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ABSTRACT
Coronary artery disease (CAD) is a leading cause of mortality worldwide. As aging
populations grow and lifestyle changes, the incidence of CAD is escalating. Traditional
biomarkers for CAD diagnosis, such as creatine kinase-muscle brain (CK-MB),
troponins, and n-terminal pro b-type natriuretic peptide (NT-proBNP), are influenced
by age, sex, the presence of chest pain, and renal function levels. However, since these
biomarkers are also detected in many other diseases such as heart failure, chronic
renal failure, pulmonary embolism, or septic shock, explore and identification of novel
unique biomarkers for CAD are of clinical significance. Exosomes containing non-
coding RNAs, proteins, and lipids can serve as biomarkers and regulators for regulate
various biological processes. Exosomal non-coding RNAs have been identified as risk
factors for CAD and pivotal elements in cellular functions, making them significant
candidates for CAD diagnosis and prognosis. This review elaborates on the current
understandings of CAD, highlights the important roles of exosomal non-coding RNAs
in CAD diagnosis and treatment, and concludes with future perspectives.

Subjects Biochemistry, Cell Biology, Molecular Biology
Keywords Coronary artery disease, Exosomes, Non-coding RNA

INTRODUCTION
Coronary artery disease (CAD) accounts for over 8 million deaths annually and is one of
the leading causes of mortality worldwide (Çakmak & Demir, 2020), imposing significant
burdens on healthcare systems and family economies (Li et al., 2023). In the United States,
while the number of certain CAD risk factors, such as smoking, hypertension, dyslipidemia,
and lack of exercise, is decreasing, others like aging, obesity, diabetes, and insulin resistance
are increasing (Duggan et al., 2022; Lu et al., 2023). Based on clinical phenotypes, CAD can
be classified into chronic coronary syndromes (stable angina, ischemic cardiomyopathy,
and silent ischemia), acute coronary syndromes (unstable angina (UA), non-ST-elevation
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myocardial infarction (NSTEMI), and ST-elevation myocardial infarction (STEMI))
(Malakar et al., 2019).

The coronary artery wall is composed of three including the intima, media, and
adventitia (Krüger-Genge et al., 2019; Sandoo et al., 2010). The endothelium of blood
vessels releases vasoactive substances that regulate vascular tone and remodeling of the
vascular wall (Bonetti, Lerman & Lerman, 2003). When coronary endothelial cells are
damaged or encounter risk factors such as dyslipidemia, hypertension, hyperglycemia-
related oxidative products, or pro-inflammatory cytokines produced by excess adipose
tissues, the endothelium can activate and trigger the expression of leukocyte adhesion
molecules (Libby & Theroux, 2005). These adhesion molecules include vascular cell
adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, and P-selectin
(Matsuzawa & Lerman, 2014). Low-density lipoprotein (LDL) enters the intima through
damaged endothelium and is oxidatively modified to oxidized LDL cholesterol (oxLDL-C)
(Zhang, Sessa & Fernández-Hernando, 2018). Endothelial and smooth muscle cells secrete
monocyte chemoattractant protein-1 and macrophage colony-stimulating factor, which
promote monocyte chemotaxis, adhesion, and differentiation into macrophages. These
macrophages engulf oxLDL-C via scavenger receptors and transform into foam cells,
forming the earliest lesion of lipid streaks (Liao, 1998). The evolution from a lipid streak
to fibro-fatty lesions and fibrous plaques is considered a cytokine-mediated inflammatory
response (Arbustini & Roberts, 1996; Rognoni et al., 2015). Anatomically, plaques that do
not rupture, erode, ulcerate, or form thrombi are stable, whereas plaques rupture can lead
to acute cardiovascular events (Ahmed, Bittl & Braunwald, 1993; Rosenschein et al., 1994)
(Fig. 1).

