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Introduction
Homocysteine (Hcy) is a sulfhydryl-containing amino acid, a 
homolog of cysteine with one additional methylene group.1,2 
Hcy is not acquired through the diet, but is synthesized as an 
intermediate metabolite from methionine (Met) metabolism. It 
is converted to cysteine via the transsulfuration pathway or 
resynthesized back to methionine via the re-methylation path-
way.3,4 In plasma, 99% of the Hcy is bound to proteins, including 
cysteine, and cysteinylglycine via disulfide linkages, while only 
1% is found in a free reduced form.5 For the estimation of the 
Hcy level, plasma tissue homogenate samples are analyzed using 
various methodologies such as immunoassay, capillary electro-
phoresis, enzymatic assay, liquid chromatography-mass spec-
trometry (LCMS) and high-pressure liquid chromatography 
(HPLC).6 The normal Hcy levels is ranging between 5 and 
15 μmol/L, while a mildly increased level is 15 to 30 μmol/L, 
moderate from 30 to 100 μmol/L, and a value >100 μmol/L is 
classified as severe hyperhomocysteinemia.7,8

The levels of Hcy can be increased through a defective 
metabolism of Met, due to genetic defects of the transcription 
of enzymes responsible for Hcy metabolism or deficiencies of 
cofactors involved in these pathways such as vitamins B6, B12, 
and folate.9 The effect of hyperhomocysteinemia (HHcy) on 
human health was first described in the mid-20th century by 
Kilmer S. McCully.10 Since then, many epidemiologic reports 
indicated that HHcy is associated with multiple clinical condi-
tions, while controlled Hcy level in high risk group associated 
with improved physical and mental health.11-14 It is considered 
as an independent risk factor for cardiovascular disease, as well 
as for stroke and myocardial infarction by the American Heart 

Association.15,16 Although it is not directly involved in protein 
synthesis, the exposure to a toxic effect of Hcy, induced cyto-
toxicity that lead to a reduction of cultured endothelial cells 
viability through a direct and indirect effect on the pathway of 
apoptosis.17,18

Studies have identified a strong association between HHcy 
and induction of inflammatory determinants including the 
expression of adhesion molecules, leukocyte adhesion, endothe-
lial dysfunction, oxidative stress, and reduced nitric oxide bio-
availability in both human and experimental models.19,20 In 
HHcy state, NFκB, a transcription factor that regulates the 
transcription of various genes involved in inflammatory and 
immune responses is activated, additionally, marked increase in 
pro-inflammatory cytokines and downregulation of anti-
inflammatory cytokines were observed.19

In HHcy patients, supporting evidence indicate that the 
development of homocysteine-associated vascular disease may 
be prevented by the maintenance of normal Hcy levels, with 
conventional treatment of folate supplementation and vitamin 
B6 and possibly vitamin B12.21 However, despite lowered Hcy 
levels, the clinical picture of pathophysiological conditions 
caused by an elevated Hcy level may not be reversible for cer-
tain conditions.22

Several studies were conducted to investigate the treatment 
of HHcy in patients with a history of arteriosclerotic vascular 
disease (ASVD).23,24 A large study was conducted with more 
than a 1000 individuals with HHcy, to determine the effect of 
supplementation with vitamins B12, B6, and folic acid for 
6 weeks. The study reported that there was a proportional 
reduction in the plasma Hcy level caused by the folic 
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acid treatment and that the level of the reduction was higher in 
participants with pre-treated Hcy levels.25 The dosage required 
for the treatment of HHcy may vary according to the underly-
ing condition, however, the minimum effective dose of folic 
acid to obtain the maximal lowering of Hcy is 400 μg.26,27 
Prolonged folic acid therapy is associated with decreased vita-
min B12 blood levels and worsening symptoms of B12 defi-
ciency, so a supplement vitamin B12 is usually taken in the 
form of the cyanocobalamin.28 In a randomized controlled 
trial, 104 patients were divided in 2 groups, the study group 
received a combined nutraceutical containing 400 μg folate-
6-5-methyltetrahydrofolate, 3 mg vitamin B6, 5 μg vitamin 
B12, 2.4 mg vitamin B2, 12.5 mg zinc and 250 mg betaine once 
daily for 2 months, and the control group received a supple-
ment of folic acid (5 mg/day). The results indicated that the 
Hcy reduction was significantly higher in the treatment group 
(P < .035).28 This may support the available evidences that 
vitamin supplements significantly reduce the Hcy levels in a 
sustained but suboptimal way, even if supraphysiological doses 
are used.29,30 Recent study revealed the protective role of vita-
min E as antioxidant and melatonin may alleviate Hcy-induced 
cell apoptosis, which may add insight into therapeutic 
approaches to Hcy-induced damages in endothelial cells.31

