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Abstract

Purpose: In the treatment of patients with metastatic cancer, the current paradigm states that 

metastasis-directed therapy does not prolong life. This paradigm forms the basis of clinical trial 

null hypotheses, where trials are built to test the null hypothesis that patients garner no overall 

survival benefit from targeting metastatic lesions. However, with advancing imaging technology 

and increasingly precise techniques for targeting lesions, a much larger proportion of metastatic 

disease can be treated. As a result, the life-extending benefit of targeting metastatic disease is 

becoming increasingly clear.

Methods and Materials: In this work, we suggest shifting this qualitative null hypothesis and 

describe a mathematical model that can be used to frame a new, quantitative null. We begin with a 

very simple formulation of tumor growth, an exponential function, and illustrate how the same 

intervention (removing a given number of cells from the tumor) at different times affects survival. 

Additionally, we postulate where recent clinical trials fit into this parameter space and discuss the 

implications of clinical trial design in changing these quantitative parameters.

Results: Our model shows that although any amount of cell kill will extend survival, in many 

cases the extent is so small as to be unnoticeable in a clinical context or is outweighed by factors 

related to toxicity and treatment time.
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Conclusions: Recasting the null in these quantitative terms will allow trialists to design trials 

specifically to increase understanding of the circumstances (patient selection, disease burden, 

tumor growth kinetics) that can lead to improved overall survival when targeting metastatic 

lesions, rather than whether targeting metastases extends survival for patients with (oligo-) 

metastatic disease.

Introduction

In the treatment of patients with metastatic cancer, the current paradigm states that targeted 

treatment of metastatic lesions does not prolong life. This paradigm forms the basis of 

clinical trial null hypotheses, where trials are built to test the null hypothesis that patients 

garner no overall survival (OS) benefit from targeting metastatic lesions.

The development of distant metastases is the forerunner of cancer-related death.1–3 A 

hallmark of cancer, the dissemination of cancer cells from their origin to distant sites results 

from a complex cascade of biological events, which may subsequently allow for even more 

efficient tumor propagation.4–6 Eradicating as much metastatic disease as feasibly possible 

to halt said process is a natural inclination. Yet, historically, a guiding principle in treating 

cancer has been that targeting metastatic lesions leads to poor outcomes because the 

treatment is either too late or too morbid. However, with advancing imaging technology and 

increasingly precise techniques for targeting lesions, a much larger proportion of metastatic 

disease can be treated.7 As a result, the life-extending benefit of targeting metastatic disease 

is becoming increasingly clear.

Metastatic stage is typically described as a binary variable in a clinical setting, either present 

or not (M0 or M1), although certain cancer subtypes (e.g. colon, prostate) now have more 

gradiation in classifying a patient’s metastatic stage.8 The term “oligometastatic state” was 

first described in 1995 as an intermediary between localized and widespread metastatic 

disease where metastasis-directed treatment has the potential to be curative.9 Since then, 

results from several exploratory studies and randomized controlled trials using metastasis-

directed therapy in such patients have accumulated to support its existence.10,11

Consensus definitions have since been proposed to further refine subgroups of 

oligometastasis.12–14 For example, oligometastatic disease at presentation and the 

development of oligometastatic disease after definitive treatment of nonmetastatic cancer 

have been designated “synchronous oligometastases” and “metachronous oligorecurrence,” 

respectively. “Oligoprogression” describes growth of few metastases in the setting of 

otherwise stable (or responsive) disease while undergoing systemic therapy, and 

“oligopersistence” is characterized by having several lesions that have a poorer response to 

systemic therapy than others. Intrapatient heterogeneity often complicates diagnostics even 

further, where some lesions respond to therapeutics while others persist. These designations 

(and many more not listed) underscore the complexity with which researchers and clinicians 

are coming to understand this disease state.

