal
and cancer samples, and we removed the abnormal samples
to build a coexpression network through hierarchical cluster-
ing provided by weighted gene correlation network analysis
(WGCNA) [12]. The soft threshold is set as follows: gastric
cancer (normal-6, cancer-6).

2.4. Analysis of Gene Regulatory Networks.We can obtain the
clustered gene modules through weighted gene correlation
network analysis (WGCNA). The correlation of gene expres-
sion within the modules is relatively high, which may belong
to the same regulatory subnetwork. We select the modules
clustered by the normal sample group in gastric cancers for
functional enrichment analysis, find cancer-related functional

pathways, and use the genes in the module as a benchmark to
compare the changes of these genes in the corresponding can-
cer sample groups to explore cancer gene regulation changes
from normal samples.

2.5. Analysis of Potential Applicability Drugs. 8590 drug
perturbation-induced gene expression signatures collected
in Crowd Extracted Expression of Differential Signatures
(CREEDS) were used in our analysis. For signatures from
CREEDS, we use Fisher’s exact test to rank them, and we cal-
culated the significance of the overlap between up- and
down-regulated genes in normal and cancer samples with
drug perturbation-induced up- and down-regulated genes.
A drug was ranked to the top if drug-induced genes signifi-
cantly overlapped with differentially expressed genes in nor-
mal and cancer samples.

3. Results

3.1. An Overview of the Pipeline. We take RNA sequencing
data (reads counts data) from cancer and normal samples
as input, and it outputs a list of candidate compounds that
may help to slow aging and provide geroprotection in the
corresponding tissue. It outputs a list of potential drugs,
which may have potential effects and can “reverse” gene
expression in cancer cells. Key genes obtained from the analy-
sis of gene regulatory networks can be used to understand the
pathogenesis of cancer and aid drug screening (preferential
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Figure 3: Data distribution plot for DESEQ2 results. Base mean frequency distribution of all genes (a), distribution of the mean of the gene’s
read counts in all samples; log2FoldChange frequency distribution of all genes (b), distribution of the mean value of the gene’s fold change in
all samples.
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Figure 6: WGCNA analysis results. (a) Hierarchical clustering results of cancer samples (gastric cancer) (cut off = 0:5e06); (b) hierarchical
clustering results of normal samples (gastric cancer) (cut off = 1e06); (c) cancer samples coexpression module (72 gene modules, except
grey module); (d) normal samples coexpression module (36 gene modules, except grey module).
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selection of compounds capable of regulating key genes). The
detailed steps are shown in Figure 1.

3.2. DESeq2 Analysis Results. The data is from the Cancer
Genome Atlas (TCGA) database. It contains 242 gastric can-
cer samples (33 normal samples, 209 cancer samples). Princi-
pal component analysis (PCA) was performed on all samples
of the three cancers to remove outliers (see Figure 2). DESeq2
is used after data processing (Supplementary Table S1). In

gastric cancer samples, we obtained 9,733 significantly differ-
entially expressed genes (5101 up-regulated genes and 4,632
down-regulated genes, compared with normal samples)
(adjusted p value less than 0.05 was set as threshold).

In the case of the above threshold screening, there are
many significantly differentially expressed genes. We decided
to increase the screening criteria (adjusted p value ≤ 0.001,
basemean ≥ 100, ∣ log2 fold change ∣ ≥1) according to the
data distribution (Figure 3). We obtained 2,409 significantly
differentially expressed genes (1,084 up-regulated genes and
1,325 down-regulated genes, compared with normal sam-
ples). “ClueGO” [13] software was used for pathways enrich-
ment analysis to create and visualize networks of pathways
(Figure 4). A total of 57 significantly enriched pathways were
obtained (p value less than 0.001), and most of the path-
ways were mainly related to synthesis and modification
(class I MHC-mediated antigen processing and presenta-
tion: R-HSA:983169, collagen biosynthesis and modifying
enzymes: R-HSA:1650814, activation of the prereplicative
complex: R-HSA:68962 [14], Asparagine N-linked glycosyla-
tion: R-HSA:446203 [15], etc.), cell replication (condensation
of prometaphase chromosomes: R-HSA:2514853, unwind-
ing of DNA: R-HSA:176974, DNA strand elongation: R-
HSA:69190, cell cycle checkpoints: R-HSA:69620, mitotic
prometaphase: R-HSA:68877, cell cycle, mitotic: R-HSA:
69278, mitotic spindle checkpoint: R-HSA:69618, cell cycle
checkpoints: R-HSA:69620, etc.), cell metabolism (metabo-
lism of RNA: R-HSA:8953854, metabolism of proteins: R-
HSA:392499, digestion and absorption: R-HSA:8963743,
binding and uptake of ligands by scavenger receptors: R-
HSA:2173782 [16], degradation of the extracellular matrix:
R-HSA:1474228 [17], etc.), and signal mediation (interleu-
kin-4 and interleukin-13 signaling: R-HSA:6785807 [18],
scavenging by class A receptors: R-HSA:3000480 [19], etc.),
which were highly related to the characterization of cancer.
We screened some signal paths to build a network graph based
on the connectivity of pathways (Figure 5).