In clinical settings, the primary imaging tests for diagnosing CAD are coronary computed
tomography angiography and coronary angiography (Leipsic & Tzimas, 2023). To date,
the CAD assessment primarily relies on indicators such as the presence or absence of
angina during rest or exercise, electrocardiogram changes, CK-MB, troponins, and NT-
proBNP (Zhang et al., 2020). These biomarkers aid in individualized treatment of patients,
yet there remains debate over which specific biomarker should be the standard (Pei
et al., 2023; Tokgozoglu, Morrow & Nicholls, 2023). Some patients with UA may exhibit
normal electrocardiograms and normal troponin levels without myocardial ischemia,
where preliminary diagnosis depends on the patient’s clinical history and the clinician’s
judgment (Amsterdam et al., 2014). Pharmacotherapy for CAD includes beta-blockers,
calcium channel blockers, ACEI/ARB, antiplatelet agents, and statins. For patients with
complex lesions, treatment primarily involves coronary artery bypass grafting, percutaneous
coronary intervention and lipid-lowering therapy (Duggan et al., 2022; Jia, Liu & Yuan,
2020). However, traditional biomarkers, influenced by age, sex, presence or absence of
chest pain, and renal function levels, are also detected in many other diseases like heart
failure, chronic renal failure, pulmonary embolism, and septic shock. Thus, the exploration
and identification of new unique biomarkers for CDA is critical. With the advancement
of high-throughput sequencing, exosomal non-coding RNAs (ncRNAs) have emerged as
as star molecules, especially with increasing research breakthroughs in CAD diagnosis and
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Figure 1 Risk factors and pathogenesis of CAD. Risk factors CAD include age, smoking, diabetes,
hypertension, insulin resistance, dyslipidemia, and lack of exercise. When coronary endothelial cells are
damaged, oxidation products and pro-inflammatory cytokines released by certain risk factors enter the
endothelium. Vascular endothelial cells and smooth muscle cells secrete monocyte chemotactic protein-1
and macrophage colony-stimulating factor in response to oxidative products and proinflammatory
cytokines. These factors promote monocyte chemotaxis, adhesion, and differentiation into macrophages,
phagocytosis of oxLDL-C via scavenger receptors, and transformation into foam cells to form the earliest
lesion lipid streaks. LDL enters the intima through damaged endothelium and is oxidatively modified
to oxLDL-C. Lipid streaks gradually evolve into fibrous plaques, and when the plaque ruptures it leads
to an acute cardiovascular event. Abbreviations: LDL. Low-density lipoprotein; oxLDL-C, oxidized LDL
cholesterol. Copyright: Figdraw.

Full-size DOI: 10.7717/peerj.19352/fig-1

treatment. This review primarily discusses the latest advancements in exosomal ncRNAs
in CAD diagnosis and treatment.

OVERVIEW OF EXOSOMAL NCRNAS
Production and release of exosomes
Extracellular vesicles (EVs) are membranous particles that are discharged from cells into
the external environment. Based on the biogenesis mechanisms of EVs, there are three
subtypes: exosomes, microvesicles and apoptotic bodies. Nanovesicles, ranging in size from
30 to 150 nanometers, are known as exosomes, which are derived from the budding of the
plasmamembrane and the formation ofmultivesicular endosomes, containing intraluminal
vesicles. Exosomes contain various bioactive substances (e.g., nucleic acids, proteins, and
lipids), which can be conveyed to recipient cells, facilitating intercellular communication,
which bioactive (Lai et al., 2023; Marar, Starich & Wirtz, 2021). Furthermore, exosomes
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Figure 2 Three types of extracellular vesicles. Apoptotic bodies: 50–5,000 nm, diverse in shape and size,
formed during the apoptotic phase of a cell, containing nuclear materials such as various cellular proteins
and DNA. Microvesicles: 50–1,000 nm, more uniform in shape, formed by direct fragmentation of the
plasma membrane. Exosomes: 30–150 nm, nanosized particles derived from cells, produced by budding of
the plasma membrane and formation of multivesicular endosomes containing intraluminal vesicles. Copy-
right: Figdraw.

Full-size DOI: 10.7717/peerj.19352/fig-2

are released by all cell types (e.g., normal cells, tumor cells, fibroblasts, immune cells,
adipocytes, T cells, B cells) and found a various body fluids e.g., blood, breast milk,
amniotic fluid, and bronchoalveolar lavage fluid (Akers et al., 2013; Kimiz-Gebologlu &
Oncel, 2022) (Fig. 2).

Advantages of ncRNAs in exosomes
Compared to ncRNAs present in plasma, exsomal ncRNA offers distinct advantages. The
lipid bilayer of exosomes protects ncRNA from enzymatic degradation in bodily fluids,
ensuring longer and more stable (Su et al., 2020).

Exosomal ncRNAs have greater sensitivity in predicting CAD. For instance, serum
levels of miRNA-208a are less sensitive for acute coronary syndrome (ACS) diagnosis than
exosomal miRNA. In heart failure, exosomal miRNA-146a expression is upregulated in
patients, while no such association is found with circulating plasma miRNA-146a (Chang
et al., 2021; Zhang et al., 2020). However, the quantity of exosomal secretion is influenced
by age, showing a negative correlation and acting as an independent factor (Chang et
al., 2021). Due to the nature of their spontaneous formation, exosomes are safer than
synthetic nanoparticles (Huyan et al., 2020). As such, exosomes have been used as drug
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carriers, administered via intravenous injection, subcutaneous injection, intraperitoneal
injection, and orally. With their stability, biocompatibility, low immunogenicity, and
ability to overcome biological barriers, exosomes are also used as potential therapeutics
for CAD (Ortega et al., 2020; Wang, Zhao & Xiao, 2019; Zhang, Duan & Bei, 2019). Based
on the ability of exosomes to carry nucleic acids (Kimiz-Gebologlu & Oncel, 2022), the
ncRNA they carry has been proven to serve as reliable diagnostic markers for CAD, which
is significant for the screening of new biomarkers and diagnosis of the disease (Danielson
et al., 2018).

