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Abstract
Anemia of inflammation (AI) is clinically prevalent and greatly threatens public health. Tradi-

tional remedies have raised controversy during clinical practice, calling for alternative thera-

pies. We have recently found that hydrogen sulfide (H2S) inhibits inflammatory hepcidin,

the critical mediator of AI. However, due to the chemical property of H2S, there remains an

urgent need for a stable H2S donor in AI treatment. Here we reported that S-propargyl-cys-

teine (SPRC), a novel water-soluble H2S donor, suppressed hepatic hepcidin and corrected

hypoferremia induced by lipopolysaccharide. The effects of SPRC were reversed by inhibi-

tion of cystathionine γ-lyase, one of the major endogenous H2S synthases. Moreover,

SPRC reduced serum hepcidin, improved transferrin saturation, and maintained erythro-

cyte membrane integrity in a chronic mouse AI model. Consistently, splenomegaly was

ameliorated and splenic iron accumulation relieved. Mechanism study indicated that serum

IL-6 content and hepatic Il-6 mRNA were decreased by SPRC, in parallel with reduced

hepatic JAK2/STAT3 activation. On the whole, our data reveal the inhibition of inflammatory

hepcidin by SPRC, and suggest SPRC as a potential remedy against AI.

Introduction

Anemia of inflammation (AI) is the secondmost prevalent anemia after anemia of iron defi-
ciency [1]. Since AI is often accompanied by chronic diseases, such as cancer, chronic infec-
tions, and auto-immune syndrome, it is also named as anemia of chronic diseases. Despite the
fact that AI is relatively mild (hemoglobin levels between 90–120 g/L), mounting evidences
have revealed its relation to poor prognosis and increasedmortality [2, 3]. In addition,
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concerns have arisen with respect to the effectiveness and safety of conventional therapies [4,
5], spurring the search for alternative remedies for AI.

It is currently well established that AI is a chronic inflammatory disease in nature. Hepcidin,
a hepatic iron-regulatory hormone, acts as the prominent modulator of AI [6]. Incremental
hepcidin production is observed in AI patients [7], while inhibition of hepcidin protects mice
from AI [8]. Previous studies have demonstrated that inflammatory hepcidin is induced by IL-
6-mediated hepatic JAK2/STAT3 activation [9]. Phosphorylated STAT3 dimer directly binds
to hepcidin promoter and activates its transcription [10]. Increased hepcidin levels suppress
dietary iron absorption and promote iron retention in spleen and liver, thus lower circulating
iron content and inhibit erythropoiesis. Therefore, inhibiting inflammatory hepcidin by block-
ing IL-6/JAK2/STAT3 pathway is believed as a novel approach to treating AI.

Hydrogen sulfide (H2S) is the third gasotransmitter and tightly involved in various patho-
physiological conditions [11, 12]. H2S is endogenously produced by at least 3 enzymes, includ-
ing cystathionine γ-lyase (CSE), and exerts regulatory effects in inflammation [13]. In our
recent work, we reported for the first time that sodium hydrosulfide (NaHS), an exogenous
H2S donor, inhibited inflammatory hepcidin and relieved hypoferremia induced by acute
inflammation [14]. However, NaHS releases H2S in a robust and transient manner [15], thus is
more a pharmacological reagent than a potential remedy. This prompted us to investigate
other sustained-releasingH2S donors.

S-propargyl-cysteine (SPRC) is an analog of S-allyl-cysteine (SAC), an H2S donor originally
derived from garlic extract [16]. Similar to SAC, SPRC serves as a substrate of CSE and
increases endogenous H2S production. Compared with NaHS, SPRC is more chemically stable
and releases H2S in a slower and more sustainedmanner, with a half-life of about 3 h in rats
[17], and about 16 h in Beagle dogs [18]. As an H2S donor, SPRC elicits extensive regulation on
pathological conditions. Many studies have been published reporting the protective effects of
SPRC in ischemia/hypoxia injury [19], angiogenesis [20], cognitive impairment [21], and acute
pancreatitis [22]. But so far no research has been done regarding its effects on inflammatory
hepcidin and iron balance. Moreover, there remains a gap of knowledge concerning the effects
of H2S donors on chronic AI.

In the present study, we aimed to evaluate the effects of SPRC on inflammatory hepcidin,
and assessed its therapeutic potential against AI. We discovered that SPRC, by inhibiting IL-6/
JAK2/STAT3 pathway, could reduce inflammatory hepcidin activation in vivo both in acute
and chronic AI models. Our results indicate SPRC as a potential drug, and throw light on novel
treatment strategy for AI.

