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ABSTRACT: This communication describes the development of a metal-
free catalytic decarboxylation of silyl alkynoates to alkynylsilanes. Treatment
of a silyl alkynoate with a catalytic amount of tetrabutylammonium
difluorotriphenylsilicate (TBAT) in N,N-dimethylformamide at 150 °C
resulted in decarboxylation to give the corresponding alkynylsilane in good
to excellent yield (75 → 95%). The TBAT system was applicable to the
decarboxylation of sterically demanding silyl alkynoates such as tert-
butyldiphenylsilyl 3-phenylpropiolate. Mechanistic studies revealed that the
tetrabutylammonium alkynoate derived from TBAT and the silyl alkynoate act as a catalyst for the decarboxylation.

■ INTRODUCTION

Decarboxylative transformations are recognized as useful
reactions in organic synthesis, because carboxylic acids and
their ester derivatives are readily available starting materials.1

Among them, the class of decarboxylation reactions that
connect two moieties in a molecule separated by a carboxyl
group, such as the protodecarboxylation of carboxylic acids and
decarboxylative allylic alkylation of β-keto allyl esters, are
operationally advantageous: the only stoichiometric coproduct
is carbon dioxide, which is nontoxic, nonflammable, and
readily removable from the reaction medium.2

Alkynylsilanes are useful building blocks in organic syn-
thesis.3 While the nucleophilic substitution of a halosilane with
a metal acetylide prepared by deprotonating a terminal alkyne
with an organometallic reagent is one of the most common
methods for the synthesis of alkynylsilanes (Scheme 1a),4 the
high nucleophilicity of metal acetylides limits their functional
group tolerance, and the coproducts derived from the
organometallic reagents are sometimes problematic from the
viewpoints of practicality and atom economy. Therefore, the
catalytic Si−C cross-coupling of a terminal alkyne with a
silicon electrophile has attracted increasing attention, and
various silicon electrophiles such as halosilanes,5,6 hydro-
silanes,7 and vinylsilanes8 are now available for this purpose
(Scheme 1b). On the other hand, we recently reported a
catalytic decarboxylation approach for the synthesis of
alkynylsilanes (Scheme 1c).9−11 In the presence of a copper-
based catalyst, a silyl alkynoate is decarboxylated to afford the
corresponding alkynylsilane. Although the copper-catalyzed
system has some advantages such as a low catalyst loading,
mild reaction conditions, and easy-to-remove carbon dioxide as
the coproduct, the steric hindrance of the silyl substituents
strongly affected the reaction progress and the decarboxylation

of silyl alkynoates with bulky silyl groups such as the
triisopropylsilyl group was significantly impeded.
Owing to the high affinity of the fluoride ion to silicon

atoms, the activation of organosilicon compounds by fluoride
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Scheme 1. Approaches to the Synthesis of Alkynylsilanes
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ion is a common procedure for the transformations of
organosilicon compounds.12 Indeed, alkaline metal fluorides
have been applied as catalysts in the decarboxylation of
trimethylsilyl perfluorobenzoates.13 Although the applicable
substrates are limited to trimethylsilyl penta- and tetrafluor-
obenzoates, and the applicability of the approach to the
decarboxylation of other silyl esters was unclear, we expected
that the small, hard fluoride ion would activate silyl alkynoates
to induce decarboxylation, irrespective of the steric bulk of the
silyl substituents (Scheme 1d).

■ RESULTS AND DISCUSSION
The decarboxylation of triisopropylsilyl 3-phenylpropiolate
(1a) was initially investigated in the presence of 5 mol % KF in
N,N-dimethylformamide (DMF) at 150 °C, and the desired
alkynylsilane 2a was obtained in 42% yield after 1 h (Table 1,

entry 1). Other potassium salts (KCl, KBr, and KI) showed
remarkably diminished catalytic performance, demonstrating
the importance of fluoride ion (entries 2−4). While NaF gave
an inferior result (entry 5), a higher yield of 55% was observed
in the decarboxylation with CsF (entry 6). An alkaline earth
metal fluoride, MgF2, was also examined, but only a trace
amount of alkynylsilane 2a was produced (entry 7). Next, we
investigated organic fluorides instead of metal fluorides. When
tetrabutylammonium fluoride (TBAF) was used as a catalyst,
the yield of 2a was 50%, even though 1a was completely
consumed (entry 8). The major byproduct was the
corresponding alkynoic acid, which was generated by
hydrolysis of 1a with the water contained in TBAF.14