EXOSOMAL NCRNAS AND CAD
Classification of exosomal ncRNAs
Increasing evidence indicates a close relationship between exosomal ncRNA and CAD.
NcRNAs are classified into two categories based on length: long non-coding RNAs
(lncRNAs) for sequences longer than 200 nucleotides and small ncRNA for those shorter
than 200 nucleotides (Waititu et al., 2020). Exosomes can carry a substantial amount of
ncRNAs, such as microRNAs (miRNAs), lncRNAs, and circular RNAs (circRNAs), (De
Gonzalo-Calvo & Thum, 2018). ncRNAs carried by cell-derived nanovesicles are called
exosomal non-coding RNAs.

Exosomal ncRNAs are involved in a wide range of systemic diseases. For instance,
in autoimmune diseases, tumor microvesicles can present tumor antigens to antigen-
presenting cells to trigger an immune response (Battisti et al., 2017; Dionisi et al., 2018).
In cardiovascular diseases, exosomes from adipose-derived mesenchymal stem cells, by
inhibiting endothelial cells miR-342-5p, protect endothelial cells and offer a new strategy
for treating ankylosing spondylitis (Wang et al., 2020a). In nephrology, acute kidney injury
is a commonly encountered clinical condition (Zarbock et al., 2023). It has been found that
exosomes derived from BM-MSCs accelerate renal self-repair post-ischemia-reperfusion
in mice, reducing pro-inflammatory cytokines such as IL-6 and TNF-α, and elevating
the anti-inflammatory cytokine IL-10 levels (Xie et al., 2022). A growing body of research
shows that ncRNA dysregulation is closely linked to the pathophysiology of CAD (Thum
& Condorelli, 2015). Specifics will be provided below.

Mechanisms of action of exosomal ncRNAs in CAD
Regulation of inflammatory responses
Exosomal ncRNAs can influence the development of CAD by regulating inflammatory
responses. Research has found that exosomal miR-27b-3p from visceral fat can enter
vascular endothelial cells, downregulating PPARα and activating the NF-κB pathway,
increasing inflammation and atherosclerosis. Conversely, overexpression of PPARα can
reduce inflammation and prevent atherosclerosis (Tang et al., 2023).

Promotion of angiogenesis
A specific expression of exosomal circRNAs has been found in the heart during
ischemia/reperfusion (I/R) injury, implicating the importance of circRNAs in the
pathophysiology of I/R (Ge et al., 2019). Exosomes containing circHIPK3 released from
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hypoxic cardiomyocytes can be transferred to vascular endothelial cells (ECs). Upon
binding to miR-29a, they inhibit the expression of IGF-1, thereby reducing oxidative
stress-induced damage and protecting ECs (Wang et al., 2019). Furthermore, exosomal
circHIPK3 can inhibit the activity of miR-29a, which in turn promotes the expression of
VEGFA. This accelerates the cell cycle and the proliferation of cardiac ECs, promoting
angiogenesis and increasing the blood and oxygen supply to the cardiomyocytes. Thus, it
ameliorates myocardial ischemia and treats CAD (Wang et al., 2020b).

Regulation of cellular functions
Exosomal ncRNAs can be taken up by target cells, thereby regulating their functions. The
pathological characteristic of microscopic polyangiitis (MPA) is vascular inflammation
caused by leukocyte infiltration. A study found that exosomes fromMPA contribute to cell
transfer of miR-1287-5p, promoting the development of acute endothelial injury in MPA
and affecting the pathological process of cardiovascular diseases (Zhu et al., 2023).

Mediating intercellular communication
Exosomal ncRNAs are closely associated with CAD. The communication medium of
exosomes depends on the lipid bilayer, transferring lipids, proteins, and nucleic acids
to adjacent or internal cells (Li et al., 2018). This process mainly occurs in three forms:
exosomal surface receptors bindingwith receptors on the recipient cellmembrane, recipient
cell internalization of exosomes, and exosomal content release into the cytoplasm following
membrane fusion (Liu et al., 2019; Munich et al., 2012; Tkach et al., 2017; Zhang et al.,
2023b). Through these processes, exosomes transmit information to other cells, allowing
ncRNAs to bind with recipient cells and exert effects by targeting receptors to regulate
genes and drive signaling pathways (Ormazabal et al., 2022; Wang et al., 2021a; Zhang et
al., 2023a).