In addition to refining the term “oligometastatic,” clinicians have examined the benefit of 

treating patients with oligometastasis.15,16 The implicit null hypothesis of these 
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investigations, that targeting metastatic disease does not provide a life-extending benefit, 

stems from the current paradigm of metastatic cancer treatment. Table 1 summarizes the 

results of some of these recent phase 2 and 3 clinical trials, demonstrating that this null 

hypothesis is frequently (but not always) refuted. Even accounting for known positive 

publication bias,17,18 substantial evidence supports a changing paradigm in the treatment of 

oligometastatic patients. However, despite many studies showing a significant increase in OS 

when metastatic lesions are targeted, the null hypothesis in ongoing clinical trial planning 

has not changed.

In this work, we suggest shifting this qualitative null hypothesis and describe a mathematical 

model that can be used to frame a new, quantitative null. We begin with a very simple 

formulation of tumor growth, an exponential function, and use it to show that although any 

amount of cell kill will extend survival, in many cases the extent is so small as to be 

unnoticeable in a clinical context or out-weighed by factors related to toxicity and treatment 

time. Recasting the null in these quantitative terms will allow trialists to design trials 

specifically to increase understanding of what circumstances (patient selection, disease 

burden, tumor growth kinetics) can lead to improved OS when targeting metastatic lesions, 

rather than determining whether targeting metastases can extend survival for patients with 

(oligo-) metastatic disease. We purposely began with the most simplistic possible 

mathematical model, considering only total disease burden and doubling time. We did not 

consider complexities such as space, metastatic locations/connectedness,19 immune 

interactions, or any heterogeneities—all things that could be considered in future iterations, 

but which make the model less generalizable. Finally, a sensitivity analysis was performed to 

confirm that our findings were consistent using alternative ordinary differential equations 

(ODEs) that may be used to model tumor growth.20

Because of its breadth, the current qualitative null hypothesis may be incorrectly accepted or 

rejected without a quantitative model to help design optimal patient and treatment 

parameters. Numerous qualitative and quantitative prognostic factors exist to help identify 

patients with metastatic disease that is likely to follow a relatively indolent course. For 

example, with slower disease progression, patients are more likely to derive greater benefit 

from aggressively targeting metastases. Other characteristics include the number of lesions 

and organs involved, the time course of presentation and progression, tumor histology, 

patient innate and adaptive immunity, and various biological features.21 It is crucial that we 

parse which of these patient characteristics can meaningfully affect treatment outcomes in 

the setting of oligometastasis. By rethinking the null hypothesis of metastatic cancer 

treatment, research efforts can better serve our patients by bringing a deeper understanding 

of how well treatment works, for whom it works best, and when it is most efficacious, rather 

than continually testing the implicit null hypothesis.

Methods and Materials

Modeling tumor growth using an exponential function

Beginning with a very simple model of tumor growth, an exponential function, we explored 

the effect of treatment in scenarios with different growth rates, treatment effectiveness, and 

timing of the intervention. Although this overlooks many of the realities of real human 
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cancers, such as spatial, intra-, and inter-tumoral22–24 heterogeneity, it captures many of the 

essential aspects of growth.25 Furthermore, in the absence of other specific knowledge, 

general arguments can be expounded upon, but additional undetermined complexities can 

severely limit generalizability. Let us then model a tumor of size (cell number), N, beginning 

with a single cell, and a growth rate, r, as follows:

N(t) = ert (1)

A growth curve built using Equation 1 is displayed in Figure 1 as a black line, denoted 

“Untreated.” The threshold tumor burden (an arbitrary number of N = 100 for illustrative 

purposes) that leads to patient death, NT, is represented by the horizontal black dashed line 

in Figure 1. Next, we will assume that an intervention (e.g. stereotactic body radiation 

therapy or metastasectomy) is given at some time (e.g. upon detection of a metastasis). The 

total tumor burden at the time of this treatment is denoted as Nd and the number of cells 

killed is denoted as Nc cells; note, this requires 0 ≤ Nc ≤ Nd.