The review will discuss Hcy and its biological functions in 
the body, conditions that induce by or are related to HHcy, and 
biochemical investigations that may ease the recognition of 
suspected cases at early stage of disease course.

Biosynthesis and Metabolism of Homocysteine
Hcy is produced in all cells and biosynthesized from methio-
nine through multiple steps, initiated by the demethylation of 
methionine (Met) as well as 3 subsequent steps.1,3 The first 
step is the transfer of an adenosine group from ATP to methio-
nine by S-adenosyl methionine (SAM or AdoMet) synthetase 
(also called methionine adenosyltransferase, MAT), resulting 
in the formation of S-Adenosyl-L-methionine (AdoMet or 
SAM)32-34 (Figure 1).

In the second step, the universal methyl donor, SAM, 
donates a methyl group to acceptor molecules such as DNA, 
RNA, proteins, and neurotransmitters.35 The resulting com-
pound S-adenosyl homocysteine (AdoHCys or SAH), lack-
ing the methyl group, can function as an inhibitor of most 
methyltransferases and is subsequently cleaved via a revers-
ible reaction by S-adenosyl homocysteine hydrolase 
(SAHH) to produce adenosine and L-homocysteine.4,36,37 
Finally, the L-homocysteine can be metabolized by 2  

Figure 1. The homocysteine metabolic cycle.
Abbreviations: ADK, adenosine kinase; AdoHCys or SAH, S-adenosyl homocysteine; AdoMet or SAM, adenosyl methionine; BHMT, betaine-homocysteine 
methyltransferase; Cbl, cobalamin—vitamin B12; CBS, cystathionine beta-synthase; DMG, dimethylglycine; GNMT, glycine N-methyltransferase; Hcy, homocysteine; MAT, 
methionine adenosyltransferase; 5-methyl-THF, 5-N-methyl tetrahydrofolate; 5,10-methylene-THF, 5,10-methylenetetrahydrofolate; MS, methionine synthase; MTHFR, 
methylenetetrahydrofolate reductase; SAHH, S-adenosylhomocysteine hydrolase; SHMT, serine hydroxymethyltransferase.
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reactions, transsulfuration or re-methylation, ultimately 
producing L-methionine and L-cysteine, respectively.2,38

Remethylation

Remethylation involves recycling Hcy to methionine, by 
using vitamin B12 as a cofactor. The methionine synthase 
(MS) catalyzes the re-methylation reaction, restoring Met 
by transferring the methyl group from 5-N-methyl tetrahy-
drofolate (5-methyl-THF) to Hcy.39-41 In this cycle, folate is 
reduced to tetrahydrofolate, which is an important key 
player in folate metabolism as a folate acceptor molecule, 
which is then converted to 5,10-methylenetetrahydrofolate 
(5,10-methylene-THF) by the pyridoxal phosphate (PLP)-
dependent serine hydroxymethyltransferase (SHMT).42 
Methylenetetrahydrofolate reductase (MTHFR) reduces 
5,10-methylene-THF to 5-methyl-THF.43

There is another pathway of remethylating Hcy that uses an 
enzyme called betaine-homocysteine methyltransferase (BHMT).  
The betaine pathway is restricted to the liver and kidney where 
betaine can serve as methyl donor molecules. In this reaction, the 
methyl group is transferred from betaine to Hcy to produce 
methionine and dimethylglycine (DMG).41,44,45 Here choline 
plays a significant role in Met regeneration, as it is oxidized to 
betaine, which can be used in this conversion of Hcy.46,47

