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Copper (Cu), an essential micronutrient, participates in several
physiological processes, including cell proliferation and develop‐
ment. Notably, the disturbance of Cu homeostasis promotes
tumor progression through the generation of oxidative stress.
Chronic or excessive accumulation of reactive oxygen species
(ROS) causes lipid peroxidation, protein denaturation, and
enzyme inactivation, which leads to a breakdown of intracellular
homeostasis and exacerbates tumor progression. The disruption
of the ROS scavenging mechanism also reduces resistance to
oxidative stress, leading to further deterioration in a disease
state, and maintenance of redox homeostasis is thought to inhibit
the onset and progression of various diseases. Superoxide
dismutase 3 (SOD3), a Cu-containing secretory antioxidative
enzyme, plays a key role in extracellular redox regulation, and the
significant reduction in SOD3 facilitates tumor progression.
Furthermore, the significant induction of SOD3 participates in
tumor metastasis. This review focuses on the role of Cu
homeostasis and antioxidative enzymes, including SOD3, in tumor
progression, to help clarify the role of redox regulation.
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R eactive oxygen species (ROS) have important physiological
functions such as bactericidal action in the immune system

and action as signaling molecules.(1–3) However, excessive ROS
accumulation due to the failure of ROS scavenging mechanisms
causes oxidative modification of DNA, lipids, and proteins, and
plays a significant role in the development and progression of
various diseases such as tumors and atherosclerosis.(4,5) To protect
the cells and tissues from the damaging effects of oxidative
stress, mammals have several antioxidative enzymes, including
superoxide dismutase (SOD), and catalase and antioxidative
compounds, including glutathione (GSH).(6,7) SOD catalyzes the
dismutation of superoxide into hydrogen peroxide and oxygen.
Mammalian cells contain three types of SOD isozymes, namely
SOD1, SOD2, and SOD3, which cooperatively protect tissues
from oxidative stress by differentiating their intracellular and
extracellular localization.(8) SOD1 and SOD3 have copper (Cu)
ions in their catalytic domains, but SOD2 has manganese ions.
Furthermore, significant Cu accumulation has been observed in
several tumor tissues, including breast, lung, colon, and neuro‐
blastoma tissues, which occurs through the dysregulation of Cu
transporters and their chaperone proteins.(9–11) Accordingly, Cu
dysregulation in tumor tissues may be involved in the dysfunc‐
tion of SOD enzymes and other Cu-containing enzymes, thus
exacerbating tumor progression. SOD1 expression is highly
expressed in most lung cancer cells and plays a key role in its
progression through the regulation of redox mediated signaling,
and its pharmacological inhibition induces non-small lung cancer
cell death.(12–14) On the other hand, compared to SOD1, there have
been few reports on the clinical significance and role of SOD3 in

tumor progression. This review focuses first on the role of SOD3
in tumor progression and then discusses Cu dysregulation in
tumor progression. Hopefully, this review will contribute to a
better understanding the relationship between Cu- and SOD3-
mediated extracellular redox regulation and tumor progression.

Role of SOD3 in Tumor Progression

SOD3 is the only extracellularly localized SOD isozyme and
is distributed by binding to heparan sulfate expressed on the
cell surface, using the C-terminal heparin-binding domain.(15,16)

Although SOD3 levels are relatively low compared with the
levels of SOD1 and SOD2, decreased SOD3 activity has been
observed in mouse models of diabetes mellitus.(17,18) In addition,
a decrease in infarct size after coronary ischemia has been
observed in animals overexpressing SOD3, whereas an increase
in infarct size has been reported in SOD3 knockout mice.(19,20) In
tumor tissues, endogenous administration of recombinant SOD3
was shown to decrease the malignant potential of cancer cells.(21)

Accordingly, SOD3 is considered to have antioxidative and anti‐
tumor properties. Moreover, it is important to strictly control
SOD3 expression in cancer cells because SOD3 overexpression
has two aspects: an overexpression of SOD3 acts in a cancer-
suppressive manner, but a moderate overexpression acts in a
cancer-promoting manner.(22) SOD3 expression was found to be
higher in metastatic MDA-MB-231 cells than in non-metastatic
MCF7 cells, suggesting that SOD3 is involved in breast cancer
cell progression.(23) Moderate and sustained overexpression of
SOD3 may promote tumor progression in advanced undiffer‐
entiated cancer cells. Furthermore, SOD3 activates small GTPase
signaling, which is involved in cell proliferation; thus, SOD3
is considered to have both antitumor and tumor-promoting
properties.(24) Overall, maintaining adequate SOD3 expression is
important in suppressing oxidative stress-mediated diseases and
tumors. However, the molecular mechanisms underlying SOD3
regulation in tumor tissues have not been fully elucidated.