To illustrate how the same intervention (removing Nc cells from the tumor) at different times 

affects our measure of survival, we plot several growth curves together in Figure 1. The time 

when each of these curves reaches NT is the time of death (td,x). The difference (Δt) between 

the unperturbed time of death (td,1) and each subsequent example intervention (eg, Δt = td,2 

− td,1) is the increase in survival. We note that the earlier the intervention occurs (smaller 

Nd), the greater the Δt and, therefore, increase in survival. This is also true if we kill more 

cells (i.e. Nc increases).

Although Figure 1 considers how a single intervention will affect the “same” tumor, Figure 

E1 explores the effect of altering tumor growth rate, r, on Δt after the same intervention. 

This figure adds a faster tumor growth curve, in addition to the curve seen in Figure 1. The 

same intervention (removal of Nc cells) occurs at the same time points as the slower curve, 

yet the faster growing tumor has a smaller resulting change in survival time (Δtf) compared 

with the slower growing tumor (Δts).

Next, we will examine the analytical relationship between the change in survival (Δt) and the 

other parameters (r, Nc, Nd). This requires examining 2 tumor growth curves, one with 

unperturbed growth starting at Nd and the other with perturbed growth beginning at (Nd − 

Nc). In other words, the perturbed curve will have the same growth characteristics as the 

unperturbed curve, but it will have Nc cells removed as “treatment.” Then we will calculate 

the offset of time between the 2 curves when they reach NT, (i.e. Δt).

Graphically, we are asking how large the difference on the time axis is between where the 

treated and untreated curves intersect with NT (the black dashed line), denoted by colored 

circles in Figure 1 and Figure E1. Mathematically, we find the difference between td,1 and 

td,2: Δt when Nd ert1 = Nd − Nc ert2 = NT . This relation is

Δt = 1
r ln Nd

Nd − Nc
(2)
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The observations from before are maintained: Slower growing tumors (smaller r), more 

effective interventions (increasing Nc), and lower burden at time of treatment (lower Nd) 

make for a larger survival benefit, as we have intuited. Additionally, it is important to note 

that Δt is not dependent on the threshold chosen for NT, where tumor burden leads to death.

Given the intuitive nature of these results, one may question the value of such a model. First, 

this model allows for the quantitative exploration of what was previously an exclusively 

qualitatively described phenomenon. This allows for formal interrogation of the individual 

values of each parameter, a crucial step in quantitative reasoning during clinical trial design. 

In doing so, a framework for parameter estimation can help trialists perform sensible power 

calculations. This would require measuring distributions of each of these parameters, as it is 

clear that heterogeneity (and uncertainty) exists in each. Furthermore, this would allow for 

error propagation in addition to power calculations. With recent work trying to incorporate 

toxicity into survival analyses in radiation oncology,26 we have the opportunity to formally 

probe the balance between benefit and harm in this setting. Most importantly, however, it 

will remove the confusion created when we test a qualitative null that is likely neither able to 

be rejected nor upheld given the sensitivity to the noise inherent in clinical data.

Sensitivity analysis with alternative tumor growth models

To assess the consistency of our findings, we examined the 7 ODE models used by Murphy 

et al,20 where they fit each model using 14 time points from a naked mouse xenograft 

experiment by Worschech et al.27 The models included in this analysis are as follows: 

exponential, Mendelsohn, logistic, linear, surface, Gompertz, and Bertalanffy. Figure 2A 

shows all 7 models (including the exponential model) built using the parameters denoted by 

Murphy et al.20 Using these models, Figure 2B denotes the Δt, or change in OS, between the 

untreated growth curves and growth curves with the same intervention at early, middle, and 

late timing. Here, we see that all models show that the same intervention has a greater 

benefit the earlier it is performed. Each model with untreated, early, middle, and late 

interventions is individually plotted in Figure E2B–H, and Figure E2A shows all untreated 

models together for comparison. Although not all models have as extreme a difference as 

seen in the exponential model, this quantitative trend, which is the main thrust of this study, 

remains consistent.

