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Simple Summary: Immunity combined with ferroptosis is being considered as a new tumor treat-
ment modality, and its regulation in head and neck squamous cell carcinoma is still unknown. The
purpose of this study was to look into the potential molecular biological roles of immune ferroptosis
genes in head and neck squamous cell carcinoma. The 12-IFRM signatures were successfully con-
structed and classified into high- and low-risk groups using the TCGA database and related data
resources. In patients with head and neck squamous cell carcinoma, feature-based risk scores were
more predictive of survival than traditional clinicopathological features. Furthermore, the expression
of CD8+T cells and macrophage M0 differed significantly between the two groups. The expression of
TNFSF9 and CD44 in the high-risk groups was significantly increased compared with the low-risk
groups. Next, we found a higher proportion of high-risk mutations than in the low-risk group. In
addition, the high-risk group was more sensitive to some chemotherapy drugs. Finally, we performed
correlation analysis on the model genes. In this paper, the 12-IFRM signatures was developed with
promising application prospects for predicting the clinical outcomes and treatment outcomes in head
and neck squamous cell carcinoma.

Abstract: Ferroptosis is a new type of programmed cell death that plays a pivotal role in a variety of
tumors. Moreover, immunity is closely related to ferroptosis. However, immune-ferroptosis-related
mRNAs (IFRMs) are still not fully understood in the regulation of head and neck squamous cell
carcinoma (HNSC). The purpose of this paper was to investigate the IFRMs prediction of HNSC and
its possible molecular biological role. RNA-Seq and related clinical data were mined from the TCGA
database, ImmPort database, GeneCards database, FerrDb database, and previous data. In R software,
the “DESeq2” package was used to analyze the differential expression of IFRMs. We used univariate
Cox analysis to judge the prognosis of the IFRMs. Using the least absolute shrinkage and selection
operator (LASSO) and Cox regression, a prediction model for 12 IFRMs was established. In this
study, the Kaplan–Meier survival curve and receiver operating characteristic (ROC) curve analysis
were used to evaluate the prediction results. Moreover, factors such as immune landscape, somatic
mutations, and drug susceptibility are also discussed. We successfully constructed the signature of
12-IFRMs. The two risk groups were classified according to the risk score obtained by this signature.
Compared with conventional clinicopathological features, the characteristic-based risk score was
more predictive of survival in patients with HNSC. Furthermore, the expression of CD8+T cells and
macrophage M0 differed significantly between the two groups. Moreover, the expression of TNFSF9
and CD44 in high-risk groups was significantly increased compared with the low-risk groups. Then,
we found a higher proportion of high-risk mutations than in the low-risk group. Next, the high-risk
group was more sensitive to chemotherapy drugs such as bosutinib, docetaxel, erlotinib, gefitinib,
imatinib, lapatinib, and sorafenib. Finally, an in-depth analysis of the association and potential value
of the 12 genes was performed. In summary, the 12-IFRM signatures established in this paper had
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good application prospects and could be effectively used to predict the clinical outcome and treatment
response of head and neck squamous cell carcinoma.

Keywords: immune-ferroptosis; head and neck squamous cell carcinoma; prognosis; biomarkers;
immune response

1. Introduction

Head and neck squamous cell carcinoma (HNSC) is a malignant disease of the head
and neck with a high incidence and high fatality rate [1]. In recent years, the incidence
and mortality of the disease have been increasing. Even with the continuous development
of tumor screening and treatment technology, the current therapy is still dominated by
surgery, chemotherapy, and radiation therapy [2]. However, there is currently no effective
treatment for head and neck squamous cell carcinoma [3]. At the same time, with the
continuous improvement in medical technology and other aspects, it is also very necessary
to explore the tumor markers and potential treatment targets.

In 2012, researchers found that erastin promotes cell death, mainly characterized by
increased double membrane density, iron-dependent lipid peroxidation, regulated by the
cystine transport pathway, and mitochondrial contraction, which was first named ferropto-
sis [4]. Ferroptosis is a lipid peroxidation and iron-dependent cell death due to decreased
activity of glutathione peroxidase 4 (GPX4) and the accumulation of lipid reactive oxy-
gen species (ROS) [5]. Now, it has been found that inducing ferroptosis has become a
means of eliminating tumor cells, especially for resistant tumors [6]. Ferroptosis can act
as a tumor suppressor by eliminating damaged cells [7] and has been reported in various
cancer types [8–12]. It has been reported that capsaicin induces ferroptosis by inactivating
the SLC7A11/GPX4 signaling pathway [13]. Free docosahexaenoic acid can effectively
promote ferroptosis by increasing intracellular lipid peroxidation [14]. A study found that
Hedyotis diffusa injection induced ferroptosis in lung adenocarcinoma cells by inhibiting
Bcl2 and promoting the regulation of VDAC2/3 by Bax [15]. Epithelial membrane protein 1
(EMP1) deficiency promotes bladder cancer cell migration and confers resistance to fer-
roptosis/oxidative stress, thereby promoting bladder cancer metastasis via PPARG [16].
Another study showed that EMP1 overexpression could promote gefitinib resistance by
targeting the MAPK pathway, which might be a therapeutic target for HNSC [17]. Circular
RNA circACAP2 suppresses ferroptosis in cervical cancer during malignant progression
through miR-193a-5p/GPX4 [18]. It was also found that targeting ferroptosis might help
suppress cancer metastasis [19]. Additionally, numerous experiments have shown that
ferrptosis and immunity could play a role in many tumors [20–22]. For example, it has been
reported that CD8+T lymphocytes play a regulatory role in tumor immunotherapy [22];
therefore, iron oxide-loaded nanovaccines (IONV) could improve the immune efficacy by
combining ferroptosis with immunity [23]. Therefore, the regulation of ferroptosis and
immunity has now been regarded as a new tumor treatment target [22,24,25]. In head
and neck squamous cell carcinoma, few therapeutic targets related to immune combined
ferroptosis have been found. Therefore, in the diagnosis and treatment of HNSC, fur-
ther screening based on immune-ferroptosis-related genes (IFRGs) and clinical samples
is necessary.
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In this study, we conducted a deep mining of HNSCs in the TCGA database. In
Section 1, we performed differential analysis of RNA-Seq data from HNSCs. The differ-
entially expressed genes were crossed with immune ferroptosis genes to obtain immune
ferroptosis differentially expressed genes (IFRDEGs), and then prognostic analysis
was performed to obtain PIFRDEGs. In Section 2, using the LASSO-Cox algorithm,
we built a risk prediction model based on 12 genes from PIFRDEGs. The model was
subsequently validated satisfactorily. In Section 3, we use a heatmap to further illustrate
the expression of 12 genes in the risk model. In parallel, we performed a differential
analysis of the risk model in Section 4 and a functional enrichment analysis of the
differential genes. Next, Section 5 examines the immune infiltration and immunological
checkpoints to investigate the influence of high- and low-risk on immunity. At the same
time, the relationship between risk model and tumor mutation is evaluated in Section 6.
We examine the relationship between high- and low-risk and drug susceptibility in
Section 7. Finally, a deeper analysis of the connections and potential usefulness among
these 12 genes is conducted. In conclusion, we delved into the relationship between
IFRGs and HNSCs. This lays a foundation for clinical diagnosis and treatment, and
provides a new direction for therapeutic targets.