Overall, exosomal ncRNAs hold a broad potential in the diagnosis and treatment of
CAD. The following sections will detail the role of exosomal ncRNAs in the diagnosis and
treatment of CAD.

Exosomal ncRNAs: diagnosis of CAD
Exosomal miRNAs
MiRNAs are a group of small ncRNAs, about 19–25 nucleotides in length, proven to be
associatedwith the pathophysiology ofCADanddisease progression. An in vitro experiment
in which blood was collected from patients who underwent coronary angiography,
serum was separated and exosomes were extracted, analysed by flow cytometry and
finally subjected to next-generation sequencing. A clinical study has showed up-regulates
circulating exosomal miRNAs including miRNA-382-3p, miRNA-432-5p, miRNA-200a-
3p, and miRNA-3613-3p, while down-regulated miRNAs included miRNA-125a-5p,
miRNA-185-5p, miRNA-151a-3p, and miRNA -328-3p (Chang et al., 2021). This study
found miRNAs associated with CAD, but validating the link between these miRNAs and
CAD requires further exploration.

Matrixmetalloproteinases (MMPs) can degrade extracellularmatrix (ECM) collagen and
other structural proteins (Newby, 2008). The ECM plays a crucial role in the pathogenesis
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of atherosclerosis and cardiovascular diseases. Research found that elevated levels of
MMP-9 reflect the rupture of atherosclerotic plaques and myocardial tissue damage
(Lahdentausta et al., 2018). Diagnostically, the MMP-9 level and the MMP-9/TIMP-1
molar ratio are associated with ACS (OR 5.81, 95% CI [2.65–12.76], and 4.96, 2.37–10.38),
thus serving as early biomarkers. Building on this, Chen et al. (2020) discovered that serum
exosomal NEAT1 and MMP expressions in patients with acute ST-segment elevation
myocardial infarction are upregulated and positively correlated, with miR-204 expression
downregulated, suggesting NEAT1 may affect MMP-9 through miR-204.

Talin-1 (TLN1) gene is one of the major components of the ECM and plays a crucial
role not only in the adhesion between integrins and ECM but also in tissue structural
remodeling and integrity. Hence, partial rupture of arterial atherosclerotic plaques is
associated with downregulation of the TLN1 gene (Davies, 2009; Goult et al., 2010; Goult et
al., 2013; Sun et al., 2008; Von Essen et al., 2016). High expression of miR-182-5p and miR-
9-5p in CAD has been shown to lead to the downregulation of the TLN1 gene, affecting
the interaction between endothelial cells and ECM. This promotes the formation of
inflammatory mediators and plaques, thereby compromising vascular integrity (Gholipour
et al., 2022; Nieswandt & Watson, 2003; Ruggeri, 2002). Given the significant role of TLN1
in CAD, miR-182-5p and miR-9-5p could be potential biomarkers for CAD.

During the formation of atherosclerosis, the transformation of macrophages into foam
cells is related to cholesterol balance regulation. Lectin-like oxidized low-density lipoprotein
receptor-1 (LOX-1) is a crucial receptor for binding and internalizing lipoproteins (Kattoor,
Goel & Mehta, 2019; Poznyak et al., 2020; Remmerie & Scott, 2018; Tall, Costet & Wang,
2002). An experiment demonstrated that the downstream target of miR-186-5p in serum
exosomes from acute myocardial infarction (AMI) patients is LOX-1. Dysregulation of
miR-186-5p promotes the development of aortic atherosclerosis, potentially through the
upregulation of LOX-1, which affects foam cell formation and enhances lipid absorption
in macrophages, exacerbating atherosclerosis (Ding et al., 2022). This study also indicates
that miR-186-5p can serve as a biomarker for assessing atherosclerosis.

Exosomal circRNAs
CircRNAs are involved in the formation, proliferation, and differentiation of blood vessels
(Newby, 2008). Derived from pre-miRNA (Nieswandt & Watson, 2003), circRNAs are a
special type of ncRNA with a covalently closed-loop structure, lacking 5′ to 3′ polarity and
a polyadenylated tail. They are formed by back-splicing, creating a closed circular structure
(Altesha et al., 2019; Chen & Yang, 2015). Due to their unique circular structure, circRNAs
are resistant to exonuclease degradation and are more stable than linear RNAs (Aufiero et
al., 2019). CircRNAs were first discovered in the testes of adult mice, yeast mitochondria,
and viruses, and they are involved in various diseases, including cardiovascular diseases
(Altesha et al., 2019; Arnberg et al., 1980; Capel et al., 1993; Sanger et al., 1976). Currently,
about 30,000 different circRNAs have been identified in the human body (Aufiero et al.,
2019) and in 1995, it was first discovered that circRNAs could have protein-coding potential
(Chen & Sarnow, 1995). Exosomal circRNAs could serve as potential biomarkers for CAD.
For example,He et al. (2023) have indicated that has_circRPRD1A and has_circHERPUD2
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could act as biomarkers for diagnosing CAD, providing epidemiological support for the
interaction between circRNAs and CAD risk factors.