Parameter sweep of exponential growth model

Figure 3 demonstrates a benefit of using a quantitative model with a sensitivity analysis to 

help us better understand the areas of the (very simplified) parameter space, a range of 

possible parameter values, where the greatest opportunities lie. Given that this is a simple 

exponential relation, the change in survival is monotone (always up or down) in each 

parameter. However, because the tumor growth curves were nonlinear, we chose to plot the 

sensitivity analysis on a log-log plane to improve the visualization of changes in parameter 

values.

Because we do not currently have known values for these parameters, exploring a large 

sweep of values can be instructive. We consider a continuous range for Nc in [0, Nd] where 

Nc = 0 represents no intervention and Nc = Nd represents a cure. In these cases, Δt = 0 and 
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Δt = ∞, respectively. In Figure 3, we consider 4 discrete examples of values for r, as this 

parameter’s effect is monotone (where a case with lower r always derives more benefit from 

oligometastasis-directed therapy than a case with higher r). It is also important to note that 

this parameter is likely modifiable with cytotoxic or targeted chemotherapy, something we 

do not consider here, but this would be a straightforward extension. This example will 

consider growth rates that correspond to tumor doubling times of 100, 200, 300, and 400 

days. These could represent tumors such as small cell lung cancer (SCLC) in the fast 

extreme or prostate cancer in the slow extreme. Figure 3 shows this analysis with isoclines in 

black to denote lines of equal effect. These curves demonstrate that any increase in Nc (more 

cell kill per intervention, “up” on the y-axis) and/or decrease in Nd (earlier intervention, 

“down” on the x-axis) increases the OS benefit. It is interesting to note that the movements 

(ie, Nc up and Nd down) mirror the historical trend: Improvements in detection of 

oligometastasis via anatomic or functional imaging have slowly pushed Nd lower over the 

years, and the ability to safely (using stereotactic body radiation therapy or minimally 

invasive surgery with continually lowering toxicity) target larger and larger lesions 

(increasing Nc) has increased. This “creep” of these values is one reason why the need for a 

recasting of the null hypothesis is becoming clear, and why the null was historically of 

greater clinical utility.

Sample size calculation informed by exponential growth model

Finally, we performed theoretical sample size calculations (using the sample size estimator 

from Wang and Ji28) in 4 clinical scenarios: a fast-growing tumor type that is detected early, 

a fast-growing tumor type that is detected late, a slow-growing tumor type that is detected 

early, and a slow-growing tumor type that is detected late. Using Equation 2, we assume 

parameters that are congruent with each clinical scenario and calculate the change in 

survival time between the treated and untreated growth curves. These Δt values are then 

converted into hazard ratios (HRs) relative to each other, with the largest change in survival 

time relating to the most extreme HR (0.50) and the smallest change in survival time leading 

to the HR closest to 1 (0.80). In Table 2, we see that as the HR approaches 1, the predicted 

sample size requirements become unreasonable for any oncology treatment clinical trial. 

This HR may occur in a trial with a fast-growing tumor type (eg, SCLC) that has widespread 

metastatic disease.

As seen in McClatchy et al29 and Scott et al,26 a more technical method of assessing these 

theoretical sample size calculations would be to perform an in silico clinical trial. One would 

assume distributions for each parameter of interest (eg, r, Nd), sample each “patient” in the 

trial from these distributions, assess survival time for treated and untreated groups, and 

calculate the HR between the 2 groups. Even with this theoretical approach, however, 

additional measurements would be required to appropriately estimate the distributions of the 

model parameters. Post-trial data publication could provide a wealth of information to 

estimate these parameters. For example, tumor imaging both before and after treatment 

could assess Nd and Nc, and serial tumor biopsies could be used to inform a distribution for 

tumor growth rate. Without these data, however, we believe that the simpler method of 

converting Δt to HR, shown in Table 2, provides an easier-to-interpret example of sample 

size calculations.
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Clinical correlation

To demonstrate how clinical trial design can explore the parameter space of this tumor 

growth model, we will review some recent clinical trials, which are also listed in Table 1. 