3.3. WGCNA Analysis Results. The input data of DESeq2 is
also used as the input data of WGCNA. Based on the data
results, we first divided the sample data into normal samples
and cancer samples and run the WGCNA program sepa-
rately. We remove those genes whose expression level is 0
in all samples, and then, we remove the sample points of
the partial separation group based on the hierarchical cluster-
ing results of the samples (Figures 6(a) and 6(b)). There are
187 valid samples in cancer group and 27 valid samples in
normal group. After running WGCNA, we obtained 72 gene
modules in cancer group and 36 gene modules in normal
group (Figures 6(c) and 6(d)). ClueGO cyREST tools are used
for each module for functional enrichment analysis [20],
which is a good batch task processing tool. The main path-
way enrichment results of each module can be viewed in
the Supplementary Table S2.

Due to the large results, we can analyze a specific pathway,
taking the interleukin-4 and interleukin-13 signaling pathway
as an example. It was reported that IL-4 and IL-13 inhibited
colon cancer cell-cell adhesion by down-regulation of E-
cadherin and CEA molecules [20]. In the normal group, there

Table 1: Gene expression differential analysis in interleukin-4 and
interleukin-13 signaling pathways.

zGroup Gene_id Log2FoldChange Padj

Normal

FCGR1A 2.160463 6:85E − 19
TNFAIP2 1.704628 4:34E − 14
GBP5 1.813918 6:37E − 08
IL18BP 0.929973 1:36E − 06
FOXO4 -0.55515 1:54E − 05
VEGFA 0.853914 9:28E − 05
SOCS7 0.550096 0.000314

IL17F -1.71267 0.003176

ITGB2 0.647619 0.010578

STAT3 0.250713 0.018252

IL24 0.668153 0.065269

FUT7 -0.54276 0.076443

IRF5 0.322352 0.103439

IL10RA -0.43151 0.114833

BATF3 0.294055 0.130277

POPDC3 -0.75591 0.130528

VEPH1 0.581702 0.140707

ALOX5 0.292276 0.237381

ITGB3BP 0.152357 0.309558

CCL24 -0.39966 0.395529

MNDA 0.125587 0.62581

HIF1AN -0.03136 0.795816

IL12RB1 -0.06538 0.826025

ALOX5AP -0.05154 0.866366

IL23R -0.06508 0.866881

JARID2 0.016533 0.921854

STAT4 -0.01968 0.942641

Cancer

SBNO2 0.799014 1:12E − 10
LBP 3.152698 2:64E − 10

ICAM1 1.209842 5:81E − 08
IL17C 2.409849 1:59E − 06
SOD2 0.739123 6:51E − 06

NFKBIA -0.49383 2:25E − 04
TNFAIP3 0.363209 0.043201

CSF3 0.661918 2:31E − 01
The results of 35 gene expression differences were extracted from the results
of DESeq2. According to the WGCNA clustering results, they were divided
into two groups and ranked according to the expression multiples.
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Figure 7: Gene association analysis by DGCA. Normal group gene association analysis (a); cancer group gene association analysis (b). Data
with an absolute value of the correlation coefficient greater than 0.3 and a confidence level of less than 0.05 are shown. The node size in the
figure is related to its edges, the red edges indicate a positive correlation, and the blue indicates a negative correlation.
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gastric cancer, and the up-regulated gene caused by drugs will match the down-regulated gene caused by gastric cancer) and (e) set the
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were a total of 27 gene hits. In the cancer group, this number
was reduced to 8 genes, and these genes did not overlap. The
expression difference of these 35 genes in cancer and normal
samples can be seen in Table 1. The correlation of these 35
genes was also calculated by DGCA: a comprehensive R pack-
age for differential gene correlation analysis [21]. We obtained
the pairwise correlations of the thirty-five genes in the healthy
group and the cancer group, retaining all the results of the
absolute value of the correlation greater than 0.3 and the p
value less than 0.05, and plotted the network diagram
(Figure 7) through Cytoscape (https://cytoscape.org/). It is
not difficult to find that related genes in the interleukin-4
and interleukin-13 signaling pathways have decreased activity
in cancer samples, and their associations have also been dis-
rupted. This may be the direction of potential drug treatment.