Exosomal ncRNAs: treatment of CAD
Exosomal miRNAs
During the formation of atherosclerosis, activation of vascular smooth muscle cells
(VSMCs) and macrophage infiltration promotes plaque formation (Liu et al., 2020).
Macrophages have two polarization states: pro-inflammatory (M1) and anti-inflammatory
(M2), each playing different roles in various stages of inflammation (Wang, Liang &
Zen, 2014). In endothelial cells, high expression of exosomal miRNA-125a-5p inhibits
macrophage inflammatory responses by suppressing the NF-κB signaling pathway (Hao
et al., 2014; Ormseth et al., 2015). Currently, exosomal miR-21-5-p, miR-126-3p, and
miR-100 are known to be associated with atherosclerosis and play crucial roles in function
of arterial endothelium (Canfrán-Duque et al., 2017;Gao et al., 2019; Jin et al., 2018; Linna-
Kuosmanen et al., 2021; Zhang et al., 2013). MiR-100, for example, inhibits the expression
of endothelial cell adhesion molecules and exerts significant anti-inflammatory effects
by enhancing autophagy through the MTORC1 signaling pathway(Pankratz et al., 2018).
Another study found that exosomal miR-223 from monocytes, stimulated by peonol,
decreased the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), intercellular
adhesion molecule-1 (ICAM-1), and vascular cell adhesion moecule-1(VCAM-1) in
human umbilical vein endothelial cells (HUVECs), thereby reducing the inflammatory
response in coronary artery endothelial cells (Liu et al., 2018).

Circulating exosomes isolated from healthy controls and acute myocardial infarction
patients can induce macrophage activation, regulate macrophage polarization, and reduce
cardiomyocyte apoptosis, thus protecting the heart from oxidative stress (Zhang et al.,
2022). Overexpression of exosomal miR-92a in endothelial cells can inhibit angiogenesis
both in vitro and in vivo. In mouse models of coronary ischemia and myocardial infarction,
inhibiting exosomal miR-92 has been shown to promote vascular growth and functional
recovery in damaged vessels (Bonauer et al., 2009). Shyu et al. (2020) further confirmed
this by showing that hyperbaric oxygen induced the expression of lncRNA MALAT1,
which suppresses the expression of exosomal miR-92a in a rat model of myocardial
infarction, thus promoting angiogenesis and improving the infarcted area. Additionally,
Ishii et al. (2006) and others identified a susceptibility locus for myocardial infarction
(MI) on chromosome 22q12.1 through a large-scale case-control association study using
single nucleotide polymorphisms (SNPs). They discovered a cDNA of new gene within
the genome, named myocardial infarction associated transcript (MIAT), and six SNPs of
MIAT may confer genetic risk for MI.

In a rat model of coronary heart disease, upregulation of exosomal miR-339 activates
the Sirt2/Nrf2/FOXO3 signaling pathway, exacerbating cellular oxidative stress damage.
This suggests that the downregulation of exosomal miR-339 has a protective effect against
cellular oxidative stress, making it a potential biomarker and therapeutic target for oxidative
stress in CAD (Shi et al., 2021).
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Since myocardial cells are non-regenerative, myocardial infarction caused by
myocardial ischemia results in necrotic heart muscle being replaced by fibrous scar
tissue (Frangogiannis, 2019). Fibroblasts differentiate into myofibroblasts, which not only
secrete extracellular matrix proteins to maintain cardiac function integrity but also secrete
anti-inflammatory factors to reduce inflammation (Ma et al., 2017; Nassiri & Rahbarghazi,
2014). Exosomes secreted from hypoxic bone marrowmesenchymal stem cells (BM-MSCs)
can improve myocardial cell apoptosis and promote cardiac repair through exosomal
miR-125b in mice with myocardial infarction (Zhu et al., 2018).