Materials and Methods

Compounds and reagents

SPRC (Fig 1A) was synthesized by the reaction of L-cysteine and propargyl bromide, followed
by recrystallization to reach 99% purity as describedpreviously [19]. NaHS, lipopolysaccharide
(LPS), propargylglycine (PAG), turpentine, and 1, 10-phenanthroline monohydrate were all
purchased from Sigma-Aldrich, St. Louis, MO, USA.

Animals

All animal experimental protocols complied with the Animal Management Rules of the Minis-
try of Health of the People’s Republic of China, and were approved by the Animal Care Com-
mittee of Fudan University (No. 13111243). Mice were sacrificed after anesthesia with
pentobarbital sodium. Every effort was made to ameliorate animal sufferings during the
experiments.
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Eight-week-oldmale C57BL/6mice (about 20 g/each) were purchased from Sippr-bk Exper-
imental Animal Center, Shanghai, China. Mice were housed under specific pathogen-free
(SPF) rooms at 25°C and maintained under a 12-h/12-h light/dark cycle with ad libitum access
to food and water.

Acute LPS model and chronic turpentine model

To evaluate the effects of SPRC on hepatic hepcidin and hypoferremia during acute inflamma-
tion, C57BL/6 mice were i.p. injected with 10 mg/kg SPRC daily for 1 week.Meanwhile, PAG
(15 mg/kg, i.p.) was applied with SPRC to inhibit CSE-mediated H2S production, while NaHS
(6 mg/kg, i.p.) served as a positive control for 3 days. The doses for PAG and SPRC were chosen
by reference to previous reports [22, 23]. One hour after the last injection,mice were chal-
lenged with 0.5 mg/kg LPS (i.p.) and sacrificed 6 h later after anesthesia with pentobarbital
sodium.Normal saline was used as vehicle control.

For turpentinemodel, C57BL/6 mice were subcutaneously injectedwith turpentine (100 μl/
20 g weight) once a week for 4 weeks to induce chronic AI. SPRC (i.p., 10/20 mg/kg) was
administrated twice a week, starting from the second injection of turpentine.Mice were sacri-
ficed on the fifth week after anesthesia with pentobarbital sodium. PAG significantly increased
mortality in this model, thus was not applied here.

RNA isolation and real-time qRT-PCR

Total RNA frommouse livers was extracted using RNAiso Plus (TAKARA Bio, China) accord-
ing to the manufacturer’s instructions. Reverse transcription of total RNA was carried out with
PrimeScript™RT Master Mix (Perfect Real Time, TAKARA Bio, China). Real-time qPCR was
performedwith Bio-Rad CFX ConnectTMReal-Time PCR System and primers as follows:
murine β-actin forward 5’-TGTTACCAACTGGGACGACA-3’, reverse 5’-GGTGTTGAAGG
TCTCAAA-3’; murine Hamp forward 5’-AGAGCTGCAGCCTTTGCAC-3’, reverse 5’-GAA
GATGCAGATGGGGAAGT-3’; murine Il-6 forward 5’-TGTGCAATGGCAATTCTGAT-3’,
reverse 5’-CCAGAGGAAATTTTCAATAGGC-3’; murine suppressor of cytokine signaling 3
(Socs3) forward 5’-TGCGCCTCAAGACCTTCAG-3’, reverse 5’-GCTCCAGTAGAATCCGC
TCTC-3’; murine serum amyloid A 2 (Saa2) forward 5’-TGGCTGGAAAGATGGAGACA
A-3’, reverse 5’-AAAGCTCTCTCTTGCATCACTG-3’; Specificity of all PCR products was
confirmed by melting curve analysis.

Immunoblot analysis

For SDS-PAGE, mouse liver tissues were homogenized in RIPA lysis buffer (50 mMTris-HCl,
150 mMNaCl, 5 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate and 0.1% SDS, pH
7.4) containing protease and phosphatase inhibitor cocktails (Sigma-Aldrich). Fifty micro-
grams of protein were subjected to SDS-PAGE gels for each sample, and transferred to PVDF
membranes (Millipore, Bedford,MA, USA) followed by blocking with 5% skimmilk and incu-
bation with primary antibodies overnight at 4°C. Antibodies to total JAK2, total and phospho-

Fig 1. SPRC inhibits inflammatory hepcidin and hypoferremia induced by LPS. (A) Chemical structure of

SPRC. (B-C) SPRC and NaHS showed no effects on hepatic and serum hepcidin in the absence of LPS (n = 5).