2. Materials and Methods
2.1. Data Collection

We collected RNA-Seq data (https://portal.gdc.cancer.gov/projects/TCGA) (accessed
on 16 June 2022) from 543 HNSC samples from TCGA including 44 normal samples and
499 tumor samples with corresponding HNSC clinical data. These RNA-Seq data, which
also included mRNA and lncRNA, were collected. The fragments per kilobase of transcript
per million mapped read (FPKM) calculations were calculated by normalizing reads by
dividing it by the gene length and the number of encoded gene reads mapped to the
protein. The perl approach was used to convert Ensembl IDs to official gene symbols,
which were then processed by log2. Tumor mutation burden (TMB) usually refers to the
number of somatic non-synonymous mutations or all mutations per megabase in the gene
region detected by whole-exome sequencing or targeted sequencing in the tumor samples,
that is, somatic gene coding errors, the number of base substitution, gene insertion, or
deletion errors. The “MAF” package was used to test the number of somatic nonsense
point mutations in each sample. These further shed light on how HNSC drives genetic
somatic changes in low-risk and high-risk samples.

2.2. Identification of Immune-Ferroptosis-Related mRNA

The IFRM sequences of Homo sapiens were downloaded from the ImmPort database
(www.immport.org/home) (accessed on 16 June 2022), GeneCards database (www.genecards.
org/) (accessed on 16 June 2022), FerrDb database (http://www.zhounan.org/ferrdb/)
(accessed on 16 June 2022), and previous documents [26,27]. In this study, a total of
17,500 immune-related genes and 398 ferroptosis-related genes were obtained.

2.3. Differential Expression Analysis

We incorporated the normalized matrix data into the R software, and “DESeq2” [28]
was used to compare the mRNA expression matrix of HNSC with the normal samples. Thus,
differentially expressed mRNAs (DEmRNAs) were obtained. The criteria for DEmRNA
were |log (2) (fold change)| > 1 and P. adj < 0.05 [29].

https://portal.gdc.cancer.gov/projects/TCGA
www.immport.org/home
www.genecards.org/
www.genecards.org/
http://www.zhounan.org/ferrdb/
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2.4. Construction of Immune-Ferroptosis-Related Prognostic Signature

The intersection genes between IFRGs and DEmRNAs were screened by the “sur-
vival” package of Cox univariate analysis. A total of 499 patients were divided into
two groups at a 1:1 ratio. On this basis, regression was performed using the least
absolute shrinkage and selection operator (LASSO)-Cox method. Finally, 12 opti-
mized prognostic models were constructed according to the selection of the optimal
penalty parameter λ associated with the minimum 10× cross-validation. The risk score
formula for each patient’s immune-ferroptosis-related to prognosis was as follows:
risk score = Σ(Expi × βi). Among these indicators, βi represents the Cox risk ratio coef-
ficient of each factor, and Expi represents the expression of the gene. Based on this, the
subjects were assessed for risk and divided into high-risk groups and low-risk groups.
The Kaplan–Meier curve uses the “survminer” package and Cox test to compare the
overall survival (OS) of high- and low-risk groups. The “timeROC” package was used
to generate a receiver operating characteristic curve (ROC) [30] to assess the predictive
accuracy of the signature. To test the model’s viability, a risk score was computed in the
validation and general cohorts using the same methodology as in the training cohort,
and then the validation procedure described above was used.

2.5. Gene Set Enrichment Analysis (GSEA)

We used the “limma” [31] packet to identify differentially expressed genes across
the high-risk and low-risk groups (|log (2) (fold change)| > 1 and FDR < 0.05). For
reference, the’ c2. cp. v7. 2. symbols. gmt ‘genome was obtained from the molecular
signature database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb) (ac-
cessed on 16 June 2022) [32]. We performed GSEA analysis with at least 1000 alignment
tests per analysis [33] to find the significant differences between the high-risk and
low-risk groups, p < 0.05, FDR < 0.25. From this, we were able to find the main major
biological pathways.