Transsulfuration

In the transsulfuration process, Hcy is irreversibly converted 
to cysteine by cystathionine b-synthase (CBS), which is fol-
lowed by the catalysis done by cystathionine c-lyase (CTL). 
Both enzymes need the cofactor pyridoxal-50-phosphate 
(vitamin B6) to function.48 Serine can be enzymatically 
added to homocysteine by CBS and vitamin B6, to form cys-
tathionine, which can be cleaved by CTL to form cysteine.49 
Once cysteine is formed, it can be used in protein synthesis 
and glutathione (GSH) production and cannot be converted 
to back to Hcy.50

Causes of Hyperhomocysteinemia
Enzyme defects associated with Hcy metabolism are consid-
ered the most prevalent cause of HHcy. The enzyme defects 
has been researched, especially the polymorphisms of the main 
enzymes involved in Hcy metabolism such as Cystathionine 
b-synthase (CBS) deficiency, Methylenetetrahydrofolate 
reductase (MTHFR) deficiency, Methionine synthase defi-
ciency, and Methionine adenosyltransferase deficiency  
(Table 1).37,51,52 In addition to genetic causes, many other fac-
tors related to age, lifestyle such as cigarette smoking, alcohol 
consumption and nutritional deficiencies in folic acid, vitamin 
B6, vitamin B12, and betaine are as responsible for HHcy.53-56 
In this review, we will discuss the main enzymatic defects in 
this pathway.

Cystathionine beta-synthase (CBS) deficiency or 
classical homocystinuria

Classical homocystinuria (HCU) (OMIM 236200), is an auto-
somal recessive disease caused by biallelic pathogenic variations 
in the CBS gene.57 Deficiency of the CBS enzyme causes ele-
vated tissue and plasma levels of Hcy and its precursor, methio-
nine.58 Typically, patients can manifest a wide range of 
symptoms with variable severity involving the ocular, skeletal, 
vascular, and central nervous systems.59,60

The prevalence of CBS deficiency has been reported as 
1:200 000 to 1:335 000 and >200 pathogenic variants have 

Table 1. Causes of hyperhomocysteinemia.

Severe >100 μmol/L

  Cystathionine synthase (CBS) deficiency

  Untreated methylenetetrahydrofolate reductase (MTHFR) 
deficiency

Moderate 60 to 100 μmol/L

  Methylenetetrahydrofolate reductase (MTHFR) deficiency

  Methionine synthase (MS) deficiency

Moderate 30 to 60 μmol/L

  Intracellular cobalamin metabolism, for example, cblC, cblD, 
cblE, cblF, and cblG

  Methionine adenosyltransferase I/III deficiency

  Glycine N-methyltransferase (GNMT) deficiency

  S-adenosylhomocysteine hydrolase (SAHH) deficiency

  Adenosine kinase (ADK) deficiency

  Sever nutritional inadequacy, for example, folate and vitamin B12

  Compound heterozygosity of MTHFR

Mild 16 to 30 μmol/L

  Impaired folate or vitamin B12 absorption

  Mild to moderate nutritional inadequacy, for example, folate and 
vitamin B12

  Vegetarian diet (low vitamin B12 intake)

  Chronic renal failure

  Hypothyroidism

  Anemia

  Malignant tumors

  Certain drugs affecting Hcy metabolism: cholestyramine, 
metformin, methotrexate, nicotinic acid (niacin), fibric acid 
derivatives, and oral contraceptive pills (OCPs)

  Advanced age

  Lifestyle conditions such as excessive coffee or alcohol 
consumption, cigarette smoking
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been described in the CBS gene, however, mutations such as 
p.Ile278Thr, p.Thr191Met, p.Gly307Ser, and p.Trp323Ter are 
the most prevalent mutations and represent half of all HCU 
alleles.61-63 Considering the significant effect of genetic poly-
morphisms on the increase of the HCys level, current studies 
are investigating the correlation between the polymorphisms 
and stroke events, however, the results are still conflicting.56 Not 
all polymorphisms in CBS have an effect on enzyme activity, 
however a T833C polymorphism in CBS, caused mild HHcy in 
different ethnic groups.64-66 Current treatment options for CBS 
are very limited and often inefficient, partially due to low patient 
compliance with a very strict dietary regimen.67 However recent 
studies shows the efficacy of some novel therapies including 
enzyme replacement and gene therapy approaches.68

