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It has been demonstrated that immobilization (IMO) stress affects neuroimmune systems followed by alterations of physiology and
behavior. Interleukin-4 (IL-4), an anti-inflammatory cytokine, is known to regulate inflammation caused by immune challenge but
the effect of IMO on modulation of IL-4 expression in the brain has not been assessed yet. Here, it was demonstrated that IL-4 was
produced by noradrenergic neurons in the locus coeruleus (LC) of the brain and release of IL-4 was reduced in response to IMO.
It was observed that IMO groups were more anxious than nontreated groups. Acute IMO (2 h/day, once) stimulated secretion of
plasma corticosterone and tyrosine hydroxylase (TH) in the LC whereas these increments were diminished in exposure to chronic
stress (2 h/day, 21 consecutive days). Glucocorticoid receptor (GR), TH, and IL-4-expressing cells were localized in identical neurons
of the LC, indicating that hypothalamic-pituitary-adrenal- (HPA-) axis and sympathetic-adrenal-medullary- (SAM-) axis might be
involved in IL-4 secretion in the stress response. Accordingly, it was concluded that stress-induced decline of IL-4 concentration
from LC neurons may be related to anxiety-like behavior and an inverse relationship exists between IL-4 secretion and HPA/SAM-
axes activation.

1. Introduction

Stress induces neuroinflammation accompanied by altered
production of neuropeptides and inflammatory cytokines
in the central nervous system (CNS). Such modulation in
the CNS affects endocrine and immune systems followed
by behavioral changes [1–3]. Immobilization (IMO) is a
severe stressor that triggers both physiological and behavioral
responses.

An inflammatory process is developed by imbalanced
release of pro- and anti-inflammatory cytokines in response
to IMO. Interleukin-4 (IL-4) is an anti-inflammatory cytok-
ine and has an ability to inhibit synthesis of IL-1𝛽, a proin-
flammatory cytokine, and upregulate the production of IL-
1 receptor antagonist [4, 5]. The effect of stress on secretion
of IL-4 in the periphery is highly controversial. It has been
shown that serum IL-4 level was decreased [6], and not
changed [7], or the number of airway IL-4 positive cells
was increased [8] in various animal models of stress. Several

human studies reported that social stress test and public
speaking had no association with blood IL-4 concentration
[2, 9, 10]. Stress-induced modification of IL-4 release in the
brain, however, has not been assessed fully. Th2 helper T
lymphocytes are responsible for production of IL-4 in the
periphery [11] and microglia are reported as a IL-4 secreting
cell in the cortex of the brain [12], whereas IL-4 producing
cells in the LC of the brain have not been identified yet.

Activation of the hypothalamic-pituitary-adrenal- (HPA-)
and sympathetic-adrenal-medullary- (SAM-) axes is also a
typical response induced by IMO. The final consequence
of HPA-axis activation is increased corticosterone (CORT)
release in the plasma [13–16]. The locus coeruleus (LC) is
a stress-response brainstem and a major part of the SAM-
axis for its role in regulating norepinephrine (NE) release.
Secretion of NE and expression of tyrosine hydroxylase (TH),
an enzyme involved in the synthesis of NE, are stimulated as a
result of SAM-axis activation [17, 18]. SAM-axis modulation
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by theHPA-axis occurs via projections of the LC to the stress-
related brain regions interconnected with the hypothalamus
[19]. Anxiety-like behavior in the elevated plus maze (EPM)
test was also reported in an IMO-administered animal group
[20, 21]. Several researches have shown that glucocorticoid
influences IL-4 production and IL-4 signaling in vitro [22,
23]. It was also shown that injection of IL-4 altered free radical
processes evoked by stress [24]. Stress-induced involvement
of IL-4 in HPA- and SAM-axes activation in vivo is not
fully delineated yet, whereas the release of proinflammatory
cytokines has been well established.

The purpose of this study was to assess the influence
of acute and chronic IMO on IL-4 concentrations and to
identify the characteristics of IL-4 producing cells in the LC
region of the brain. We also focused on the correlation of
IL-4 secretion, anxiety-like behavior, and HPA-/SAM-axes
activation in the stress response.