2.6. Functional Enrichment Analysis

Gene Ontology (GO) is a database widely used in bioinformatics, in which seven
million gene annotations are stored, about one tenth of which have been experimentally
proven [34]. GO analysis is based on candidate genes to analyze the cellular component
(CC), biological process (BP), and molecular function (MF). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a database for the analysis of advanced functional and
biological systems through genome sequencing and high-throughput experimental tech-
niques generated from large molecular datasets [35]. The KEGG generates a pathway
map based on the relationship network formed by gene sequence, genome information,
metabolism, disease, etc. In order to analyze the enrichment of gene biological func-
tions and pathways, we performed enrichment analysis through the “clusterProfiler”
package [36], and performed ID conversion through the “org. Hs. eg. db” package, and
the “ggplot2” package was used for data visualization. The filter condition for p < 0.05
was set. Moreover, GO and KEGG analysis were also performed on the subsequent
model-related genes.

2.7. Immune Cell Infiltration and Immune Microenvironment Evaluation

The ESTIMATE algorithm [37] is a method to assess immune cell infiltration and
the tumor microenvironment based on gene expression, which can calculate the immune
scores, stromal scores, and estimated scores between samples. CIBERSORT [38] is a
method that uses expression data to reflect the cellular composition of complex tissues
by quantitatively measuring the abundance of 22 tumor-infiltrating immune cell types
in a sample. CIBERSORT’s LM22 specifies 22 immune cell subpopulations from the
CIBERSORT database (http://CIBERSORT.stanford.edu/) (accessed on 16 June 2022).
The correlations between the risk scores and tumor-infiltrating immune cells can be
assessed. Immune checkpoint-related gene expression levels may be connected to

http://software.broadinstitute.org/gsea/msigdb
http://CIBERSORT.stanford.edu/
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therapeutic responsiveness to immune checkpoint inhibitors. The correlation between
risk scores and immune checkpoints was explored by analyzing the gene expression
between the high-risk groups and low-risk groups.

2.8. Model Gene Alteration Analysis

To explore the genetic alterations of model genes in HNSC, we further analyzed
them through the cBioPortal [39] database (https://www.cbioportal.org/) (accessed on
16 June 2022). The cBioPortal is a friendly tool resource that provides gene mutation,
copy number variation, and transcriptional expression data from samples of various
cancer subtypes. We selected “TCGA-HNSC data” in the “query” module, entered
12 model genes and queried the gene alteration situation. In the “Summary of Cancer
Types” module, all HNSC tumors were for observed alteration frequency, mutation
type, and result of copy number alteration. The mutation site information of CDKN2A
can be displayed in the protein three-dimensional structure schematic diagram through
the “Mutations” module.

2.9. Prediction of Drug Sensitivity

The therapeutic response to known chemotherapeutic agents (bosutinib, docetaxel,
erlotinib, gefitinib, imatinib, lapatinib, lenalidomide, metformin, methotrexate, nilotinib,
rapamycin, sorafenib) was estimated using the “pRRophetic” [40] package. The content
of each chemotherapeutic agent was calculated in the HNSC specimens by constructing
a ridge regression model based on the Genomics of Drug Sensitivity in Cancer (GDSC)
database (www.cancerRxgene.org) (accessed on 16 June 2022) [41] and transcriptome data
to obtain the half-maximal inhibitory concentration (IC50).

2.10. Construction of Gene-Gene and Gene-Protein Networks

The GeneMANIA [42] (https://genemania.org/) (accessed on 16 June 2022) is a
database for analyzing gene interactions or shared functions by predicting gene func-
tions. Model genes established a gene–gene interaction network through GeneMANIA.
The STRING [43] database (https://string-db.org/) (accessed on 16 June 2022) is a
search tool for analyzing the gene and protein interaction relationship. This provides
users with easy access to unique, wide-ranging experiments, and predicted interac-
tion information. Model genes construct protein–protein interaction (PPI) networks
through STRING.

2.11. Statistical Analysis

All statistical analyses were performed by using R software (version 4.1.2) using the
Cox univariate and multivariate regression analyses to identify independent prognostic fac-
tors for overall survival. Survival analysis was performed using Cox univariate regression
analysis. Time-dependent ROC curve analysis was used to measure the degree to which
overall survival prognostic models predicted outcomes. Differences in the proportions
of clinical features were analyzed by the chi-square test. Correlation analysis of IFRMs
was performed using Spearman’s correlation method. Tumor immune infiltrating cells
were compared using the Wilcox test. Visualization was conducted using the “ggplot2”,
“pheatmap”, and “forestplot” packages. p < 0.05 was used to determine the statistical
significance. The overall flow chart is shown in Figure 1.

https://www.cbioportal.org/
www.cancerRxgene.org
https://genemania.org/
https://string-db.org/
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expressed genes, immune-related genes, and ferroptosis-related genes by intersection 

Figure 1. The flow chart of the data collection and analysis.

3. Results
3.1. Identification of Immune-Ferroptosis-Related Differentially Expressed mRNAs in HNSC

We obtained 543 HNSC data from the TCGA database (https://portal.gdc.cancer.gov/
repository) (accessed on 16 June 2022). By comparing the TCGA-HNSC samples with nor-
mal tissues, we found 9970 differentially expressed mRNAs (DEmRNAs) (log (2) |FC| > 1,
p adj < 0.05), of which 6166 were upregulated and 3804 were downregulated (Figure 2A).