Regulation of SOD3 Expression and Function

Epigenetic regulation of SOD3 expression. In contrast
to SOD1 and SOD2, which are ubiquitously expressed, SOD3
expression is cell- and tissue-specific, and several epigenetic
modifications were reported to play a critical role in the regula‐
tion of SOD3. Epigenetics usually refers to changes in gene
expression that are inherited through mitosis, without changes
in the DNA sequence, and are involved in tumor development
and progression.(25) DNA methylation, a major epigenetic factor,
occurs at the 5' position of cytosine within CpG, and hypermeth‐
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ylation within target gene promoters is involved in tissue- and
cell-specific gene reduction.(26) DNA methylation within the
SOD3 promoter region plays a critical role in its reduction in
human lung cancer A549 cells and human monocytic THP-1
cells, which is accompanied by the marked reduction in DNA
demethylase ten-eleven-translocation 1 (TET1).(27–30) Considering
that TET1 requires oxygen for the DNA demethylation process,
DNA demethylation is likely dysregulated in hypoxic tumor
tissues, and SOD3 expression may be reduced. However, some
DNA methylation inhibitors, such as 5-azacytidine, fail to induce
SOD3 expression in MCF7 cells, suggesting that there is another
mechanism governing SOD3 expression.

Histone modifications of the N-terminal tail, including acetyla‐
tion and methylation at lysine and arginine residues, are
also involved in gene regulation. Histone acetylase, p300, and
myocyte enhancer factor 2 (MEF2) participate in SOD3 expres‐
sion. In addition, histone deacetylase 1 (HDAC1) plays a key
role in SOD3 reduction in tumor-associated cells. Some epige‐
netic reagents, including the inhibitors of HDAC and DNA
methyltransferases, contribute to maintaining redox home‐
ostasis.(31) It was also demonstrated that natural product-derived
4-hydroperoxy-2-decenoic acid ethyl ester and exenatide induce
SOD3 expression through histone acetylation and DNA demethy‐
lation, respectively.(32) These compounds may control extra‐
cellular redox homeostasis, which ultimately inhibits tumor pro‐
gression.

Transcriptional regulation of SOD3 expression. NF-E2-
related factor 2 (Nrf2), a transcription factor, plays a critical role
in the regulation of redox homeostasis through the induction of
several antioxidative enzymes, including SOD2, heme oxygenase
1 (HO-1), and the cystine/glutamate antiporter SLC7A11.(33)

Notably, the Nrf2-mediated induction of antioxidative properties
is involved not only in the antioxidative defense against oxidative
stress-induced injury but also in antitumor therapy. SLC7A11
regulates intracellular redox homeostasis by facilitating GSH
synthesis and increasing the activity of glutathione peroxidase 4,
which is a selenoenzyme that reduces membrane phospholipid
hydroperoxides.(34) Recent studies revealed that Nrf2 activation
and increased SLC7A11 are closely associated with tumor pro‐
gression. Thus, reagents that inhibit SLC7A11 function may
induce ferroptosis, a form of controlled cell death induced by
ferrous ions and excessive lipid peroxidation. Some reports
suggested that SOD3 expression is also regulated by Nrf2, but
the molecular mechanisms underlying SOD3 expression remain
unclear.(35) In the process of elucidating the molecular mecha‐
nisms for SOD3 regulation, forkhead box O1 (FOXO1), a tran‐
scription factor that binds to the promoter regions of several
genes involved in glucose and lipid metabolism, was found to
regulate SOD3 expression in MDA-MB-231 cells.(23) FOXO1
was considered an antitumor transcription factor; however, recent
studies revealed that FOXO1 also functions as a pro-metastatic
transcription factor.(36,37) Another report suggested that FOXO1
functions as a tumor promoter and partially facilitates MDA-
MB-231 cell metastasis through the induction of SOD3. Further‐
more, Jumonji domain-containing protein-3 (JMJD3), a histone
demethylase that regulates trimethylation of histone H3 on lysine
27, plays an important role in SOD3 regulation in cooperation
with FOXO1. Considering that the combined action of FOXO1
and MEF2 is required for myocardin regulation, FOXO1/MEF2/
JMJD3 may function cooperatively to induce SOD3.(38) Further
studies are necessary to clarify the exact molecular mechanisms
governing SOD3 regulation in tumor cells.