Protecting endothelial cells to delay atherosclerosis is important, and it was found that
the exosome miR-126-5P is likely to be a novel way to promote endothelial cell recovery
and prevent in stenosis after vascular injury, (Mormile, 2020). Additionally, exosomes from
adipose-derived mesenchymal stem cells protect endothelial cells and delay the progression
of atherosclerosis by inhibiting miR-342-5p (Wang et al., 2020a). These studies indicate
that exosomal miRNAs can not only delay the progression of arteriosclerosis through the
repair of endothelial cells but also serve as potential biomarkers for the condition.

Exosomal lncRNAs
In a rat model of acute myocardial infarction, exosomes isolated from mesenchymal stem
cells (MSC-Exo) compared to those from atorvastatin (ATV) pretreated mesenchymal
stem cells (MSCATV-Exo) improved cardiac function recovery, further reduced infarct size,
and decreased cardiomyocyte apoptosis. The primary mechanism involved lncRNAH19
in MSCATV-Exo regulating the expression of miR-675 and mediating the activation of
vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (Huang
et al., 2020). Furthermore, in the plasma exosomes of CAD patients, lnc-MRGPRF-6:1
is highly expressed and positively correlates with the levels of inflammatory cells (tumor
necrosis factor-α (TNF-α), tumor necrosis factor-β (TNF-β), and recombinant human
C-X-C motif chemokine11 (CXCL11)) in the patient’s plasma. Lnc-MRGPRF-6:1 is
upregulated in M1 cells, and upon knockdown of nc-MRGPRF-6:1, the polarization of
M1 macrophages decreases. Plasma exosomal lnc-MRGPRF-6:1 promotes macrophage-
mediated inflammation by regulating the TLL4-MyD88-MAPK signaling pathway in
macrophage M1 polarization (Hu et al., 2022). Bioinformatics analysis indicates that
the miR-450a-2-3p/MAPK1 pathway affects cardiac fibrosis. Human pericardial fluid
exosomal LINC00636 can counteract cardiac fibrosis and is positively correlated with
miR-450a-2-3p. Exosomes containing LINC00636 inhibit MAPK1 by overexpressing
miR-450a-2-3p in human pericardial fluid, thereby improving myocardial fibrosis in
patients with atrial fibrillation (Liu, Luo & Lei, 2021). This research is crucial for new
methods in the prevention and treatment of myocardial fibrosis in atrial fibrillation. These
studies demonstrate that exosomal ncRNAs not only can serve as potential biomarkers for
CAD but also play a vital role in the treatment of CAD.

Exosomal circRNAs
In CAD, exosomal circ-0001273 derived from umbilical cord mesenchymal stem cells
can inhibit cardiomyocyte apoptosis (Li et al., 2020). Exosomal circ-0002113 from
mesenchymal stem cells can suppress cell apoptosis after myocardial ischemia-reperfusion
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(Tian et al., 2021). Exosomal circ-0001747 from adipose-derived stem cells can enhance
cell survival and proliferation, as well as inhibit cell inflammation and apoptosis
following myocardial ischemia-reperfusion (Duggan et al., 2022). Exosomes containing
cPWWP2A and circHIPK3 from umbilical cord mesenchymal stem cells can inhibit the
onset of inflammation (Wang et al., 2021b; Yan et al., 2020). Additionally, the circRNA-
0006896-miR1264-DNMT1 axis can regulate endothelial cells in atherosclerosis and
plays a significant role in atherosclerotic plaques. Culturing HUVECs with exosomes
extracted from the serum of unstable plaque atherosclerosis patients showed increased
expression of circRNA-0006896, decreased expression of miR-1264, and promoted
proliferation and migration of HUVECs (Wen et al., 2021). Furthermore, HUVECs were
induced with oxidatively modified oxLDL at various concentrations. Subsequent RT-PCR
analysis revealed an upregulation in the expression levels of circ-0003575. However, the
silencing of circ-0003575 promoted the proliferation and angiogenesis of oxLDL-induced
HUVECs, while concurrently reducing apoptosis in these cells (Li, Ma & Yu, 2017).
Liu et al. (2022) found that circ-0026218 attenuates oxLDL-induced inhibitory effects
on cell proliferation and apoptosis in HUVECs by regulating the miR-188-3p/TLR4/NF-
κB pathway. Xiong et al. (2021) discovered that knocking out circNPHP4 in exosomes
derived from monocytes might inhibit heterotypic adhesion of monocytes and coronary
artery endothelial cells by reducing miR-1231, potentially through interactions within the
circNPHP4/miR1231/EGFR axis. These studies all indicate that reducing inflammatory
responses has a protective effect on the development of atherosclerosis (Fig. 3).

Exosomal ncRNAs, as novel biomarkers, have the potential to diagnose CAD. With
advancing research, it is believed that exosomal ncRNAs will offer more opportunities for
the early diagnosis and treatment of CAD, and provide new insights and clues for related
drug targets and therapeutic strategies.