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
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In the training group, LASSO regression analysis was performed on the genes ob-
tained in the univariate COX regression analysis. Figure 3A shows a plot of the LASSO 
coefficients for 17 prognostic genes; Figure 3B is a ten-fold cross-validation plot used to 
adjust parameters in the LASSO model. Partial likelihood deviations were plotted against 
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lines were drawn at the minimum standard and the 1–SE optimum. Here, we chose λ = 

Figure 2. Screening of the differential mRNAs in immune ferroptosis with prognosis. (A) Differential
gene volcanogram. Red is the upregulated genes and green is the downregulated genes. (B) Venn
diagram identifying the differentially expressed mRNA and immune-ferroptosis-related mRNA.
Blue are differentially expressed genes; yellow are immune-related genes; green are ferroptosis-
related genes. (C) Prognostic forest diagram of the differentially expressed immune-ferroptosis-
related mRNA.

Subsequently, we obtained 17,500 immune-related genes through the ImmPort database,
GeneCards database, and 398 ferroptosis-related genes through the FerrDb database and
previous studies [26,27], and then obtained 77 genes associated with differentially expressed
genes, immune-related genes, and ferroptosis-related genes by intersection (Figure 2B
and Supplementary Table S1). The prognostic potential of IFRDEGs was analyzed by
Cox univariate regression using OS data from the HNSC patients in the TCGA database.
Finally, we found 17 prognostic IFRDEGs (PIFRDEGs) in HNSC (Figure 2C). Eleven of the
PIFRDEGs were “risky” and six were “protected”.

3.2. IFRMs Prognostic Model Construction and Validation

According to the TCGA-HNSC database, we randomly divided the sample into
two groups according to the method of 1:1, obtaining 250 people in the training group
(125 people at high risk and 125 people at low risk), and 249 people in the validation group
(107 people at high risk and 142 people at low risk).
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In the training group, LASSO regression analysis was performed on the genes obtained
in the univariate COX regression analysis. Figure 3A shows a plot of the LASSO coefficients
for 17 prognostic genes; Figure 3B is a ten-fold cross-validation plot used to adjust parame-
ters in the LASSO model. Partial likelihood deviations were plotted against log (λ), where
λ is the tuning parameter. The partial likelihood deviation values are shown in the graph,
and the error bars represent the SE (standard deviation). Vertical dashed lines were drawn
at the minimum standard and the 1–SE optimum. Here, we chose λ = 16, and these 16
prognostic genes were all included in the subsequent analysis. Subsequently, a prediction
model consisting of 12 genes was obtained after multivariate regression analysis. In this
model, each HNSC patient was given a risk score in the TCGA database according to the
following formula: risk score = (0.259 × AURKA expression) + (0.154 × SLC7A5 expression)
+ (−1.297 × GRIA3 expression) + (−0.536 × LPIN1 expression) + (0.228 × EGFR expression)
+ (−0.095 × CDKN2A expression) + (−0.160 × SLC7A11 expression) + (0.308 × PRKAA2
expression) + (0.270 × ALB expression) + (−0.208 × SOCS1 expression) + (0.155 × AKR1C3
expression) + (−0.457 × HCAR1 expression) (Supplementary Table S2). (AURKA: Aurora
Kinase A; SLC7A5: Solute Carrier Family 7 Member 5; GRIA3: Glutamate Ionotropic Receptor
AMPA Type Subunit 3; LPIN1: Lipin 1; EGFR: Epidermal Growth Factor Receptor; CDKN2A:
Cyclin Dependent Kinase Inhibitor 2A; SLC7A11: Solute Carrier Family 7 Member 11; PRKAA2:
Protein Kinase AMP-Activated Catalytic Subunit Alpha 2; ALB: Albumin; SOCS1: Suppres-
sor Of Cytokine Signaling 1; AKR1C3: Aldo-Keto Reductase Family 1 Member C3; HCAR1:
Hydroxycarboxylic Acid Receptor 1).

To further assess the independent predictive power of risk models, we performed
univariate Cox and multivariate Cox regression assessments based on the risk scores
and associated clinical variables (age, gender, stage, grade). It was found that in the
HNSC cohort, the risk score was associated with OS (p < 0.001) (Figure 3C). Furthermore,
multivariate Cox regression resulted from the TCGA database indicated that only the
risk distribution of these 12-IFRMs could serve as an independent prognostic factor for
predicting the OS rates in the HNSC patients (p < 0.001) (Figure 3D).

A nomogram was established at the TCGA to predict the probability of survival in
the HNSC patients. Each factor was assigned a score based on the T, N, M, and risk
scores, and an overall nomogram score was obtained from the sum of the individual scores
for all predictors. The 1-, 3-, and 5-year survival rates of patients were estimated from
the predicted total score. As shown in Figure 3E, nomograms for 1, 3, and 5 years were
constructed based on the predictive model (risk score) and clinical factors (T, N, M). To
verify the accuracy of the model, we constructed calibration plots that showed that the 1-,
3-, and 5-year forecasts were close to ideal and also showed that the model had certain
accuracy (Figure 3F).

Afterward, we evaluated this 12-IFRM model. On this basis, subjects were divided
into high-risk groups and low-risk groups according to the average level of risk scores.
By visualizing the risk score and OS status, the results showed that in these two risk
groups, the risk grouping was more reasonable (Figure 4A). A subsequent study using
the Kaplan–Meier survival method showed that patients with HNSC in the low-risk
group had a higher OS rate than those in the high-risk group (Figure 4D). Meanwhile,
in this model, time-dependent ROC curves were also calculated. Areas under the
curve (AUC) were maintained above 0.65 over 1, 3, and 5 years (Figure 4G). To verify
the predictive power of this 12 mRNA trait, the profile, Kaplan–Meier survival curve,
and time-dependent ROC curves were analyzed in the validation and the total group.
Results in the validation group (Figure 4B,E,H) and the total group (Figure 4C,F,I)
showed the same trend as the training group. Clearly, mortality was higher in the
high-risk groups than in the low-risk groups.