Regulation of SOD3 secretion and function. N-
glycosylation on asparagine residues functions as a key posttran‐
scriptional modification that determines the secretion and activity
of glycosylated proteins.(39) Notably, SOD3 has a conserved and
putative N-glycosylation site (N-X-S/T). It was reported that
glycosylated SOD3 was secreted into extracellular spaces, but its

amino acid mutation, N89Q, suppresses its secretion. In addition,
non-glycosylated or mutated SOD3 mainly resides in the endo‐
plasmic reticulum, indicating that their secretion is not blocked
by abnormal intracellular trafficking to a particular cellular
compartment such as the Golgi apparatus.(40) Recent studies have
revealed that fucose addition on SOD3 mediated by α1,6-
fucosyltransferase (FUT8) plays an important role in its secretion
and antitumor property in non-small cell lung cancer A549 cells
(Fig. 1).(41) FUT8 is frequently upregulated in tumor cells and
plays a critical role in immune evasion through the regulation of
transforming growth factor-β, epidermal growth factor, and E-
cadherin, which are involved in tumor progression.(32–44) Accord‐
ingly, FUT8 may exhibit antitumor and pro-tumor properties.
However, as noted above, SOD3 expression is epigenetically
silenced in A549 cells; thus, some epigenetic inhibitors may
exhibit antitumor effects, in part, through the induction and func‐
tional secretion of SOD3.

It has been well recognized that a genetic mutation in the C-
terminal heparin-binding domain (R213G) reduces the heparin-
binding affinity and increases its serum level, leading to an
increased risk of cardiovascular diseases.(45,46) Furin-like protease
and unknown carboxypeptidase are involved in the cleavage of
SOD3, leading to the reduction in its heparin-binding affinity.(47)

Furin is the first identified proprotein convertase and is highly
expressed in tumor tissues. Since a wide range of proproteins are
involved in the various physiological and pathological processes
in tumor progression, furin has been proposed as a potential
therapeutic target for tumors. In addition, the terminal sialic acid
residues on SOD3 are closely related to its enzymatic cleavage
and secretion, suggesting that regulation of the cleavage and
secretion by N-glycan may be associated with tumor progres‐
sion.(48) However, the molecular mechanism and relevance of
SOD3 desorption and N-glycosylation have not been fully eluci‐
dated, as well as the relationship between SOD3 function and
cancer.

Cu in Tumor Progression

Cu, an essential micronutrient, plays a pivotal role in several
physiological processes.(49–51) The disturbance of Cu homeostasis
is involved in neurological and cardiac diseases, as well as tumor
progression. The bioavailability of Cu is strictly controlled by Cu
transporters, including Cu transporter 1 (CTR1), Cu chaperone
for SOD1 (CCS), antioxidant-1 (Atox-1), and Cu-transporting P-
type ATPase α and β (ATP7A and ATP7B).(52,53) These copper
transporters supply Cu ions to Cu-containing enzymes that are
involved in a variety of metabolic processes, including aerobic
respiration, superoxide dismutation, and extracellular matrix
synthesis.(54) Studies suggest that Cu levels generally increase in
tumor tissues, including breast, liver, lung, and oral tissues, thus
promoting tumor progression.(9–11)

