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The intestinal tract consists of various types of cells, such as epithelial cells, Paneth cells, macrophages, and lymphocytes, which
constitute the intestinal immune system and play a significant role in maintaining intestinal homeostasis by producing
antimicrobial materials and controlling the host-commensal balance. Various studies have found that the dysfunction of
intestinal homeostasis contributes to the pathogenesis of inflammatory bowel disease (IBD). As a novel mediator, extracellular
vesicles (EVs) have been recognized as effective communicators, not only between cells but also between cells and the organism.
In recent years, EVs have been regarded as vital characters for dysregulated homeostasis and IBD in either the etiology or the
pathology of intestinal inflammation. Here, we review recent studies on EVs associated with intestinal homeostasis and IBD and
discuss their source, cargo, and origin, as well as their therapeutic effects on IBD, which mainly include artificial nanoparticles
and EVs derived from microorganisms.

1. Introduction

The homeostasis of the intestinal tract is the most complex
homeostasis within the human body due to the direct expo-
sure to the digestive residue, millions of pathogens, and high
concentrations of foreign antigens [1]. During this process,
the intestinal mucosal barrier plays a pivotal role in detecting
and clearing the pathogenic microbial debris, while main-
taining a peaceful coexistence with them. As for the intestinal
defense system, it mainly consists of three parts, including
the mucus layer, intestinal epithelial cells (IECs), and other
immune cells, such as lymphocytes and macrophages that
are associated with the innate immune system. Additionally,
effective communication among these cells plays a critical
role in maintaining the intestinal homeostasis, which is
mainly mediated by extracellular factors and receptors, such
as growth factor and its receptor tyrosine kinase [2, 3]. How-

ever, in recent decades, extracellular vesicles (EVs) have been
recognized as a novel mediator not only for the cell-to-cell
but also for the organism-to-cell interaction [4–6]. In addi-
tion, the mammalian intestine encounters about 10 trillion
(1013) microbes which is approximately equal to ten times
the number of our total cells, and the whole genome from
this microorganism even exceeds that of the entire human
genome by 150- to 400-fold [7]. As a result, the coexistence
with gut microbiota plays a significant role in maintaining
intestinal homeostasis, which has been recognized as a major
determinant to our health [8, 9].

Microbiota-derived EVs carry a large diversity of com-
pounds that can affect various pathways in the host. Emerg-
ing evidence has demonstrated the role of EVs in bacterial
survival and host interaction [6]. EVs are submicron-
circulating vesicles found in all bodily fluids and in all spe-
cies, including bacteria. Eukaryotic cells’ EVs originate from
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the process of plasma membrane budding or fusion of multi-
vesicular endosomes with the plasma membrane. Relatively,
EVs derived fromGram-positive and Gram-negative bacteria
may disperse in extracellular space by outward budding of
the prokaryotic membrane [10–12]. In past reviews, the
EVs tend to be divided into three main subsets known as exo-
somes, microvesicles (MVs), and apoptotic bodies [13, 14].
Their intrinsic heterogeneity can separate and characterize
them with varying sizes, molecular patterns, and triggering
mechanisms. Exosomes (40-150 nm) are produced via a
lyso-endosomal system. MVs (100-1000 nm) are generated
through the direct budding of the cell plasma membrane in
a calcium-dependent process. Apoptotic bodies (>2000 nm)
are released during cell apoptosis and are the most hetero-
geneous type, with a diverse morphology. However, this
classification neglects bacteria-released membrane vesicles
(20-400 nm) which are regarded as MVs or outer membrane
vesicles (OMVs) based on whether they are Gram-negative
or Gram-positive [15, 16]. In this review, bacteria-released
membrane vesicles were classified as EVs due to the mecha-
nism for any organisms’ intercellular communication. There-
fore, EVs are evolutionarily conserved across eukaryotes,
bacteria, and archaea. Here, we highlight specific paradigms
of cell-to-cell and organism-to-cell communication in intes-
tinal homeostasis. Additionally, we provide a brief update
on the clinical application of EVs as delivery vehicles as well
as the sources of diagnostic markers.