Cancers 2022, 14, 4099 9 of 23
Cancers 2022, 14, 4099 9 of 23 
 

 

 
Figure 3. Constructing a prognostic model and analyzing the independent prognostic potential. 
(A,B) Utilizing minimal criteria, Cvfit, and lambda curves displaying LASSO regression were gen-
erated. (C,D) Results of the univariate Cox analysis and multivariate Cox analysis of OS character-
ized by 12-immune-ferroptosis-related mRNAs. (E) Nomogram predicting the 1-, 3-, and 5-year 

Figure 3. Constructing a prognostic model and analyzing the independent prognostic potential.
(A,B) Utilizing minimal criteria, Cvfit, and lambda curves displaying LASSO regression were gener-
ated. (C,D) Results of the univariate Cox analysis and multivariate Cox analysis of OS characterized
by 12-immune-ferroptosis-related mRNAs. (E) Nomogram predicting the 1-, 3-, and 5-year overall
survival in HNSC patients. (F) The calibration curve used to evaluate the accuracy of the nomogram.
The gray diagonal dashed line represents the ideal nomogram.
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Figure 4. The mRNA signature model constructed and validated in the cohort. (A–C) Distri-
bution of overall survival status and risk scores in the training, validation, and total groups.
(D–F) Kaplan–Meier curves of survival status and survival time in the training, validation, and
total groups. (G–I) ROC curves show the potential of prognostic immune-ferroptosis-related mRNA
signatures in predicting 1-year, 3-year, and 5-year overall survival (OS) in the training, validation,
and overall groups.

3.3. Relationship between Risk Grouping and Clinicopathological Features

To further explore whether risk groups differed in gene expression and associ-
ated clinical variables, we performed heatmap visualizations. In the risk grouping of
TCGA-HNSC, six mRNAs were considered risk mRNAs and the remaining six were
protective mRNAs (Figure 5). We compared the clinicopathological features of the
two risk subgroups. Interestingly, the immune scores (p < 0.001) of the two groups
differed widely. It is suggested that this 12-mRNA signature has a significant potential
to predict immunity in HNSC patients by assessing their risk scores by the relevant
gene expression levels.
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Figure 5. Heatmaps of the correlations between prognostic signatures and different clinicopatho-
logical features in the TCGA cohort. We found that these six genes (PRKAA2, ALB, AURKA, EGFR,
AKR1C3, SLC7A5) tended to cluster more significantly with increasing risk. Conversely, the other six
genes (CDKN2A, SLC7A11, SOCS1, HCAR1, LPIN1, GRIA3) tended to cluster more significantly with
decreasing risk. (*** p < 0.001. ns—no significance.).

3.4. GSEA, GO, and KEGG Analysis Reveals Molecular Functions and Pathways

We further explored the relationship between biological processes and signaling
pathways in risk groups classified according to the 12-IFRM signatures. Therefore, we
performed a differentially expressed gene (DEG) analysis between the two risk groups.
The DEG between the high-risk group and the low-risk group was determined by log (2)
|FC| > 1 and FDR < 0.05, and GSEA was carried out. The results showed that many
cancer-related pathways were enriched in high-risk groups such as cellular response
to hypoxia, glycolysis and gluconeogenesis, metabolic reprogramming in colon cancer,
APC mediated degradation of cell cycle proteins, signaling by EGFR (Figure 6A). In
addition, many tumor immune pathways were enriched in the low-risk group such
as immunoregulatory interactions between a lymphoid and a nonlymphoid cell, fceri
mediated NF-KB, PD_1 signaling, adaptive immune system, and fceri mediated MAPK
(Figure 6B).
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Figure 6. Analysis of the biological function and pathway enrichment in the high-risk and low-risk
groups based on the prognostic characteristics of immune-ferroptosis-related mRNA. (A) The GSEA
of the patients in the high-risk group. (B) The GSEA of patients in the low-risk group. (C) Bubble plot
of the GO and KEGG functional pathway enrichment analysis. The size of the bubble is consistent
with the number of count in the corresponding result record, which is the total number of intersections
between the gene set and the molecules in the corresponding ID entry; the depth of the bubble color
is consistent with the P. adj in the corresponding result record, which is the size of the p value
after statistical test correction. The abscissa is the molecular ratio, which is consistent with the
GeneRatio data in the corresponding analysis table. BP—biological process; CC—cellular component;
MF—cellular component.

To predict the functional enrichment information of high- and low-risk differential
genes, we performed GO and KEGG enrichment analysis. KEGG analysis showed signifi-
cant enrichment of many related pathways including primary immunodeficiency, NF-KB
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signaling pathway, cytokine–cytokine receptor interaction, endocrine resistance, and viral
protein interaction with cytokine and cytokine receptor, similar to the results of GSEA
(Figure 6C). GO analysis indicated the enrichment of biological processes (BP), molecular
functions (MF), and cellular components (CC). Taken together, these results suggest that
the risk score of the 12-mRNA signatures was primarily associated with immunity and
biometabolism. Details of the GO and KEGG results are listed in Table 1.

Table 1. The GO and KEGG enrichment analysis.