Therefore, we focused on anhydrous organic fluoride sources,
and found that tetrabutylammonium difluorotriphenylsilicate
(TBAT) gave 2a in a higher yield of 75%, albeit with 19% of
the hydrolyzed byproduct, the corresponding alkynoic acid
(entry 9).15 Because the participation of water from the
glassware was suspected in the hydrolysis, the decarboxylation
was conducted in a poly(tetrafluoroethylene) (PTFE) vessel,
which afforded the product in 65% with a negligible amount of
the hydrolyzed byproduct (entry 10). Finally, when the
reaction was carried out for 3 h, silyl alkynoate 1a was

completely consumed, yielding the desired alkynylsilane 2a in
93% (entry 11).
Under the optimal reaction conditions, the scope of silyl

alkynoates was investigated (Table 2). The decarboxylation of

trimethylsilyl 3-phenylpropiolate (1b) was completed in 1 h,
affording desired alkynylsilane 2b in 94% yield. Triphenylsilyl
3-phenylpropiolate (1c) and tert-butyldimethylsilyl 3-phenyl-
propiolate (1d) were completely consumed in 3 h, furnishing
products 2c (86%) and 2d (89%), respectively. Even more
sterically demanding tert-butyldiphenylsilyl 3-phenylpropiolate
(1e) was efficiently decarboxylated to give alkynylsilane 2e in
76% yield, albeit with a longer reaction time of 12 h. Silyl
alkynoates with vinyl (1f) and allyl (1g) groups on the silicon
atom were also decarboxylated in excellent yields without any
side reactions. The reactions of trimethylsilyl 3-arylpropiolates
with either electron-donating (−Me and −OMe) or electron-
withdrawing (−Cl, −Br, and −NO2) groups at the para- and
ortho-position on the benzene ring afforded the corresponding
alkynylsilanes (2h−2m) in high yields (88 → 95%). These
results show that the electronic nature of the aryl groups has
little effect on the product yield. It is noteworthy that, because
this system contains no transition metals, substrates with C−Cl
and C−Br functional groups are tolerated under the reaction
conditions. Silyl alkynoate 1n with an acetoxy group was found
to decompose to some extent at 150 °C; thus, the reaction was
carried out at 80 °C for 6 h to give alkynylsilane 2n in 94%
yield. Diisopropylsilanediyl bis(3-phenylpropiolate) (1o)
smoothly underwent two-fold decarboxylation to give the
corresponding dialkynylsilane (2o) in 82% yield. Bis-
((triisopropylsilyl)ethynyl)benzene (2p) was afforded in 75%
yield by the two-fold decarboxylation of silyl alkynoate 1p.

Table 1. Optimization of the Reaction Conditions

entry catalyst conv. (%) yield (%)a

1 KF 46 42
2 KCl 23 19
3 KBr 11 2
4 KI <5 trace
5 NaF 27 22
6 CsF 65 55
7 MgF2 <5 trace
8 TBAF >95 50
9 TBAT 94 75
10b TBAT 71 65
11b,c TBAT >95 93 (89)d

aDetermined by 1H NMR analysis using mesitylene as internal
standard. bPTFE vessel was used instead of glassware. cThe reaction
was carried out for 3 h. dIsolated yield.