2. Materials and Methods

2.1. Animals. All the experimental procedures performed on
the animals were conducted with the approval of the Ethics
Committee of the Kyung Hee University (KHUAP(SE)-13-
041) and in accordance with the US National Institutes of
Health (Guide for the Care and Use of Laboratory Animals,
8th edition, revised 2011). Male Sprague-Dawley rats (Orient
Animal Corp., Gyeonggi-do, Korea) aged 7weeks (310–360 g)
were housed under a 12-h light schedule with controlled
temperature at 22∘C and humidity. Animals had access
to water and food ad libitum and were acclimated for 7
days prior to experiments. The experiments were performed
according to the animal care guidelines of theNIH andKyung
Hee University Institutional Animal Care.

2.2. Immobilization Stress Procedure. The animals were ran-
domly assigned to control, acute IMO, or chronic IMO
groups.The acute IMO group was restrained for 2 hours once
in a cone-shapedPVCwhich restricts forward, backward, and
lateral movements. Chronic IMO was administered daily for
21 consecutive days.

2.3. Elevated Plus Maze (EPM) Test. After exposure to stress,
the animals were immediately tested in the EPM. The EPM
test was adapted from Walf and Frye [25] except that the
animals were placed in the center of the maze facing one of
the closed arms. The time spent on the open arms and the
closed arms of the maze were video-taped and recorded for
5min by S-MART program (Pan-Lab, Barcelona, Spain).

2.4. Enzyme Linked Immunosorbent Assay (ELISA)

2.4.1. Interleukin-4 (IL-4). After all stress procedures were
done, the animals were deeply anesthetizedwith sodiumpen-
tobarbital (80mg/kg, administered i.p.) and the brains were
immediately removed and sectioned in a coronal manner by
using rodent brain matrix (ASI instruments Inc., MI, USA).
The LC region of the brain was punched out on a cold plate
and stored at −70∘C until the assay. The obtained tissue was

thawed and homogenized in ice cold cell lysis buffer (Cell
Signaling Technology Inc., Danvers, MA, USA) and cen-
trifuged (10,000×g at 4∘C for 30min). Protein concentrations
in homogenates were equalized (1𝜇g/𝜇L) by Bradford assay.
IL-4 concentration in duplicate 100𝜇L aliquots was assessed
by ELISA kit according to the manufacturer’s instructions
(Promikine, Heidelberg, Germany).

2.4.2. Corticosterone (CORT). After exposure to the stress,
the animals were anesthetized with sodium pentobarbital
(80mg/kg, administered i.p.) and cardiac blood was col-
lected. The obtained sample was centrifuged (10,000×g at
4∘C for 30min) and plasma was collected and then stored
at −70∘C until the assay. Level of CORT in the plasma
was analyzed by ELISA kits according to the manufacturer’s
instructions (Assay Designs, Ann Arbor, MI, USA).

2.4.3. Immunofluorescent Staining. Double immunofluores-
cence staining of IL-4 with TH, released from noradrenergic
neuron in the LC [26], glial fibrillary acidic protein (GFAP),
an astrocyte specific marker, and ionized calcium-binding
adaptor protein-1 (Iba-1), a marker for microglia, was per-
formed to identify IL-4 secreting cell in the LC.

To determine the role of the HPA- and SAM-axes in
IL-4 secretion via the LC during the stress response, glu-
cocorticoid receptor (GR), TH, and IL-4-expressing cells
were also double stained. The rat brains were removed after
transcardial perfusion with 4% solution of formaldehyde
(Sigma-Aldrich St. Louis, MO, USA), then postfixed in the
same fixative for 24 hours, and placed in PBS containing
20% of sucrose for 72 hr. Serial coronal sections were cut
into 30 𝜇m thickness by using a cryostat microtome (CM
1850UV, Leica Microsystems Inc., Wetzlar, Germany) and
the sections were processed as free-floating. The sections
of the LC (bregma −9.57mm to −9.99mm) were blocked
with 10% v/v normal horse serum (Vector Laboratories, Inc.,
Burlingame, CA, USA) for 1 hr at room temperature with
constant agitation at 100 rpm. The sections were then rinsed
in PBS followed by incubation in IL-4mousemonoclonal IgG
(diluted 1 : 25, Santa Cruz Biotechnology, Inc., Dallas, Texas,
USA), TH rabbit monoclonal IgG (diluted 1 : 1000, Millipore,
San Francisco, CA, USA), Iba-1 rabbit polyclonal IgG (diluted
1 : 200, Wako, Japan), GFAP rabbit polyclonal IgG (diluted
1 : 2000, Abcam, Cambridge, UK), or GR rabbit polyclonal
IgG (diluted 1 : 50, Santa Cruz Biotechnology, Inc., Dallas,
Texas, USA) for 48 hours at 4∘C with constant agitation.
Then, the sections were rinsed in PBS and subsequently
incubated with horse anti-mouse conjugated to fluorescein
isothiocyanate (FITC) (diluted 1 : 200, Vector Laboratories,
Inc., Burlingame, CA, USA) or fluorescent Alexa Fluor 546
dye-labeled anti-rabbit IgG at room temperature for 2 hours
with constant agitation. The sections were again rinsed in
PBS,mounted onto slides, and cover-slippedwithVectashield
mounting medium (Vector Laboratories, Inc., Burlingame,
CA, USA). Samples were viewed by confocal microscope
(LSM 510 Meta, Carl Zeiss Inc., Oberkochen, Germany). The
density of immunopositive neurons in the LC region was
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Figure 1:Mean (± SEM) time spent in the closed arms and the open arms during EPM test for the acutely and chronically stressed and control
rats. (a) Chronic IMO induced a significant increase in time spent on the closed arms. (b) Acute IMO led animals to stay for significantly less
amount of time in the open arms. (𝑛 = 6 per group) ∗𝑃 < 0.05 versus control; ANOVA.