CONCLUSION
Evaluation of the diagnostic value of exosomal ncRNAs for CAD
For CAD patients, exosomes from coronary blood samples of CAD patients were
extracted for next-generation sequencing. The relative expression of exosomal ncRNAs was
determined by qRT-PCR. These highly or poorly expressed exosomal non-coding RNAs
were further validated and analysed in comparison with normal controls. In the diagnosis
of CAD by exosomal miRNAs presented herein, exosomal miRNA-382-3p, miRNA-
432-5p, miRNA-200a-3p, and miRNA-3613-3p were highly expressed, miRNA-125a-5p,
miRNA-185-5p, miRNA-151a-3p, and miRNA -328-3p were lowly expressed. Although
the findings indicated that these exosomal non-coding RNAs are associated with CAD,
there are some limitations, and further validation is needed to determine whether there
is a chance association. Moreover, these exosomal non-coding RNAs were not analysed
by ROC curve analysis to further explore their diagnostic value for CAD, and can only be
used as potential biomarkers for CAD.

In STEMI patients, serum exosomal NEAT1 and MMP-9 expression levels were
increased, whereas miR-204 expression levels were decreased. All of these non-coding
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Figure 3 Exosomal ncRNAs promote the formation and functional recovery of damaged vessels. Ab-
breviations: IL-6, interleukin-6; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhe-
sion moecule-1; LOX-1, low-density lipoprotein receptor-1. Copyright: Figdraw.

Full-size DOI: 10.7717/peerj.19352/fig-3

RNAs made predictions of diagnostic value for CAD. However, no comparison was made
with the diagnostic value of the traditional myocardial injury markers, high-sensitivity
troponin T or CK-MB. However, it is worth affirming that the concentration of MMP-9 is
more easily detected than the classical myocardial injury marker high-sensitivity troponin
T in patients with CAD, which can respond to the early rupture of plaques and can also
predict the occurrence of early acute cardiovascular events.

In patients with CAD, high expression of exosomes miR-182-5p and miR-9-5p can
lead to down-regulation of the Talin-1 gene, which affects endothelial cell interactions
with the ECM and favours the formation of inflammatory mediators and plaques, thereby
undermining vascular integrity. Indirectly reacting to the approximate condition of
atherosclerotic plaques by detecting the expression of exosomes miR-182-5p and miR-9-
5p in patients with CAD can be used as a potential biomarker for CAD. In AMI patients,
exosome miR-186-5p is highly expressed, which not only has high diagnostic value, but
also inhibits macrophage atherosclerosis by regulating the downstream molecule LOX-1,
which can be used as a biomarker to assess atherosclerosis.

Exosomes has_circRPRD1A and has_circHERPUD2 were down-regulated in
CAD expression and correlated with established risk factors for CAD (age, gender,
hypertension, diabetes), among others. Exosomal has_circRPRD1A (AUC = 0.689)
and has_circHERPUD2 (AUC = 0.662), although diagnostic value for CAD, were not
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Table 1 Exosomal ncRNAs associated with CAD—May be classified as two types: potential markers and therapeutic targets.

Exosomal ncRNA Target Exosome source Classification
of CAD

Significance Refs.

miR-92a Unknown Animal serum AMI Promotes functional
recovery of damaged
blood vessels and blood
vessel growth

Bonauer et al. (2009)

miRNA-382-3P Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA-432-5P Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA-200a-3P Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA-3613-3P Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA-125a-5p Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA-185-5p Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA-151a-3p Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

miRNA328-3p Unknown Coronary artery
blood of CAD

Coronary heart
disease

Early biomarker Chang et al. (2021)

NEAT1 miR-204 Patient serum STEMI Early biomarker Chen et al. (2020)
miR-186-5p Lox-1 Patient serum AMI Affects foam cell

formation, promotes
macrophage lipid
uptake, and exacerbates
atherosclerosis

Ding et al. (2022)

circ-0001747 Unknown Adipose-derived
stem cells

Myocardial
ischaemia

Inhibits cellular
inflammation and
apoptosis

Duggan et al. (2022)

miR-182-5p Talin-1 gene Patient serum Coronary heart
disease

Promotes inflammatory
mediators and plaque
formation and disrupts
vascular completion

Gholipour et al. (2022)

miR-9-5p Talin-1 gene Patient serum Coronary heart
disease

Promotes inflammatory
mediators and plaque
formation and disrupts
vascular completion

Gholipour et al. (2022)

miRNA-125a-5p NF-κB Patient serum AMI Inhibits macrophage
inflammatory response

Hao et al. (2014)

lnc-MRGPRF-6:1 Unknown Patient plasma Coronary heart
disease

Promotes macrophage-
mediated inflammatory
responses

Hu et al. (2022)

circ-0001273 Unknown Umbilical cord
mesenchymal
stem cells

Coronary heart
disease

Inhibits apoptosis
in cardiomyocytes

Li et al. (2020)