(D) SPRC and NaHS increased serum H2S content, as opposed to PAG (n = 5). (E-F) Hepatic hepcidin mRNA

and serum hepcidin levels were suppressed by SPRC and NaHS, while PAG abolished the effects of SPRC

(n = 5). (G) Consistent results were obtained with serum iron levels (n = 5). Data are presented as the

mean ± SEM. ### p < 0.001 compared with the control group; * p < 0.01, ** p < 0.01 compared with the LPS

group; @ p < 0.05, @@ p < 0.01, @@@ p < 0.001.

doi:10.1371/journal.pone.0163289.g001
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STAT3 (Tyr705) were obtained from Cell Signaling Technology Beverly, MA USA. Antibody
to phospho-JAK2 (Tyr221) was acquired from Bioworld Technology, Louis Park, MN, USA.
Antibody to GAPDH was obtained from Proteintech Group, Chicago, IL, USA. Immunoreac-
tive proteins were visualized and quantified by densitometry using a Bio-Rad Image Lab sys-
tem. GAPDH served as the loading control.

Serum iron, hepcidin and IL-6 analysis

Mouse blood samples were collected in non-heparinized tubes, allowed to stand for 2 h at
room temperature, and then centrifuged at 3000 rpm for 10 min to separate serum. Serum iron
content and total iron-binding capacity (TIBC) were determined by commercial kits according
to protocols describedby Jiancheng Bioengineering Institute, China. Transferrin saturation
was calculated as serum iron/TIBC× 100%.

Murine serum hepcidin and IL-6 were quantified using ELISA kits from USCN (China) and
Boatman (China), respectively.

Quantification of H2S concentration

H2S determination was conducted by the methylene blue method as describedpreviously [23].

Tissue non-heme iron analysis

Non-heme iron of mouse spleen was determined using 1, 10-Phenanthroline monohydrate as
describedpreviously [14]. In brief, dried spleen tissues were digested in acid solutions (3M
hydrochloric acid and 10% trichloroacetic acid). After centrifuge, the supernatant was mixed
with 1, 10-Phenanthroline, and the absorbance at 510 nm was measured using a
spectrophotometer.

Wright-Giemsa staining and Perl’s Prussian blue staining

Peripheral blood smears were performedwith 3 μl fresh EDTA-treated whole blood, and
stained withWright-Giemsa solution (Yeasen Biotech, China). The slides were then visualized
with Zeiss Axio Scope A1 system.

Mouse spleen tissues were fixed in 4% formalin PBS solution, embedded in paraffin wax,
sectioned, and stained with Perl’s Prussian blue solution for 30 min at room temperature. A
neutral red counterstain was then applied to provide a contrasting background. Images were
captured using Zeiss Axio Scope A1 system.

Statistical analysis

Data are expressed as the mean ± SEM. Statistical analysis was performedwith one-way
ANOVA followed by Turkey’s test. A two-tailed p< 0.05 was considered statistically
significant.

Results

SPRC reduces inflammatory hepcidin expression by suppressing IL-6/

JAK2/STAT3 pathway in vivo

In the absence of LPS challenge, treatment of SPRC and NaHS alone elicited no significant
effects on hepatic hepcidin and serum iron (Fig 1B and 1C). As demonstrated in Fig 1D, pre-
treatment of SPRC and NaHS significantly increased serumH2S levels, as opposed to SPRC
+ PAG. By performing qRT-PCR and ELISA, we analyzed hepatic hepcidinmRNA expression
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and serumhepcidin levels, and found that both SPRC and NaHS inhibited hepcidin activation,
which was exacerbated by PAG (Fig 1E and 1F). Consistent results were observedwith serum
iron concentration (Fig 1G).

Considering the dominant role IL-6/STAT3 plays in inflammatory hepcidin induction, we
then assessed whether SPRC modulated IL-6 production and JAK2/STAT3 pathway. As
expected, SPRC and NaHS markedly reduced serum IL-6 levels by more than 50%, which was
abrogated by PAG (Fig 2A). To better evaluate the regulation of local inflammation in the liver,
we examined hepatic Il-6 and Tnfa mRNA expression and got similar results (Fig 2B and 2C).
The minor differences between serum IL-6 content and hepatic Il-6 levels could be attributed
to different systemic and local inflammatory status. Moreover, SPRC successfully suppressed
hepatic JAK2/STAT3 phosphorylation (Fig 2D–2F). Consistent data were obtained with the
expression of suppressor of cytokine signaling 3 (Socs3) and serum amyloid A 2 (Saa2), two
target genes of STAT3 (Fig 2G and 2H). These data indicate that SPRC, as an endogenousH2S
donor, in part ameliorates inflammatory hepcidin and hypoferremia by inhibiting IL-6/JAK2/
STAT3 pathway.