quantified according to Paxinos et al. [27] using the Scion
image program (Scion Corp., MD, USA).

2.5. Statistics Analysis. Thedatawere expressed as themean±
standard error of the mean (SEM). Comparisons among dif-
ferent groups were analyzed by one-way analysis of variance
(ANOVA) followed by Scheffe’s test as a post hoc test. All the
statistical analyses were performed using SPSS (version 18.0.,
SPSS, Chicago, IL, USA). 𝑃 values below 0.05 were regarded
as statistically significant.

3. Results

3.1. Elevated Plus Maze. The EPM test was performed to
compare the anxiety level between stressed and control rats.
The time spent on the closed arms (𝐹

2,13 = 6.9, 𝑃 < 0.05)
and on the open arms (𝐹

2,17 = 4.9, 𝑃 < 0.05) was recorded
during the 5minutes of the test (Figure 1). The chronic IMO
group showed significantly increased time spent on the closed
arms (𝑃 < 0.05; Figure 1(a)) and the acute IMO group had a
less amount of time on the open arms (𝑃 < 0.05; Figure 1(b))
than the control group.

3.2. Enzyme Linked Immunosorbent Assay (ELISA)

3.2.1. Interleukin-4 (IL-4). Concentration of IL-4 protein was
assessed in the 100 𝜇g aliquot of the LC in the IMO-subjected
and nontreated rats. IMO had an effect on the decrease of
IL-4 secretion in the rat brain stem (𝐹

2,12 = 6.9, 𝑃 < 0.05;
Figure 2). The rats under acute IMO showed significantly
greater reduction in the release of IL-4 protein compared to
the control group (𝑃 < 0.05).

3.2.2. Corticosterone (CORT). Plasma CORT level was ana-
lyzed in the control, acutely and chronically stressed groups
(𝐹
2,24 = 6.6, 𝑃 < 0.05). The rats subjected to acute IMO

revealed a significantly higher increment of CORT compared
to controls (𝑃 < 0.05; Figure 3). In contrast, reduced release
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Figure 2: Mean (± SEM) IL-4 protein level in the LC of the acutely
and chronically stressed and control rats. Expression of IL-4 was
significantly decreased in the acutely stressed group. (𝑛 = 6 per
group) ∗𝑃 < 0.05 versus control; ANOVA.
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Figure 3: Mean (± SEM) CORT level in the plasma of the control,
acute, and chronic IMO-submitted rats. Acute IMO significantly
increased plasmaCORTwhereas chronic IMO induced reduction of
CORT release. (𝑛 = 8 per group) ∗𝑃 < 0.05 versus control; ANOVA.
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of CORT was showed in the chronic IMO group compared
with the control group.

3.2.3. Identification of IL-4-ProducingCells in the LC. Immun-
ohistochemical analysis was used to characterize IL-4 releas-
ing cells in the brain stem. Double staining revealed that
IL-4-immunoreactive cells (Figures 4(a) and 4(d)) and TH-
positive cells (Figures 4(b) and 4(e)) were colocalized in the
LC (Figures 4(c) and 4(f)). IL-4 producing cells were not
merged with immune-labeling of GFAP (an astrocyte specific
marker) or Iba-1 (a marker for microglia) (Figures 4(i) and
4(l), resp.).