Ontology ID Description GeneRatio BgRatio p-Value p. Adjust q-Value

BP GO:0006958 Complement activation, classical
pathway 71/133 137/18,670 2.64 × 10123 3.96 × 10120 3.90 × 10120

BP GO:0002455
Humoral immune response

mediated by circulating
immunoglobulin

71/133 150/18,670 1.75 × 10119 1.31 × 10116 1.29 × 10116

BP GO:0006956 Complement activation 71/133 175/18,670 2.76 × 10113 1.38 × 10110 1.36 × 10110

BP GO:0072376 Protein activation cascade 71/133 198/18,670 1.54 × 10108 5.77 × 10106 5.69 × 10106

BP GO:0016064 Immunoglobulin mediated
immune response 72/133 218/18,670 4.14 × 10107 1.24 × 10104 1.22 × 10104

CC GO:0019814 Immunoglobulin complex 93/134 159/19,717 1.15 × 10175 1.27 × 10173 1.27 × 10173

CC GO:0042571 Immunoglobulin complex,
circulating 49/134 72/19,717 9.47 × 1093 5.26 × 1091 5.26 × 1091

CC GO:0009897 External side of plasma
membrane 54/134 393/19,717 1.09 × 1056 4.02 × 1055 4.02 × 1055

CC GO:0072562 Blood microparticle 25/134 147/19,717 3.50 × 1028 9.72 × 1027 9.72 × 1027

MF GO:0003823 Antigen binding 71/108 160/17,697 7.75 × 10125 1.15 × 10122 1.12 × 10122

MF GO:0034987 Immunoglobulin receptor
binding 48/108 76/17,697 9.71 × 1092 7.23 × 1090 7.00 × 1090

KEGG hsa05340 Primary immunodeficiency 3/22 38/8076 1.39 × 1004 0.008 0.006
KEGG hsa04064 NF-kappa B signaling pathway 4/22 104/8076 1.59 × 1004 0.008 0.006

KEGG hsa04060 Cytokine–cytokine receptor
interaction 5/22 295/8076 9.92 × 1004 0.035 0.025

KEGG hsa01522 Endocrine resistance 3/22 98/8076 0.002 0.046 0.033

KEGG hsa04061 Viral protein interaction with
cytokine and cytokine receptor 3/22 100/8076 0.002 0.046 0.033

3.5. Immune-Related Analysis of HNSC Patients Using the Prognostic Signature

The tumor microenvironment, as the name implies, is the living environment in
which tumor cells proliferate and metastasize in deep tissues. It consists of tumor cells,
immune cells, stromal cells, and various active molecules, all of which play a role in tumor
progression. In this study, HNSC patients were immunologically tested using CIBERSORT
and ESTIMATE to explore their association with 12-IFRMs. In order to clarify the differences
in immune cells in the risk groups, the stromal scores, immune scores, and estimate scores
in the risk groups were compared in groups, and it was found that the high-risk group had
significantly lower scores in these groups (p < 0.001) (Figure 7A). In addition, the immune
cells in high-risk groups and low-risk groups were compared, and the results showed that
naive B cells, plasma cells, CD8+T cells, T follicular helper cells, T cells regulatory (Tregs),
T cells gamma delta, macrophage M0, and macrophage M2 were significantly different
between different groups (p < 0.05) (Figure 7B).

We also compared the immune checkpoint expression levels in the risk groups.
In Figure 7C, there were significant differences in genes at 37 checkpoints between the
two groups. The expression of TNFSF9 and CD44 in the high-risk groups was significantly
increased compared with the low-risk groups. These findings imply that the high-risk
group’s immune microenvironment may be reduced by upregulating immunosuppressive
cytokines and immune checkpoints.
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Figure 7. The analysis of different risk groups and immune-related conditions for HNSC. (A) The
relationship between immune microenvironment and risk score was analyzed. The immune scores,
stromal scores, and estimated scores were analyzed by the ESTIMATE algorithm. (B) Analysis of the
immune infiltrating cells in high- and low-risk groups was performed by the CIBERSORT algorithm.
(C) Boxplots of immune checkpoint expression and risk grouping. (** p < 0.01, and *** p < 0.001,
ns—no significance.).
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3.6. Gene Mutation Analysis in the Model

Several recent reports have pointed out that high tumor mutation burden (TMB) are
significantly associated with the abundance of CD8+T cells, and can recognize tumor cells
and predict immune status [44–46]. Therefore, we believe that TMB can be a predictor
that cannot be underestimated. By exploring the correlation between TMB and risk score,
we found the relationship between the genetic variation in the risk score subtypes. First,
we analyzed and showed the genetic mutation distribution in the high- and low-risk
score subgroups (Figure 8A,B). According to the cumulative incidence chart, the high-risk
group had a higher incidence of somatic mutations than the low-risk group (94.32 vs.
90.53%). TP53 (59%), TTN (39%), FAT1 (20%), CSMD3 (19%) and SYNE1 (19%) were the
top five genes with the highest mutation frequency in the low-risk group. Genes such
as TP53 (73%), TTN (34%), FAT1 (23%), CDKN2A (18%), and MUC16 (17%) had the top
five mutation frequencies in the high-risk group. In general, oncogenes such as MUC16
exhibited relatively low mutation rates in the high-risk group (18% vs. 17%), in contrast
to anticancer genes such as TP53, which had comparatively high mutation rates in the
high-risk group (59% vs. 73%). Subsequently, we analyzed the relationship between risk
score and TMB score, and the results showed that there was a positive correlation between
the risk score and TMB score (Supplementary Figure S1). Moreover, through redistribution
of the TMB scores, the survival curve showed longer overall survival with low TMB levels
(p = 0.01) (Figure 8C). Compared with the other groups, the low TMB and low-risk group
had the best overall survival, while the high TMB and high-risk group had the worst
prognosis (Figure 8D). Overall, it can be concluded that risk signatures may be associated
with somatic mutations that affect tumor progression.