Methylenetetrahydrofolate reductase (MTHFR)

Methylenetetrahydrofolate reductase (MTHFR) deficiency 
(OMIM 236250), an autosomal-recessive inheritance disease, is 
caused by a mutation in the MTHFR gene which encode 
MTHFR, a key enzyme of folate metabolism in the process of 
one-carbon metabolism.69 Polymorphisms of MTHFR would 
cause impaired methylation as well as a deficiency of folate, and 
a wide range of diseases including cardiovascular, tumors, neuro-
logic, and psychiatric disorders.70,71 One of the most studied 
polymorphisms in MTHFR is C677T.72-74 This polymorphism 
is responsible for an increase of Hcy concentration and folate 
deficiency compared to a normal genotype individual.75 It is esti-
mated that 10% of the global population is homozygous (TT 
genotype), which may vary in different populations reaching 
25%.42 The treatment in MTHFR is symptomatic including the 
treatment of associated neurological symptoms.76 Vitamin sup-
plementation should be considered in these patients including 
vitamin B12, folic acid, vitamin B6, betaine, and methionine.77

Methionine synthase

Methionine synthase promotes the methyl group transfer from 
methylated folate to homocysteine to yield methionine, and 
Cbl act as a cofactor in this catalytic reaction. This enzyme is 
encoded by the MTR gene. Mutations in this gene are the 
underlying cause of methylcobalamin deficiency cblG-type.78,79 
In patients with a methionine synthase deficiency (CbIG), 
complementation studies on cultured fibroblasts indicated a 
cblG defect.80 This deficiency is rarely reported in literature, 
and the patients do not have specific neurological symptoms 
for example, blindness or leukoencephalopathy associated with 
normal vitamin B12 and folate, hyperhomocysteinemia with 
hypomethioninemia in the absence of methylmalonic acid.74

Acquired and inherited disorders of cobalamin

Cobalamin (Cbl-Vitamin B12) is an essential cofactor for MS 
in the folate cycle to ultimately produce the 5-Methyl THF 

which provides a methyl group to convert homocysteine to 
methionine.69,81 Inborn errors of cobalamin metabolism can 
affect its absorption (intrinsic factor deficiency, Imerslund-
Gräsbeck syndrome), transportation (transcobalamin 
deficiency), as well as genetic defects of the intracellular cobal-
amin metabolism such as CblC, CblD, CblE, CblF, and 
CblG.82-84 Megaloblastic anemia, pancytopenia and failure to 
thrive are the main manifestation of Cbl deficiency. However, 
if the diagnosis is delayed, it may be accompanied by irreversi-
ble neurological deficits.83 Cbl deficiency rarely requires instant 
therapy, however, treatment should be started timeously to pre-
vent severe neurologic symptoms (eg, seizures, gait distur-
bances, mental changes and extensive sensory defects) due to 
the risk of irreversibility.85

Methylation disorders

Inherited methylation disorders are a group of disorders affecting 
the transmethylation processes in the metabolic pathway between 
methionine and Homocysteine, including methionine adenosyl-
transferase I/III, glycine N-methyltransferase, Sadenosylhomo- 
cysteine hydrolase and adenosine kinase deficiencies.86 Although 
isolated hypermethioninemia is the biochemical hallmark of this 
group of disorders, mild to moderate HHcy can be present in all 
patients.87 Three of these directly affect the reactions in the 
methionine pathway. The first is the conversion of methionine to 
AdoMet, catalyzed by methionine adenosyltransferase. The sec-
ond enzyme is glycine N-methyltransferase (GNMT), which 
transfers a methyl group to glycine producing sarcosine. The third 
enzyme, S-adenosylhomocysteine hydrolase (SAHH), is a homo-
tetrameric enzyme, which converts S adenosylhomocysteine to 
homocysteine and adenosine.88-90 In methylation disorders, a low 
methionine diet can be beneficial in patients with MAT I/III defi-
ciency, and to a lesser extend in SAHH and AKD. 
S-adenosylmethionine supplementation may specifically be useful 
in patients with MAT I/III deficiency.86