SPRC improves turpentine-induced AI in vivo

We next investigated whether SPRC could treat chronic AI. Turpentine has been widely used
to induce inflammatorymodels for decades, including normocytic, normochromic anemia
which shares the same nature clinically [24–26]. The work flow is demonstrated in Fig 3A.
As was observed in LPS model, SPRC decreased serum hepcidin levels in the turpentine
model (Fig 3B). Although the hepatic hepcidinmRNA levels were relatively low, which
might be attributed to the late detection time from the last turpentine injection as reported
previously [24], there remained a decreasing trend in the SPRC groups (Fig 3C). No signifi-
cant change was observed in total iron binding capacity (Fig 3D). As to serum iron and trans-
ferrin (Tf) saturation, both doses of SRPC exerted similar treatment effects while SPRC 20
was more pronounced (Fig 3E and 3F). To further assess the effects of SPRC on hemogram,
complete blood count was conducted. As illustrated in Table 1, SPRC increased erythrocyte
number, hemoglobin content, in addition to hematocrit levels. By performing blood smears
and Wright-Giemsa staining, we found that SPRC improved erythrocytemembrane regular-
ity (Fig 3G). These results suggest that SPRC successfully relieves turpentine-inducedAI
symptoms.

SPRC ameliorates turpentine-induced AI by blocking IL-6/JAK2/STAT3

pathway

The results above prompted us to ask whether IL-6/STAT3 pathway was inhibited by SPRC in
AI model. As presented in Fig 4A and 4B, both serum IL-6 content and hepatic Il-6 mRNA lev-
els were induced, but in a much smaller extent than that in the LPS model. Although serum IL-
6 was not significantly changed by SPRC, hepatic Il-6 mRNA expression was suppressed, as
was observedpreviously. Accordingly, hepatic JAK2/STAT3 activation was suppressed by
SPRC treatment (Fig 4C–4E). Taken together, we conclude that SPRC improves turpentine-
induced AI by inhibiting IL-6/JAK2/STAT3 pathway.

SPRC ameliorates splenomegaly and reduces splenic iron

accumulation during AI

The spleen plays an important role in immune response, and chronic inflammation is often
accompanied by splenomegaly. On the other hand, besides reduced circulating iron level,
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dysregulation of splenic iron is another hallmark of AI [1]. Thus we turned attention to the
effects of SPRC on spleen during chronic AI. As manifested in Fig 5A and 5B, SPRC partially
relieved splenomegaly induced by turpentine.Moreover, tissue iron determination indicated
that splenic iron accumulation was in part reversed by SPRC (Fig 5C). Similar results were
obtained by Perl’s Prussian blue staining with mouse spleen sections (Fig 5D).

Fig 2. SPRC reduces inflammatory hepcidin activation by inhibiting IL-6/JAK2/STAT3 pathway. (A) SPRC and NaHS markedly decreased

serum IL-6 levels induced by LPS (n = 5). (B-D) Hepatic Il-6, Tnfa mRNA levels and JAK2/STAT3 phosphorylation were induced by LPS, and

suppressed by SPRC and NaHS. Moreover, PAG diminished the effects of SPRC (n = 5). (E-F) Densitometry analysis of Fig 2D. (G-H) Hepatic

mRNA levels of Socs3 and Saa2, two target genes of STAT3 (n = 5). Representative immunoblots are presented. Whole uncropped images of Fig

2D are shown in S1 Fig. Data are presented as the mean ± SEM. ### p < 0.001 compared with the control group; * p < 0.05, ** p < 0.01, ***
p < 0.001, compared with the LPS group; @ p < 0.05, @@ p < 0.01, @@@ p < 0.001.

doi:10.1371/journal.pone.0163289.g002
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Discussion

In the present study, we demonstrated that SPRC, a novel water-soluble H2S donor, exerted
inhibition on inflammatory hepcidin.Moreover, SPRC not only relieved hypoferremia induced
by acute inflammatory insult, but also improved chronic AI symptoms in vivo. Mechanism
study indicated that the effects of SPRC were related to decreased IL-6 production, reduced
inflammation, and suppressed hepatic JAK2/STAT3 activation. Our results provide new
insights into the anti-inflammatory property of H2S donors, and suggest new approach for
drug development against AI.