This discussion reviews illustrative examples and is not an exhaustive list of all clinical trials 

that test the benefit of targeting oligometastases. For many trials, we will estimate where 

design falls in the parameter space of Figure 3 and discuss how trial design can test the 

effects of altering 1 or more parameters (e.g. Nd Nc, or r).

In a phase 2 trial by Gomez et al,30 49 patients with oligometastatic (≤3 metastases) non-

small cell lung cancer without progression after first-line systemic therapy were randomized 

to either maintenance systemic therapy/surveillance or local consolidative therapy (LCT) to 

all sites of residual disease via surgery or radiation therapy. After interim analysis 

demonstrated a substantial progressive free survival benefit with LCT, the trial was closed 

early and allowed for crossover to the LCT arm.30 With additional follow-up, and despite 

crossover, LCT was associated with improved OS of 41.2 months versus 17.0 months.31 We 

placed this trial in the top right subplot of Figure 3 due to the relatively fast growth rate of 

non-small cell lung cancer, minimal tumor burden (≤3 metastases), and large Nc using 

radiation therapy or surgery.

The Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of 

Oligometastases (SABR-COMET) study was a screening phase 2 trial that randomized 99 

patients with oligometastatic disease (≤5 metastases) of various histologies with a controlled 

primary site to standard palliative therapy with or without SABR to all metastatic lesions. 

The primary endpoint was OS, which was initially improved with the addition of SABR 

from 28 months to 48 months.32 With additional follow-up, results were even more 

substantial, with a median OS of 50 months using SABR versus 28 months in the control 

arm.33 Because this trial included tumors of many histologies, we cannot place the positive 

results in a single subplot of Figure 3, but doing so post hoc patient by patient would be 

illustrative. The SABR-COMET trial also used stratified randomization to ensure that strata 

of patients with 1 to 3 metastases and 4 to 5 metastases were balanced in treatment 

assignments. Stratified randomization helps balance treatment arm assignments between 

patient populations with known prognostic factors and can reduce the risk of type I and II 

errors in trials with smaller sample sizes (<400 patients).34 In relation to our model, by 

creating strata of the number of metastases, the SABR-COMET trial was balanced based on 

tumor burden at the time of treatment (Nd). In the future, other trials may consider 

stratifying based on tumor growth rate (either inferred by tumor type or measured from 

serial tumor biopsies), the sensitivity of imaging techniques (Nd or Nc), or the efficacy of 2 

treatment types (Nc).

In the phase 2 European Organisation for Research and Treatment of Cancer (EORTC) 

40004 trial, 119 patients with fewer than 10 unresectable colorectal liver metastases and no 

extrahepatic disease were randomized to systemic therapy with or without local therapy 

using radiofrequency ablation (RFA) (with or without resection). Although the primary 

endpoint of 30 months OS benefit was not met, longer follow-up led to improved OS with 

RFA from 40.5 months to 45.6 months.35 With a relatively slow-growing tumor subtype, a 
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large Nd, and a moderate OS benefit, we estimated this clinical trial to fall in the bottom left 

subplot of the model’s parameter space found in Figure 3.