CTR1 plays a key role in Cu (I) uptake, and excess Cu accu‐
mulation in tumor tissues is due to the significant induction of
CTR1. In addition, the six-transmembrane epithelial antigen of
the prostate (STEAP) family proteins (STEAP1-6) are highly
expressed in tumor tissues.(55) Hence, STEAP/CTR1-mediated Cu
uptake is considered to facilitate tumor progression. Cu taken up
through CTR1 is supplied to SOD1 and SOD3 through CCS or
Atox-1 and ATP7A, respectively. As excess Cu generates oxida‐
tive stress, cells need to deliver Cu to its chaperon proteins
without toxic reactions, which is facilitated by the abundance of
thiol compounds, mainly GSH.(56) The level of GSH depends on
the cell type and is relatively high in several tumor cells. Thus,
tumor cells use high concentrations of GSH for Cu-mediated
growth and resistance to oxidative stress. A recent study reported
that intracellular Cu induces the expression of SLC7A11, leading
to an increase in intracellular cysteine to produce GSH (Fig.
2).(57) In addition, Cu induces programmed cell death ligand 1
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Fig. 1. Involvement of N-glycosylation in SOD3 secretion. SOD3 receives Cu from ATP7A in the trans-Golgi network. N-glycosylation, especially
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Fig. 2. GSH facilitates Cu-mediated cell growth. Mitochondrial, NADPH oxidase, or metabolic enzyme-mediated ROS accumulation induces
SLC7A11 expression through the activation of Nrf2. SLC7A11 increases intracellular GSH by promoting cystine uptake. Excess accumulation of Cu is
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(PD-L1), a key protein in the immune checkpoint, in neuro‐
blastoma and glioblastoma, suggesting that abnormal Cu home‐
ostasis is involved in antitumor immune responses. Concerning
Cu-mediated immune responses, GSH may also play a pivotal
role in the intracellular trafficking of Cu; thus, redox homeostasis
may be a potential therapeutic target for tumor progression.
The expression of Atox-1, a Cu chaperone for ATP7A, is also

upregulated in tumors, and Atox-1 is considered to function as a
tumor promoter.(58) Recent studies have shown that genetic dele‐
tion of Atox-1 reduces the rate and direction of single-cell migra‐
tion.(59) In addition to being a Cu chaperone, Atox-1 functions as
a Cu-dependent transcription factor. Atox-1 has a conserved
lysine-rich domain (KKTGK) at its C-terminal region, which
functions in its nuclear localization, and its nuclear localization is
highly observed in metastatic tumor cells.(60) It has been reported
that Atox-1 regulates SOD3 expression in tumor-associated
macrophages, suggesting that Atox-1 may be involved in tumor
progression through the induction of SOD3.(61) Atox-1 also
upregulates some tumor-associated genes such as cyclin D1 and
MDM2.(62) In addition, a recent study revealed that tumor
necrosis factor-α (TNF-α)-mediated Atox-1 nuclear translocation
is accompanied by TNF receptor-associated factor 4 (TRAF4) in
a Cu-dependent manner.(63) TRAF4 promotes lung cancer aggres‐
siveness and high-grade ovarian cancer progression. Thus, inhibi‐
tion of the combined action of TRAF4 and Atox-1 could be a
novel therapeutic target.
The Cu-containing secretory enzymes, including SOD3 and

lysyl oxidases, acquire Cu from ATP7A, a Cu-exporting P-type
ATPase, in the trans-Golgi network.(64) This function of ATP7A
was determined by gene silencing, which caused a reduction in
SOD3 expression and activity. In addition, ATP7A influences the
cellular concentration of Cu by facilitating Cu egress, which
helps protect cells from Cu-mediated oxidative stress. A signifi‐
cant reduction in ATP7A increased the intracellular Cu levels and
ROS accumulation in neuroblastoma cells.(65) Recently, cuprop‐
tosis has been identified as a novel form of Cu-mediated pro‐
grammed cell death.(66) This occurs by the addition of a Cu
ionophore, elesclomol, which facilitates Cu (II) uptake in a
CTR1-independent manner and Cu accumulation in mitochon‐
dria.(67) Ferredoxin 1-mediated reduction in Cu ions and the loss
of iron-sulfur clusters, as well as the aggregation of lipoylated
proteins, are thought to lead to cell death. Notably, decreased
expression of ATP7A and SLC7A11 is also involved in cuprop‐
tosis, which hinders physiological Cu utilization.(68,69) Many
details are unknown because this concept has only been discov‐
ered recently, but clarifying this link between cell death and
cancer may lead to new targets for cancer therapy.

Conclusion

Cu plays an essential role in several physiological processes,
but its dysregulation is involved in tumor progression. SOD3
also exhibits antitumor and pro-tumor effects. Therefore, it is
necessary to understand the exact molecular mechanisms under‐
lying the cell-specific and tissue-specific expression of SOD3,
secretion, and function in tumor cells, which contribute to the
elucidation of the pathological biochemistry, especially in redox
homeostasis, in tumor progression.
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