In order to explore the mutation status of 12 model genes in HNSC, we further
analyzed them through the cBioPortal database. The results showed that the gene alteration
types of CDKN2A were mainly deep deletion, mutation (putative driver), and the gene
alteration types of EGFR were mainly amplification (Figure 8E). Based on the high mutation
of CDKN2A in the risk model, we further demonstrated the type, site, and number of cases
of CDKN2A gene modification (Figure 8F). We found 112 mutation sites between amino
acids 0 and 156aa, of which 77 were truncating, 21 were missense, 11 were splice, two were
inframe, and one was SV/Fusion. Among them, R80* was the most common mutation site
(Figure 8G), and the CDKN2A mutation type of 23 patients was nonsense. In a word, these
findings are expected to provide new insights into somatic variation in HNSC.
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Figure 8. The gene mutation analysis. (A) Low-risk score oncoPrint map. (B) High-risk score
oncoPrint map. (C) The Kaplan–Meier curves for high and low TMB groups. (D) The Kaplan–Meier
curves for patients stratified by TMB and risk score. (E) A summary of the model genes’ structural
variant, mutations, and copy-number alterations. (F) The mutation types, number, and sites of
the CDKN2A genetic alterations. R80* is the most frequently altered mutation site in CDKN2A.
(G) Three-dimensional structure of CDKN2A. The yellow structure is where R80* is located.

3.7. Predicting Responses to Small Drug Molecules

We further analyzed the differences in resistance potential between the two risk
groups. The pRRophetic method was used to compare the estimated IC50 levels of the two
groups of chemotherapeutics or inhibitors. Of these, 12 representative drugs are shown
in Figure 9A–L. We found that the (lenalidomide, metformin, methotrexate, nilotinib,
rapamycin) (p < 0.001) IC50 was significantly higher in the high-risk group than in the
low-risk group, which means that patients in the high-risk group may not benefit from these
drugs. Conversely, bosutinib, docetaxel, erlotinib, gefitinib, imatinib, lapatinib, sorafenib
may be candidates for the treatment of patients in high-risk groups.
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Figure 9. The prediction of the drug sensitivity in patients with head and neck squamous cell carci-
noma. (A–L) The boxplot shows the mean difference in the estimated IC50 values for 12 representative
drugs (bosutinib, docetaxel, erlotinib, gefitinib, imatinib, lapatinib, lenalidomide, metformin,
methotrexate, nilotinib, rapamycin, sorafenib) between the two risk groups.

3.8. Gene Correlation Analysis

In order to explore the correlation of the 12 genes, we analyzed the relationship be-
tween the 12 genes through the R language algorithm. As shown in Figure 10A, SLC7A11
was significantly positively correlated with SLC7A5 and AKR1C3; SLC7A5 was signifi-
cantly negatively correlated with CDKN2A and LPIN1. To investigate the model gene
association networks, we used protein–protein, gene–gene interaction networks generated
by STRING and GeneMANIA to show that 20 potential target proteins and 20 potential
target genes interacted with the model gene (Figure 10B,C). Finally, based on protein and
gene networks, we analyzed the functional enrichment and found that BP was enriched in
organic acid transmembrane transport, carboxylic acid transmembrane transport, and L-
alpha-amino acid transmembrane transport. CC is mainly enriched in nucleotide-activated
protein kinase complex, the protein kinase complex, transferase complex, and transferring
phosphorus-containing groups. MF was significantly enriched in amino acid transmem-
brane transporter activity, L-amino acid transmembrane transporter activity, and organic
acid transmembrane transporter activity. KEGG analysis showed significant enrichment
of many related pathways including bladder cancer, the FoxO signaling pathway, and
non-small cell lung cancer (Figure 10D and Supplementary Table S3).



Cancers 2022, 14, 4099 18 of 23

Cancers 2022, 14, 4099 18 of 23 
 

 

by STRING and GeneMANIA to show that 20 potential target proteins and 20 potential 
target genes interacted with the model gene (Figure 10B,C). Finally, based on protein and 
gene networks, we analyzed the functional enrichment and found that BP was enriched 
in organic acid transmembrane transport, carboxylic acid transmembrane transport, and 
L-alpha-amino acid transmembrane transport. CC is mainly enriched in nucleotide-acti-
vated protein kinase complex, the protein kinase complex, transferase complex, and trans-
ferring phosphorus-containing groups. MF was significantly enriched in amino acid trans-
membrane transporter activity, L-amino acid transmembrane transporter activity, and or-
ganic acid transmembrane transporter activity. KEGG analysis showed significant enrich-
ment of many related pathways including bladder cancer, the FoxO signaling pathway, 
and non-small cell lung cancer (Figure 10D and Supplementary Table S3). 

 
Figure 10. The model genes’ correlation analysis. (A) Construction of 12 gene-related correlation 
networks. (B) The model genes’ associated protein network mapped using STRING. (C) The model 

Figure 10. The model genes’ correlation analysis. (A) Construction of 12 gene-related correlation
networks. (B) The model genes’ associated protein network mapped using STRING. (C) The model
genes’ associated gene network mapped using GeneMANIA. (D) The functional enrichment analysis
of the related genes and proteins.

4. Discussion

Many current studies have focused on the effect of immune and ferroptosis-related
gene expression on tumors [47–51]. The discovery of IFRGs could help to discover potential
cancer targets. However, there is little information on the application of IFRGs in head and
neck squamous cell carcinoma. Based on ImmPort, GeneCards, FerrDb, and the previous
literature, we analyzed the expression profiles of IFRMs in humans [26,27] and screened
out the differentially expressed IFRMs. The expression patterns of these IFRMs and the
prognosis of each patient in the TCGA database were then evaluated, and 17 prognostic
IFRMs were found. In addition, we established a new 12-mRNA prediction model. We
divided head and neck squamous cell carcinoma into high-risk and low-risk types according



Cancers 2022, 14, 4099 19 of 23

to the risk scores obtained by this prediction model. The mechanism of action of this feature
in head and neck squamous cell carcinoma was analyzed in more depth.