AI is one of the most common complications in patients with chronic inflammation. It is
estimated that the prevalence of AI is 18–95% in infections, 30–77% in cancer, and 8–71% in
autoimmune diseases [1]. However, AI is often unrecognized thus needs appropriate interven-
tion and specific care [27, 28]. Mounting evidences have indicated the relation between anemia
and increased cardiovascular risk, higher mortality and poor prognosis [29, 30]. Moreover,
normalization of anemia is associated with improved quality of life [31]. Nevertheless, conven-
tional therapies for AI have raised clinical concerns, such as infection risk induced by iron sup-
plement and increasedmortality in cancer patients on erythropoietic stimulating agents [32,
33], illustrating an urgent need for alternative remedy of AI. In our study, we identified SPRC,
a sustained-releasingH2S donor, suppressed inflammatory hepcidin and acted as a potential

Fig 3. SPRC improves turpentine-induced AI in vivo. (A) A diagram about the induction of AI by

turpentine and the application of SPRC. (B-C) SPRC treatment ameliorated serum hepcidin levels in

turpentine-induced AI model, and a similar trend was observed in hepatic hepcidin mRNA expression (n = 7).

(D-F) Total iron binding capacity (TIBC) was unchanged, while serum iron levels and transferrin (Tf)

saturation were increased by SPRC (n = 7). (G) Representative images of blood smears with Wright-Giemsa

staining showed that red blood cell morphology was improved by SPRC. Solid arrows indicate damaged

erythrocytes. Data are presented as the mean ± SEM. ## p < 0.01, ### p < 0.001 compared with the control

group; * p < 0.05, ** p < 0.01, *** p < 0.001, compared with the model group.

doi:10.1371/journal.pone.0163289.g003

Table 1. Hematological and mouse indices.

Turpentine

Parameter con model SPRC 10 SPRC 20

RBC (×1012/L) 9.86 ± 0.21 7.94 ± 0.55### 9.02 ± 0.56* 9.10 ± 0.67**

HGB (g/L) 138 ± 3 110 ± 9### 122 ± 9* 126 ± 11*

HCT (%) 44.3 ± 0.5 36.1 ± 2.8### 40.3 ± 3.0* 41.2 ± 3.6*

MCV (fL) 45.5 ± 0.6 46.5 ± 1.2 46.2 ± 0.5 47.2 ± 1.3

MCH (pg) 14.1 ± 0.1 13.7 ± 0.5 13.8 ± 0.3 14.0 ± 0.2

PLT (×109/L) 1263 ± 118 1557 ± 378 1857 ± 217 1442 ± 221

RDW-SD (fL) 25.9 ± 0.4 31.1 ± 3.7 29.7 ± 1.4 31.9 ± 5.5

Neutrophil (×109/L) 1.18 ± 0.59 2.28 ± 1.39 1.66 ± 1.14 1.01 ± 0.17*

Lymphocyte (×109/L) 5.79 ± 2.27 4.45 ± 1.21 3.94 ± 1.72 3.58 ± 1.78

Monocytes (×109/L) 1.22 ± 0.36 2.18 ± 1.61# 2.14 ± 0.85 3.45 ± 3.64

Mouse (g) 26.0 ± 1.0 26.0 ± 1.6 25.3 ± 0.6 26.2 ± 1.8

RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; PLT, platelet; RDW, red

blood cell distribution width. Data are presented as the mean ± SD.
# p < 0.05
### p < 0.001 compared with the control group

* p < 0.05

** p < 0.01, compared with the model group.

doi:10.1371/journal.pone.0163289.t001
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therapeutic compound for AI. SPRC successfully relieved iron disturbance and reduced hemo-
globin levels in vivo, the two hallmarks of AI. More work is needed to assess the druggability of
SPRC.