Conditions Associated With Hyperhomocysteine
Hcy function in folate metabolism and choline catabolism is 
fundamental for the synthesis of different sulfur-containing 
amino acids and methylated compounds which are important 
for may cellular pathways.42,91 Numerous studies demonstrated 
that the disruption of the Hcy metabolism which lead to HHcy 
by common MTHFR gene polymorphism, increases the risk 
for several complex disorders and it plays an important role in 
the pathogenicity of such disorders, including the cardiovascu-
lar system for example, congestive heart disease and arthroscle-
rosis.92-94 In the central nervous system, the disorders include 
cognitive impairment, Parkinson’s disease, Alzheimer’s disease 
(AD), multiple sclerosis and epilepsy.95 In addition, an elevated 
Hcy was linked to osteoporosis, chronic renal failure, hypothy-
roidism, insulin resistant diabetes, polycystic ovarian syndrome, 
and gastrointestinal disorders.96-100 Although the molecular 
mechanism in this role has not been fully defined, age related 
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disorders such as acoustic dysfunction, and age related macular 
degeneration has been reported.101-104

Stroke and cardiovascular diseases

Literature support the theory of a correlation between HHcy 
and the risk for peripheral vascular diseases, including stroke, 
venous thromboembolism and cardiovascular disease, for 
example congestive cardiomyopathy, myocardial infarction and 
coronary artery disease.105 A potential mechanism is the 
thrombotic activity of Hcy and its direct effect of endothelial 
dysfunction, where the Hcy acts as an inhibitor of endothelial 
nitric oxide synthase (eNOS), which will cause reduced bioa-
vailability of NO, through the inhibitory effect of asymmetric 
dimethylarginine (ADMA).106 Findings from a clinical study 
investigating patients with heart failure, support through pre-
clinical evidence that the myocardium is especially vulnerable 
to damage by HHcy, which is associated with the production of 
reactive oxygen species and cause the progression of cardiovas-
cular disease and left ventricle remodeling.107,108

Cognitive impairment, Alzheimer’s disease, 
Parkinson’s disease and epilepsy

Several case control studies confirmed a positive correlation 
between HHcy as a neurotoxic condition and both vascular 
dementia and AD. However, it remains unclear whether an 
elevated blood homocysteine level is a direct risk factor for AD 
or possibly, poor vitamin nutrition in the elderly.101 The mech-
anism through which high levels of Hcy cause AD is still being 
investigated, however, in an experimental study, HHcy resulted 
in increased gene expression of proinflammatory markers such 
as IL1b and TNFa in microglia and an increased expression of 
kinases in neuronal cells.109 Studies have also shown an increase 
in neurodegeneration due to homocysteine-related oxidative 
stress, causing an increase in the production of superoxide and 
other reactive oxygen species, and apoptosis.110 Another pro-
posed mechanism for Hcy neurodegeneration involves its role 
as an agonist for AMPA (both metabotropic and ionotropic) 
and NMDA receptors. All those changes in vascular smooth 
muscle cells, provide further neurotoxic peculiarity to HHcy as 
a risk factor for neurodegenerative diseases.111 Recently, an 
experimental model, linked the HHcy to increased oxidative 
stress, upregulated expression of proteins that promote blood 
coagulation, exacerbated blood-brain barrier dysfunction and 
promoted the infiltration of inflammatory cells into the cortex 
in traumatic brain injury (TBI).112

Gastrointestinal disorders

There is growing evidence that HHcy is associated with inflam-
matory bowel disease (IBD) and many autoimmune dis-
eases.113,114 In a meta-analysis of 28 studies, the Hcy levels were 
significantly higher in IBD patients, compared to the controls.115 