As a newly discovered mode of cell death, ferroptosis is mainly through lipid peroxi-
dation and iron dependence. It has been reported that many immune-related indicators
change during ferroptosis, so ferroptosis is closely related to the body’s immune microenvi-
ronment [47,52]. In order to explore the potential mechanism of the immune ferroptosis
model in HNSC, we performed GSEA analysis and found that metabolic pathways such
as hypoxia, glycolysis, cyclin, and EGFR signal transduction were enriched in high-risk
groups. In low-risk groups, immunoregulatory proteins, NF-KB, PD1, MAPK, and other ex-
pression pathways were abundantly expressed. In addition, our KEGG and GO enrichment
analysis showed that many immune and tumor-related pathways were enriched. Taken
together, we could infer that immune ferroptosis and tumor-related pathways cross-talk
with each other, leading to the development of tumors.

Previous studies have shown that ferroptosis is strongly related to tumor immune
cell function, and some have said that it is an immunogenic cell death [53]. It has been
found that CD8+T cells can induce ferroptosis in tumor cells [22]. Some studies have also
shown that prostaglandin E2 (PGE2) aids in the immune escape of cancer [54,55]. We
used ESTIMATE and CIBERSORT technology to count various tumor-aggressive immune
cells through the TCGA database. The findings revealed that the high-risk group had
considerably lower immunological, stromal, and ESTIMATE scores compared to the low-
risk group. In addition, in the low-risk group, the expression levels of naive B cells,
plasma cells, CD8+T cells, T follicular helper cells, Tregs, and gamma delta T cells were
higher, while the expression levels of macrophages M0 and M2 and other immune cells
in the high-risk group were also relatively high. The CD8+T cells, Treg cells, play a key
role in tumor immunity [56]. We observed a significant decrease in CD8+T cells in high-
risk populations, so we hypothesized that the effect of CD8+T cells would be relatively
attenuated or slowed down in high-risk populations. Research has shown that immune
checkpoint inhibition could improve the aggressiveness of the host immune system to
tumor cells [57]. We found that the expression of specific immune checkpoint genes such
as TNFSF9 and CD44 was significantly elevated in high-risk populations compared to
low-risk populations. It might be possible to improve the prognosis of high-risk patients
by enhancing the immune responsiveness.

The available clinical data suggested a relationship between genetic variation and
immunotherapy response [58,59]. Risk score and mutation data showed significant differ-
ences at the transcriptional level between patients in the high-risk and low-risk groups.
In this study, the variation in the TTN gene was significantly increased in the low-risk
group, while variation in the TP53 gene was significantly increased in the high-risk group.
In addition, we analyzed TMB as having a sensitivity to immunotherapy, and the results
showed that the higher the incidence of TMB, the lower the subsequent survival rate. The
following stratified survival curves revealed that the risk score had an independent prog-
nostic prediction power of TMB, implying that TMB and the risk scores reflected all levels of
immune biology. We also found from the cbioportal database that the model gene CDKN2A
is highly mutated in HNSC, with deep deletion as the mutation type, which is common
at the R80* site. It has been reported that the expression of the ferroptosis gene CDKN2A
is related to the overall survival rate of human colorectal cancer [60]. In specific tumor
subgroups of HNSCs, abnormalities in TP53 and CDKN2A were highly correlated with
higher TMB levels [61]. In certain C2 subtype cancers, p16INK4A expression was markedly
downregulated together with homozygous CDKN2A deletion [62]. In conclusion, there was
some crosstalk between immune ferroptosis and tumor mutations, especially CDKN2A.

It is well-known that the survival of HNSC patients in high-risk and low-risk groups
also differs due to their sensitivity to chemotherapy. Patients with head and neck squamous
cell carcinoma generally survived longer after chemotherapy. For patients who were not
sensitive to chemotherapy drugs, it was necessary to change the treatment strategy to
improve the efficacy, but there was no relevant clinical information. We therefore analyzed
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the drug’s sensitivity and predicted its potential efficacy. A number of drugs might be
considered therapeutic candidates for high-risk populations including bosutinib, docetaxel,
erlotinib, gefitinib, imatinib, lapatinib, and sorafenib.

Finally, we tried to explore whether these 12 genes were intrinsically linked, and found
that SLC7A11 was significantly positively correlated with SLC7A5 and AKR1C3; SLC7A5
was significantly negatively correlated with CDKN2A and LPIN1 through an algorithm
analysis. We also constructed protein and gene networks. Interestingly, the GO analysis
found a close relationship with transmembrane transport, and KEGG found that it was
related to some tumor pathways. These were also prepared for the follow-up genetic
mechanism research.

The work in this paper still needs to be further improved. The predictive role of the
clinical cohort in its prognostic pattern had not been demonstrated, and we look forward
to validating it with other cohorts in the next topic. Although we completed model gene
correlation analysis and constructed an interaction network, molecular mechanism research
still deserves attention. In conclusion, retrospective studies based on biological data still
need further experimental and clinical data to confirm, and we look forward to further
improvement after the epidemic is over.

5. Conclusions

In this experiment, only 12 IFRM prognosis prediction models were established, and
this model had an independent prediction ability. The purpose of this study was to predict
the survival state, immune microenvironment, and immunotherapy effect of HNSC patients,
and provides a direction for new treatment strategies. Simultaneously, we examined the
tumor mutation status in the risk model. Additionally, the relationship between model
genes was discussed through the gene, protein network, and functional enrichment. A
limitation of this study is that it has not been validated in an external cohort. We look
forward to validation in other clinical cohorts after the popularization and improvement
of medical data detection. All in all, this study was of great significance to explore the
prognosis of patients with head and neck squamous cell carcinoma, and is helpful to its
clinical application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14174099/s1, Supplementary Figure S1: Correlation be-
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Model-related gene enrichment analysis.
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