3.2.4. Expression of GR. Immunofluorescent analysis was
used to further explore the localization of GR and IL-4 in the
LC. Double staining showed that IL-4 (Figures 5(a) and 5(d))
and GR (Figures 5(b) and 5(e)) were localized in different
compartments of the identical cells (Figures 5(c) and 5(f)),
which are neurons, of the LC.

3.2.5. Expression of TH. Immunofluorescencewas performed
to quantify the expression of the TH in the LC of the controls
and the stressed rats (𝐹

2,10 = 43.2, 𝑃 < 0.001). Density of TH
was considerably increased in the acute IMOgroup compared
to control group (𝑃 < 0.001; Figure 6), but no significant
alteration was observed in the chronic IMO group.

4. Discussion

It has been reported that IMO-induced stress had an
inhibitory effect on IL-4 release in peripheral tissues of
human and rat [28–30]. Lipopolysaccharide (LPS) had a sim-
ilar effect of stress in respect to inducing immunomodulation
characterized by increased production of proinflammatory
cytokines. IL-4 protein level was considerably decreased in
the LPS-treated rat brain and IL-4−/− mice were more vul-
nerable to LPS than wild type [4, 31, 32]. In this study, it was
demonstrated that the production of IL-4 protein in the LC
region of the brain was significantly decreased in the acutely
stressed group. Although it has been reported that there was
no significant change or elevated release of peripheral IL-
4 in stress responses [8, 33, 34], these controversial data
indicated that stress-induced alteration of IL-4 secretionmay
differ in a tissue-specific manner and further studies should
be demonstrated. Taken together, these findings suggest that
stress has an inhibitory effect on IL-4 production in the brain.

It has been reported that IL-4 is released from microglia
in the cortex of the brain [12]. Also an in vitro study reported
glia as the cell source of IL-4 in the brain [4]. In this study,
however, IL-4 was produced from the TH-producing cells
identified as noradrenergic neurons [26] of the LC. Neither
astrocyte nor microglia released IL-4 in the LC region of the
brain. The data is the first to identify IL-4 expressing cells in
the LC suggesting that IL-4 is produced by different type of
cells in a site-specific manner in the brain. Further research is
required to demonstrate identification of IL-4-secreting cells
in other brain regions besides the cortex and the LC.

Previous work has shown that restraint stress-submitted
groups were more anxious than nontreated groups [35–
37] and increment of corticosterone had an anxiolytic-like
effect in animal model [38]. Central and peripheral IL-
4 concentration had an effect of suppressing LPS-induced
sickness behavior [39, 40] and IL-4−/− mice exhibited more
anxious behavior compared to wild type [41]. It has been
reported that CORT had a suppressive effect on IL-4 protein
production and signaling in in vitro and in vivo studies
[22, 23, 42, 43]. It was observed that IMO stressed rats
had significantly increased anxiety and reduced IL-4 protein
level in the brain. Reduction of IL-4 protein release from
LC was accompanied by an increase of circulating CORT
level in acute stress response. GR is known to be abundantly
expressed in the LC neurons [44] and it was confirmed that
GR and IL-4 were localized in the identical neurons of LC
in this study. Consequently the data suggests that acute IMO-
induced hypercorticismmay contribute to downregulation of
IL-4 production in the LC and this decrement of IL-4 level
leads to behavioral change.

Accumulating evidence suggests that a single exposure of
stress leads to a significant increase in circulating CORT level
and nuclear GR intensity and activity [45] as a result of HPA-
axis activation [13, 14, 46]. It has been reported, however, that
chronic exposure of homotypic stress induces hypocorticism
[45, 47–50]. Also increment of nuclear GR intensity and
activity was abolished in the chronic restraint stressed group
[45]. In the present study, CORT concentrationwas increased
in the acute IMO group, whereas chronic stressed rats
had decreased CORT level compared with controls. Taken
together, the findings suggest that chronically prolonged
stress impaired glucocorticoid negative feedback leading to
HPA-axis hypoactivity. Since CORT has an ability to inhibit
IL-4 production [22, 23, 42, 43] and to increaseTHexpression
[38], chronic stress-induced hypocorticismmight reverse the
effects produced by acute stress.