(continued on next page)
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Table 1 (continued)

Exosomal ncRNA Target Exosome source Classification
of CAD

Significance Refs.

miR-100-5p mTOR Pericardial
fluid

Myocardial
ischaemia

Enhances endothelial cell
autophagy and exerts
anti-inflammatory effects

Linna-Kuosmanen et al. (2021)

circ-0026218 miR-188-3p/
TLR4/NF-κB

Patient serum Atherosclerosis Attenuates ox-LDL-induced
dysfunction in inhibiting
cell proliferation
and promoting apoptosis

Liu et al. (2022)

LINC00636 Unknown pericardial
fluid

Atrial
fibrillation

Improves myocardial
fibrosis in patients with
atrial fibrillation

Liu, Luo & Lei (2021)

miR-182-5p Talin-1 gene Patient serum Coronary heart
disease

Promotes inflammatory
mediators and plaque
formation and disrupts
vascular completion

Nieswandt & Watson (2003)

miR-9-5p Talin-1 gene Patient serum Coronary heart
disease

Promotes inflammatory
mediators and plaque
formation and disrupts
vascular completion

Nieswandt & Watson (2003)

miRNA-125a-5p NF-κB Patient serum AMI Inhibits macrophage
inflammatory response

Ormseth et al. (2015)

miR-182-5p Talin-1 gene Patient serum Coronary heart
disease

Promotes inflammatory
mediators and plaque
formation and disrupts
vascular completion

Ruggeri (2002)

miR-9-5p Talin-1 gene Patient serum Coronary heart
disease

Promotes inflammatory
mediators and plaque
formation and disrupts
vascular completion

Ruggeri (2002)

miR-339 Sirt2/Nrf2/
FOXO3

Patient serum Coronary heart
disease

Exacerbates oxidative
stress damage to cells

Shi et al. (2021)

lncRNA MALAT1 Unknown Cardiomyocyte AMI Promotes vessel growth
and improves infarct size

Shyu et al. (2020)

circ-0002113 Unknown Mesenchymal stem
cell MSC

Myocardial
ischaemia

Inhibits apoptosis Tian et al. (2021)

circHIPK3 Unknown Umbilical cord
mesenchymal
stem cells

Myocardial
ischaemia

Inhibits the inflammatory
response

Wang et al. (2021b)

circ-0006896 Unknown Patient serum Atherosclerosis Promotes the proliferation
and migration of human
umbilical vein endothelial
cells

Wen et al. (2021)

circNPHP4 circNPHP4/
miR1231/
EGFR axis

Monocyte Atherosclerosis Inhibits heterogeneous
adhesion of monocytes and
coronary endothelial cells

Xiong et al. (2021)

circHIPK3 Unknown Umbilical cord
mesenchymal
stem cells

Myocardial
ischaemia

Inhibits the inflammatory
response

Yan et al. (2020)
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compared with the diagnostic value of classical high-sensitivity troponin T. This result
seems that the exosomal has_circRPRD1A and has_circHERPUD2 diagnostic value is not
satisfactory (Table 1).

Evaluation of the therapeutic value of exosomal non-coding RNA in
CAD
For the therapeutic efficacy of exosomal non-coding RNA in CAD, exosomal non-coding
delays the onset of atherosclerosis by inhibiting the inflammatory response of arterial
endothelial cells. It protects cardiomyocytes by reducing cardiomyocyte apoptosis, resisting
myocardial fibrosis, promoting cardiomyocyte survival and proliferation, and promoting
the growth and functional recovery of damaged blood vessels in infarcted mice. However,
their therapeutic potential for CAD, which is currently not applied in the clinic, is illustrated
by cellular and animal studies. It is believed that we will see the application and therapeutic
effects of exosomes in specific diseases in the future.

With increasing research into exosomes, the value of exosomal ncRNAs in the early
diagnosis of CAD is evident. However, the pathway and protectivemechanisms of exosomal
ncRNAs in diseases, supported by solid experimental validation are poorly defined. We
also face huge technical challenges on how exosomal ncRNAs can be specifically applied
to clinical diagnosis and treatment of CAD, including exosome production, isolation,
loading efficiency, biological distribution, and absorption. These challenges are further
complexed by additional confounding diseases, such as lung cancer, chronic renal failure,
and endocrine diseases since these confounding diseases may affect the predictive value
of potential markers for CAD. Much more research is needed to develop the clinical
application of ncRNAs for the diagnosis and treatment of CAD.
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