Fig 4. SPRC improved AI by reducing hepatic IL-6/JAK2/STAT3 activation. (A) Serum IL-6 content was not

significantly changed by SPRC (n = 7). (B) Hepatic Il-6 mRNA levels were suppressed by SPRC, though only

2-fold change was observed in the model group (n = 7). (C) SPRC successfully ameliorated hepatic JAK2/STAT3

phosphorylation in the turpentine model. (D-E) Densitometry analysis of Fig 5C. Representative immunoblots are

presented. Whole uncropped images of Fig 4C are shown in S2 Fig. Data are presented as the mean ± SEM. #

p < 0.05, ### p < 0.001 compared with the control group; * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the

model group.

doi:10.1371/journal.pone.0163289.g004
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Fig 5. SPRC reduces splenomegaly and corrects splenic iron accumulation in chronic AI model. (A)

Representative images indicated relieved splenomegaly by SPRC. (B) Consistent results were observed with

mouse spleen weight (n = 7). (C-D) Splenic iron accumulation was relieved by SPRC, as assessed by non-heme

iron analysis and Perl’s Prussian blue staining (n = 7). Representative images are presented. Data are presented
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Hepcidin, initially named after its antimicrobial property, was first discovered in human
urine [34]. Following studies reveal its critical role in iron balance and its regulation by IL-6/
STAT3 pathway [9, 35]. During inflammation, phospho-STAT3 dimers directly bind to the
promoter region of hepcidin, initiating its transcription [35]. By promoting the degradation of
ferroportin, the prominent cellular iron exporter, hepcidin cuts down dietary iron absorption,
induces iron retention within liver and spleen, and reduces circulating iron levels. It has been
well demonstrated that hepcidin plays the key role in the development of AI [6], making it an
ideal therapeutic target for iron-restrictive anemia. In principle, hepcidin antagonists either
suppress hepcidin expression induced by upstream signaling, or inhibit iron-regulating effects
triggered by hepcidin. For the former strategy, it is particularly effective to decrease cytokine
production, typically IL-6, and block related signaling pathway. Indeed, several studies have
focused on bone morphogenetic proteins or IL-6 pathways and identified some potential hep-
cidin antagonists [36–38]. In accordance, our results demonstrated SPRC as a potent inhibitor
of IL-6 production and hepcidin activation, making it a strong candidate for hepcidin
antagonists.

H2S used to be regarded as a noxious gas, until recent recognition as the third gasotransmit-
ter. Cystathionine γ-lyase (CSE) and cystathionine-β-synthase (CBS) are two major endoge-
nous H2S synthases mainly expressed in heart and brain. Incremental studies have reported the
involvement of H2S in cardiovascular system, central nervous system, and inflammation [11,
39, 40]. Several researches from independent groups have indicated the protective property of
H2S by preservingmitochondrial function during myocardial infarction [41, 42]. Gong et al.
suggests that H2S attenuates lipopolysaccharide-inducedcognitive impairment in rats [43]. In
accordance with our previous observation that NaHS suppresses inflammation and reduces IL-
6 secretion,Whiteman et al. claims reduced IL-6 production by H2S application [15], which is
probably attributed to inhibition of NF-κB [44]. On the other hand, very few studies are avail-
able regarding H2S and iron metabolism. In our recent work, we demonstrates that NaHS, an
exogenous H2S donor, inhibits hepcidin and relieves hypoferremia induced by LPS [14]. Con-
sistently, SPRC, a CSE-dependent endogenous H2S donor, showed similar effects in vivo, sup-
porting the anti-inflammatory effects of H2S.

As an H2S donor, SPRC shows multiple regulation in different diseasemodels. A number of
studies have revealed its therapeutic potential in cardiovascular system [20, 45] and inflamma-
tion [22, 46]. Consistent with previous observations, here we demonstrated corrected iron dis-
turbance and relieved AI symptoms by SPRC. Our work broads the potential application of
SPRC, and provides new evidence of the gasotransmitter role of H2S.

Conclusions

SPRC, a novel H2S donor, relieves hypoferremia and anemia both in acute and chronic models
of inflammation. The effects of SPRC were attributed to inhibited hepatic JAK2/STAT3 activa-
tion and reduced hepcidin production. Our results provide new insights into the anti-inflam-
matory property of H2S, and suggest SPRC as a potential remedy against AI.

Supporting Information

S1 Fig. Whole uncropped images of the original western blots for Fig 2D.Whole uncropped
images of the original western blots for p-JAK2 (A), JAK2 (B, ten lanes from the right are

as the mean ± SEM. ## p < 0.01, ### p < 0.001 compared with the control group; * p < 0.05 compared with the

model group.

doi:10.1371/journal.pone.0163289.g005
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used), p-STAT3 (C), STAT3 (D), and GAPDH (E) in Fig 2D.
(TIF)

S2 Fig. Whole uncropped images of the original western blots for Fig 4C.Whole uncropped
images of the original western blots for p-JAK2 (A), JAK2 (B, ten lanes from the right are
used), p-STAT3 (C), STAT3 (D), and GAPDH (E) in Fig 4C.
(TIF)
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