Single exposure of stress or lipopolysaccharide has been
shown to stimulate release of NE or to increase TH mRNA
level and TH activity [17, 51–53]. In contrast with acute
stress, TH mRNA level was decreased in a chronic mild
stressed group [54]. Since TH is a rate-determining enzyme
of NE synthesis, change of TH protein was not detected right
after exposure of acute stress [55]. Stress also has shown to
increase TH immunoreactivity, which is consequence of
enhanced enzyme activity and TH protein concentration
[56]. In the present study, acute IMO induced increase of TH-
immunoreactivity in the LC, suggesting this incrementmight
be result from increase of enzyme activity.

In conclusion, stress-induced decline of IL-4 concentra-
tion from LC neuronsmay be related to anxiety-like behavior
and an inverse relationship exists between IL-4 secretion and
HPA/SAM-axes activation. These data suggest that modula-
tion of these signaling factors, cytokine, catecholamine, and
CORT is required to adapt to homeostatic mechanisms in
response to stressful events.
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Figure 4: Characterization of IL-4-producing cells in the LC. (a–c) Representative fluorescent images showed that IL-4-secreting cells (a)
were colocalized (c) with TH-releasing cells (b). Photomicrographs were taken at ×200 magnification. Scale bars = 50 𝜇m. (d–f) High power
(taken at ×400 magnification) photographs of (a), (b), and (c), respectively, are shown. Scale bars = 20 𝜇m. IL-4-releasing cells (g and j) were
not merged (i and l) with GFAP-positive cells (h) or Iba-1-immunoreactive cells (k). Photomicrographs were taken at ×400 magnification.
Scale bars = 20 𝜇m.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Localization of IL-4 and GR in the LC. (a–c) Representative fluorescent images showed that IL-4 (a) and GR (b) were expressed
in the neurons but not in the identical part (c). Photomicrographs were taken at ×200 magnification. Scale bars = 50 𝜇m. (d–f) High power
(taken at ×400 magnification) photographs of (a), (b), and (c), respectively, are shown. Scale bars = 20 𝜇m.
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Figure 6: Mean (± SEM) quantification of TH expression in the LC
of the control group and groups subjected acute and chronic IMO.
Acutely stressed rat expressed significantly increase in TH density
whereas chronically stressed animals showed no change. (𝑛 = 4-5
per group) ∗∗∗𝑃 < 0.001 versus control; ANOVA.
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[46] A. Garćıa, O. Mart́ıa, A. Vallès, S. Dal-Zotto, and A. Armario,
“Recovery of the hypothalamic-pituitary-adrenal response to
stress. Effect of stress intensity, stress duration and previous
stress exposure,”Neuroendocrinology, vol. 72, no. 2, pp. 114–125,
2000.

[47] M. Adzic, J. Djordjevic, A. Djordjevic et al., “Acute or chronic
stress induce cell compartment-specific phosphorylation of
glucocorticoid receptor and alter its transcriptional activity in
Wistar rat brain,” Journal of Endocrinology, vol. 202, no. 1, pp.
87–97, 2009.

[48] A. Djordjevic, M. Adzic, J. Djordjevic, and M. B. Radojcic,
“Stress type dependence of expression and cytoplasmic-nuclear
partitioning of glucocorticoid receptor, Hsp90 and Hsp70 in
Wistar rat brain,”Neuropsychobiology, vol. 59, no. 4, pp. 213–221,
2009.

[49] O.Malkesman, R.Maayan, A.Weizman, andA.Weller, “Aggres-
sive behavior and HPA axis hormones after social isolation in
adult rats of twodifferent genetic animalmodels for depression,”
Behavioural Brain Research, vol. 175, no. 2, pp. 408–414, 2006.

[50] M. Sánchez, F. Aguado, F. Sánchez-Toscano, and D. Saphier,
“Neuroendocrine and immunocytochemical demonstrations of
decreased hypothalamo-pituitary-adrenal axis responsiveness
to restraint stress after long-term social isolation,” Endocrinol-
ogy, vol. 139, no. 2, pp. 579–587, 1998.

[51] S. A. Sands, R. Strong, J. Corbitt, and D. A. Morilak, “Effects of
acute restraint stress on tyrosine hydroxylasemRNA expression
in locus coeruleus of Wistar and Wistar-Kyoto rats,” Molecular
Brain Research, vol. 75, no. 1, pp. 1–7, 2000.
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