The pathophysiological mechanisms leading to vascular damage 
in hyperhomocysteinemia are multifactorial, and still poorly 
understood. Studies have also shown that the colonic mucosa of 
patients with IBD has a higher level of Homocysteine and it has 
been hypothesized that the lamina propria mononuclear cells 
(LPMC) play an important role in homocysteine production.116

Chronic renal diseases

Hcy has been documented in patients with chronic renal fail-
ure (CRF), on dialysis or after a kidney transplant, at higher 
concentrations than in individuals without kidney disease.117 A 
study was conducted with 89 renal failure patients on dialysis, 
to determine the frequency of the MTHFR gene mutation or 
polymorphism and hyperhomocysteinemia. The study con-
firmed the high prevalence of hyperhomocysteinemia in 
patients on dialysis, diagnosed in 76 patients (85.39%), as well 
as the high incidence of the C677T and A1298C mutation, in 
42 (47.19%) and 29 (32.58%) patients, respectively.118

A Clinical Approach for Hyperhomocysteinemia
It must be noted that HHCY, the biochemical hallmark of a 
large group of diseases that characterized by variable presenta-
tion affecting many organs, however, the predominant associated 
features are hematological and unexplained neurological signs 
and symptoms.22 Predominantly, HHcy is associated with vita-
min B12 deficiency, where the measurements of metabolites, 
such as methylmalonic acid (MMA) and Hcy, are more sensitive 
in the diagnosis than the measurement of serum B12 levels 
alone, with 98.4% with elevated serum MMA levels, and 95.9% 
with elevated serum homocysteine levels in B12 deficiency 
cases.119-121 The differing treatments for each genetic cause of 
HHcy necessitate identifying a specific underlying causes, in 
order to provide paradigmatic treatment. In suspected cases, a 
careful clinical evaluation that using a variety of metabolites 
including, total Hcy, PAA, Vitamin B6, Vitamin B12 levels, and 
serum and urine levels of MMA rather than just Hcy will help 
elucidate the cause of HHcy, should facilitate their exclusion 
(Figure 2). The level of elevation and Hcy and the status of asso-
ciated metabolites will help in narrowing the diagnosis. 
Combined sever HHcy with high methionine in PAA frequently 
seen in CBS deficiency (classical homocystinuria), while in 
methylation disorders (MAT I/III, GNMT, ADK, and SAHH), 
HHcy is moderately elevated. In case if HHcy associated with 
low methionine, MTHFR and MS should be considered. The 
elevation of MMA is also important if associated with HHcy 
because it is indicate inherited cobalamin disorders or vitamin 
B12. After accurate interpretation of these metabolites the diag-
nosis can be confirmed by investigations at the levels of metabo-
lites, enzymatic studies and/or molecular genetic analysis.86,122

In several countries, C3-propionylcarnitine and methionine 
is used as markers in newborn screening programs in asympto-
matic newborns, where C3-propionylcarnitine is used as a 
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marker to detect patients with vitamin B12 deficiency, intracel-
lular Cbl disorders, while elevated methionine used for CBS 
deficiency and methylation defects, such as MAT I/III and 
GNMT.90 After making a diagnosis and initiating a treatment 
plan, follow-up is important to determine the patient’s response 
to therapy. In mild vitamin B12 deficiency, depending on the 
underlying cause, frequent measurements of serum vitamin 
B12, Hcy, and MAA levels is recommended for monitoring of 
therapy.123-126

Conclusion
Hcy is now considered as a risk marker for cardiovascular and 
cerebrovascular disease in addition to other modified and non-
modified individual factors. Simultaneous measurement of vita-
min B12, Hcy, MMA, and PAA is accepted as a sensitive method 
of screening for several conditions associated with HHcy. 
HHcy-induced inflammation could play a role in blood brain 
barrier (BBB) dysfunction and the pathogenesis. Thus, the elim-
ination of excess homocysteine could be a potential therapeutic 
intervention therefor may be value in preventative supplementa-
tion, especially folic acid, vitamin B12 and betaine, if the foods 
indicated are not being consumed in sufficient quantities.
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