The largest study was Arm H of the Systemic Therapy in Advancing or Metastatic Prostate 

Cancer: Evaluation of Drug Efficacy (STAMPEDE) trial, which was a phase 3 trial of 2061 

patients with metastatic prostate cancer randomized to androgen deprivation therapy with or 

without definitive radiation therapy to the prostate. Prespecified subgroup analysis 

demonstrated no benefit to the addition of prostate radiation therapy among those with a 

high metastatic burden, defined as either visceral metastases or ≥4 bone metastases with ≥1 

outside of the vertebral bodies or pelvis. However, in the group of 819 patients with a low 

metastatic burden, radiation therapy to the prostate improved 3-year OS from 73% to 81%.36 

In relation to our model, this is equivalent to assuming that the 2 groups (high and low 

metastatic burden) have different Nd at the time of treatment but experience the same Nc It 

should be noted that unlike other trials discussed, local therapy was delivered only to the 

primary site, not the metastatic sites, suggesting a benefit to cytoreduction. The estimated 

parameter space position of these 2 subgroups (high metastatic burden and low metastatic 

burden) is found in the bottom right subplot of Figure 3.

In the Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer 

(ORIOLE) trial, patients with metachronous oligometastatic prostate cancer with ≤3 sites as 

detected by conventional imaging were randomized to surveillance or SABR to all sites.37 

The primary endpoint was a composite of disease progression metrics at 6 months, which 

was improved with SABR at 19% versus 61% in the control arm. Interestingly, a subgroup 

of patients underwent advanced imaging with prostate-specific membrane antigen (PSMA) 

positron emission tomography (PET), which has demonstrated greater sensitivity in 

detecting prostate cancer metastases (putatively lowering Nd).38 Among those patients for 

whom all PSMA PET–avid sites were treated, the 6-month progression rate was just 5% 

compared with 38% in those with untreated sites. This subgroup analysis further supports 

that advanced imaging can better identify metastases, and treating all sites improves 

outcomes. By using a more sensitive technology in detecting (and therefore targeting) 

metastases, we see that a greater Nc increases progression-free survival, even if Nd remains 

the same. We estimate the parameter space for this subgroup analysis in the bottom right 

subplot of Figure 3.

Not all trials have demonstrated benefit to the addition of metastasis-directed therapy. For 

example, Radiation Therapy Oncology Group (RTOG) 0937 was a phase 2 study of 86 

patients with extensive stage SCLC with at least a partial response to chemotherapy and 1 to 

4 extracranial metastases who were randomized to prophylactic cranial irradiation with or 

without consolidative radiation therapy to the chest and all metastatic sites. The primary 

endpoint of 1-year OS was not significantly different; 60% in the control arm and 51% in the 

consolidative radiation therapy arm.39 This negative result is estimated to be in the top left 

subplot of Figure 3, due to the rapid growth of SCLC. Here, this model could have still been 

useful by informing the sample size calculations (Table 2), given the parameter estimates of 

the trial’s patient population.
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Conclusions

In this work, we have used a simple exponential model of tumor growth to demonstrate why 

recent improvements in metastasis detection and treatment may allow us to reconsider the 

null hypothesis when treating patients with oligometastases. Specifically, more sensitive 

techniques to localize metastases (as seen with PSMA imaging) increase how many tumor 

cells are removed, Nc, when considering patients at similar stages. When used for 

surveillance, these imaging techniques can decrease the tumor burden at the time of 

treatment, Nd, while still increasing the efficacy of therapy, Nc, potentially leading to 

clinically significant improved OS. Next, advancements in the ability to administer local 

therapy to all sites of disease with surgical resection, radiation therapy, and/or ablative 

procedures such as RFA have allowed for more effective, precise eradication of metastatic 

lesions with reduced associated morbidity. Furthermore, novel immunotherapies, cytotoxic 

chemotherapies, and other targeted therapies can likely decrease the growth rate, r, of 

tumors.