3.4. Potential Drug Discovery. We used drug perturbation-
induced gene expression signatures obtained from CREEDS
to compare with genes whose gene expression was signifi-
cantly (p value < 0.05) different in cancer and normal samples
and calculated the intersection of the genes in each drug
perturbation-induced gene expression signature with signifi-
cantly different genes (Figure 8). The results of the comparison
can be viewed in Supplementary Table S3. Because drug
mining needs to be more cautious, we used stricter screening
criteria (p value is less than 1e − 5) and obtained a total of
2703 matching drug perturbation-induced gene expression
signatures (Supplementary Table S4). We compared the
number of overlapping genes with the number of genes
affected by the drug itself to obtain coverage, ranked the
coverage, and selected the results with a coverage greater

Table 2: Evidence of drugs for gastric cancer.

Drug Possible effects Evidence (DOI)

Oxaliplatin
An alkylating agent that inhibits DNA replication by forming adducts between two

adjacent guanines or guanine and adenine molecules

10.1007/s00280-007-
0515-7

10.1186/1756-9966-29-
118

10.1016/S0140-
6736(11)61873-4

6-Alpha-
methylprednisolone

Strong anti-inflammatory effect
10.1002/ddr.430020113

10.1111/nmo.12391

Valproic acid Inhibits tumor growth by inducing apoptosis

10.2147/DDDT.S110425

10.3969/j.issn.1000-4718
.2012.10.023

10.1371/journal.pone
.0018562

Lactam Inhibits human gastric cancer proliferation and induces apoptosis
10.1021/ic400019r

10.3390/molecules
18077436

Retinoic acid Inhibit cell cycle progression

10.1046/j.1432-0436.2001
.068001013.x

10.1242/jcs.01474

10.1111/j.1440-1746.2004
.03336.x

10.1046/j.1432-0436.1997
.6150313.x

Dexamethasone
Dexamethasone not only suppressed the apoptosis-associated up-regulation of Bcl-xS but
also enhanced the basal level of Bcl-xL in the cells; significantly reduces the affinity of

tumor necrosis factor for gastric cancer cells

10.1016/S0014-
5793(97)01083-1

CNKI:SUN:YYDB.0.2005-
07-018

10.1007/s00464-014-
3463-4

Curcumin Inhibits proliferation of several cancer cell lines

10.4161/cbt.8.14.8720

10.1016/j.phymed.2012.12
.007

10.3892/or.2011.1410

10.1155/2012/915380

The drugs obtained are rigorously screened and their mechanisms discovered through the relevant literature.
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than 0.95 for further observation. Seven drugs were screened
out, and all were found to be related to cancer treatment
through verification (Table 2), and most of the genes
regulated by these seven drugs were significantly differently
expressed genes for gastric cancer. This may provide new
ideas and directions for our use of drugs.

4. Discussions

In this article, we propose a new idea for cancer mechanism
research and drug treatment. We use RNA sequencing data
from cancer and normal samples as our input files and
perturbation-induced gene expression signatures as our ref-
erence files. Through the analysis of gene expression differ-
ences, WGCNA analysis, comparison analysis of the gene
disturbance characteristics affected by drugs, etc., the related
pathway changes of gastric cancer were explored, and some
potential drugs that highly matched the characteristics of
gastric cancer gene changes were obtained. This method is
very meaningful for systematically understanding the cure
mechanism of gastric cancer, the changing characteristics of
pathways, and medication guidance.

In the specific research process, we obtained the list of dif-
ferential genes through expression differential analysis.
Through certain threshold screening and GO/KEGG enrich-
ment analysis, we obtained some potential cancer-related
pathways, such as interleukin-4 and interleukin-13 signaling:
R- HSA:6785807, class I MHC-mediated antigen processing
and presentation: R- HSA:983169, collagen biosynthesis and
modifying enzymes: R- HSA:1650814, and activation of the
prereplicative complex: R- HSA:68962. In the collinearity
analysis, we annotated the function of the coexpression gene
network module and compared the gene association changes
of the subnetwork modules including interleukin-4 and
interleukin-13 signaling pathway in normal samples and gas-
tric cancer samples. We found that interleukin-4 and
interleukin-13 signaling pathways have discredited activity in
cancer samples, and their associations have also been dis-
rupted. This may be the direction of potential drug treatment.

There are a few factors that bring possible errors and
uncertainties to the analyses. For example, the cancer sam-
ples collected by TCGA come from multiple individuals
and multiple platforms, which will bring batch effects. In
addition, gastric cancer may have multiple subtypes, which
might have intrinsic differences. In the future, we will
develop methods to minimize the effects of these confound-
ing factors, and try to identify gene expression changes and
pathway changes in different subtypes. As the concept of per-
sonalized medicine is proposed and promoted, the cost of
next-generation sequencing is decreasing year by year. Our
objective is very likely to be achieved.
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