Table 2. Scope and Limitations of Silyl Alkynoates

aReaction was carried out at 80 °C.
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To shed light on the reaction mechanism, the decarbox-
ylation of 1a was followed by 19F NMR spectroscopy (Figure
S1). When 1a was reacted with 5 mol % TBAT in DMF-d7 at
room temperature, the complete consumption of TBAT and
the formation of iPr3SiF and Ph3SiF were observed; no other
compounds containing fluorine atoms were detected. The
production of iPr3SiF and Ph3SiF was also confirmed by
29Si{1H} NMR spectroscopy (Figure S2). These observations
suggest that TBAT is not the true catalyst for the
decarboxylation, but rather, the tetrabutylammonium alky-
noate that is produced by the reaction of the silyl alkynoate
with TBAT functions catalytically. Indeed, tetrabutylammo-
nium 3-phenylpropiolate, which was prepared from 3-phenyl-
propiolic acid, NaH, and tetrabutylammonium chloride,
smoothly catalyzed the decarboxylation of silyl alkynoate 1a
to give alkynylsilane 2a in 95% NMR yield under fluoride-free
conditions (Scheme 2a). The clean decarboxylation of 1a with

5 mol % nBu4NOAc also indicated that the fluoride ion is not
an essential component of the catalyst, but that the carboxylate
ion plays a critical role in the decarboxylation (Scheme 2b).
While the formation of alkynylsilane 2a was not observed in
the stoichiometric reaction of tetrabutylammonium 3-phenyl-
propiolate and iPr3SiF (Scheme 2c and Figure S3), not only
alkynytriisopropylsilane 2a (11%) but also alkynyltriphenylsi-
lane 2c (13%) were produced in the stoichiometric reaction of
silyl alkynoate 1a and TBAT (Scheme 2d and Figure S4),
implying that the formation of the tetrabutylammonium
alkynoate is reversible.
Based on these findings, a possible reaction mechanism is

proposed, as illustrated in Scheme 3. First, TBAT reacts with
the silyl alkynoate to produce a tetrabutylammonium alkynoate

as well as two fluorosilanes (R3SiF and Ph3SiF) derived from
the silyl alkynoate and TBAT. The thus-obtained tetrabuty-
lammonium alkynoate reacts with the silyl alkynoate to form a
pentacoordinate silicon intermediate, which undergoes de-
carboxylation to give the desired alkynylsilane and carbon
dioxide with regeneration of the tetrabutylammonium
alkynoate.
In summary, we have developed a facile method for the

synthesis of alkynylsilanes by decarboxylating silyl alkynoates
in the presence of a catalytic amount of commercially available
TBAT. A wide variety of substrates, including those with bulky
silyl groups such as the tert-butyldiphenylsilyl group or
functional groups such as chloro, bromo, and acetoxy groups,
were efficiently decarboxylated in good to excellent yields.
Mechanistic studies revealed that the tetrabutylammonium
alkynoate is the catalyst for the decarboxylation and TBAT acts
as a precatalyst. Our group is now investigating catalytic
systems for the decarboxylation of silyl esters other than silyl
alkynoates.

■ EXPERIMENTAL SECTION
General Procedure for Decarboxylation of Silyl

Alkynoates 1. In a PTFE vessel, a solution of silyl alkynoate
1 (0.50 mmol) and tetrabuthylammonium difluorotriphenylsi-
licate (5 mol %, 0.025 mmol) in DMF (1.0 mL) was stirred at
150 °C. After 1−12 h, the reaction mixture was diluted in
CH2Cl2 (0.5 mL) and passed through a silica gel column. After
evaporation, the desired alkynylsilane 2 was obtained in 75 →
95% yield.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c01256.

Experimental procedures, characterization data, and
copies of NMR spectra (1H, 13C{1H}, and 29Si{1H})
of the alkynylsilane products (PDF)

Scheme 2. (a) Catalytic Reaction of Silyl Alkynoate 1a with
Tetrabutylammonium 3-Phenylpropiolate, (b) Catalytic
Reaction of 1a with nBu4NOAc, (c) Stoichiometric Reaction
of Tetrabutylammonium 3-Phenylpropiolate and iPr3SiF,
and (d) Stoichiometric Reaction of 1a and TBAT

Scheme 3. Proposed Reaction Mechanism for the Catalytic
Decarboxylation of Silyl Alkynoates with TBAT
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