A mathematical model provides the distinct advantage of testing quantitative hypotheses to 

optimize the treatment of patients with oligometastases. Parameter selection regarding 

number of oligometastases, measurements of tumor burden, and efficacy of treatment 

options can be examined with robust hypotheses born from simulated results. Additionally, 

with increased translation between the bench and bedside, some model parameters (eg, r, 
tumor growth rate) may be inferred using serial tumor biopsies, in vitro, or in silico 
modeling. A deeper understanding of how these parameters affect outcome can improve trial 

design by allowing for rational prognostic strata criteria in stratified randomization or 

informing prior probabilities in a Bayesian clinical trial.34,40,41 Furthermore, Bayesian trial 

interim analyses can be enhanced with additional simulations using updated parameters as 

patient characteristics are observed or assessed over time. With a better understanding of the 

prognostic factors of the population enrolled in a trial, these interim analyses may be used to 

update prior probabilities, predict probability of success, and assess sample size 

requirements.40,41

It is important to note that the model demonstrated in this work is not a perfect 

representation of tumor growth and treatment because it fails to consider intratumoral 

heterogeneity, metastasis location, and the inherent risks of treatment. However, because of 

its simplicity, this model provides a foundation exploring the current parameter space while 

allowing researchers to add complexity as they see fit.

There are minimal recently published clinical trial results that support upholding the current 

paradigm in the treatment of oligometastases; however, this is likely due in part to 

publication bias where positive results are more likely to be published, not simply because 

this null hypothesis has always been rejected.17,18 The clinical trials examined in this article 

have necessarily sought to examine the fundamental idea that oligometastatic lesions should 

only be targeted for palliative care. Refuting this standard was crucial, as the earlier state of 

cancer imaging and treatment established that targeting oligometastases either occurred too 

late or caused too much harm. Yet, as quantitative models of tumor growth and the 

knowledge of how metastatic detection and treatment have evolved, we believe that clinical 
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trials can now provide an even greater benefit by reconsidering the default null hypothesis 

and using the quantitative principles of this mathematical model in trial design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Change in overall survival is modulated by when an oligometastasis-directed intervention 

occurs and the effectiveness of the intervention. We plotted an illustrative exponential 

growth curve from Equation 1 in black. At 3 different times, we subtracted Nc cells from the 

curve to simulate an oligometastasis-directed intervention (orange markers), and the tumor 

continued to grow at the original rate from the new size. These subsequent tumors then grew 

and eventually intersected an arbitrary threshold cell (a surrogate for maximum tolerated 

disease burden) number (NT = dashed horizontal line), and there we could then determine 

the change in survival (vertical black lines, inset). The change in this time represents the Δt 
for each intervention. n.b. These are not realistic parameters, but instead serve to illustrate 

the (qualitatively conserved) phenomenon.
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Fig. 2. 
Across 7 ordinary differential equations (ODE) tumor growth models, earlier intervention 

creates a larger improvement in overall survival (OS). Models were produced using the 

parameters denoted by Murphy et al,20 where the 7 models were fit to 14 timepoints of 

xenograft tumor growth data from Worschech et al.27 (A) A comparison of the 7 growth 

curves with no interventions built with various ODE models. Individual plots for each model 

and 3 intervention time points may be found in Figure E2. (B) A heatmap demonstrating the 

change in OS (Δt days) for the same intervention (Nc = 100) at 3 different time points for 

each ODE model. Each heatmap entry is annotated with the exact change in OS for the given 

model and intervention timing. Treat early, treat middle, and treat late denote the 

intervention occurring at 20, 35, and 50 days, respectively.
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Fig. 3. 
The benefit of oligometastasis-directed therapy depends monotonically on the amount of 

cells killed, the tumor burden, and tumor doubling time. We plotted 4 orders of magnitude of 

both Nc and Nd on a log scale. The color represents the predicted number of days of overall 

survival benefit for each combination of Nc and Nd Each of the 4 subplots represents a 

different “intrinsic” biology, modeled by different tumor doubling times. A td of 100, 200, 

300, and 400 days corresponds to a growth rate, r, of 0.0069, 0.0035, 0.0023, and 0.0017, 

respectively. Contour lines are shown for ease of comparison. A selection of trials from 

Table 1 are represented by red circles based on estimations of Nd, Nc, r, and td for each trial.
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