1.1. EVs. EVs are found in most physiological fluids, includ-
ing urine, breast milk, and bile [17]. Additionally, EVs can
also be collected from cell culture supernatant. EVs within
the intestinal tract can be derived from cells, organisms, or
physiological fluids, such as succus entericus. A previous
study found that patients with malignant common bile ste-
noses contained significantly higher concentrations of EVs
than healthy controls in bile samples, indicating that char-
acteristics of EVs vary at different states of the body [18].
Furthermore, EVs contain bioactive cargo, such as nucleic
acids (DNA, mRNA, microRNA, and other noncoding
RNAs), proteins (receptors, transcription factors, enzymes,
and extracellular matrix proteins), and lipids which can reg-
ulate the functions of the recipient cell [19–21].

1.2. Classification of EVs. Based on present studies regarding
the biogenesis and size of EVs, three categories of EVs as
well as several terms, including microvesicles, exosomes,
ectosomes, oncosomes, and outer membrane vesicles, are
presented [22]. Exosomes refer to EVs ranging between 40
and 150 nm in diameter and are produced from the multi-
vesicular endosome pathway. While those in the range of
100 to 1000 nm are microvesicles or microparticles derived
from plasma membrane. Microvesicles that separated at
approximately 10 to 14,000 g are heterogeneous. In contrast,
microvesicles separated at 100,000 g are homogeneous [17,
23–25]. Apoptotic bodies with large populations originate
from membrane blebbing and cellular disassembly from cell
fragmentation when the cytoskeleton breaks at the begin-
ning of apoptosis. Recently, larger-size EV subpopulations
(1-10μm diameter) were distinguished from highly migra-

tory cancer cells and were termed as oncosomes due to their
distinguishing biomolecules and unique extraction methods
(Figure 1). As mentioned above, the present classification is
based on the eukaryote system excluding the bacteria-
released membrane vesicles. However, the shedding of
membrane vesicles is ubiquitous in bacteria. The production
of OMVs was first discovered in Gram-negative bacteria in
1963 [26]. They were identified as OMVs due to them orig-
inating from the controlled blebbing of the outer membrane
of Gram-negative bacteria. Moreover, recent work has
shown the vesicles and MVs of bacteria refer to those of
archaea and Gram-positive bacterial origin [6, 27]. OMVs
refer to those originating from Gram-negative bacteria with
a diameter of about 20-400 nm, while MVs are cytoplasmic
membranes of Gram-positive bacteria with a diameter typi-
cally of 20–150nm [28]. Both of OMVs and MVs can carry
DNA, sRNA, proteins, and other factors to the recipient
cells [29].

1.3. Biogenesis and Characteristics of EVs. Exosomes origi-
nate through the lyso-endosome pathway. Exosomes are
released upon the fusion of multivesicular bodies (MVBs)
with the plasma membrane. MVBs are vesicular entities gen-
erated in the maturation process of the early endosomes
formed by plasma membrane invagination. Within the cyto-
plasm, the membrane of MVBs forms intraluminal vesicles
(ILVs) by inward budding. After MVBs fuse with the plasma
membrane, they release inside ILVs, which are called exo-
somes [19, 30, 31]. According to the International Society for
Extracellular Vesicles (ISEV), there are minimal requirements
to claim the presence of exosome isolation; several experi-
ments need to be conducted to characterize the existence of
the exosomes, such as electron microscopy, concentration-
monitoring techniques, and western blotting [14]. The cup-
shaped lipoidal vesicle structure is the typical feature of EVs
under the electron microscope. In biochemistry, the tetraspa-
nin superfamily was previously thought to be a specific
marker of exosomes. However, MV has also been reported
to bear CD63, CD9, and CD81 tetraspanin proteins in recent
years. In multiple studies, investigations concerning Alix and
TSG101 involving the exosome forming process and heat
shock proteins HSC70 and HSP90 have also been carried
out with exosomes [32].

According to previous studies, microvesicles are mainly
derived from plasma via a calcium-regulated pathway which
requires lipid formation for budding out [33]. As mentioned
above, apart from exosomes, MVs also contain the tetraspa-
nin protein family (CD9, CD63, and CD81), thus indicating
the significance of these proteins in the budding and fusion
of the membrane [34]. Moreover, MVs can also generate a
more heterogeneous subpopulation of extracellular vesicles
carrying surface markers and receptors from their parental
cell, which takes part in intercellular communication and
capacitates their identification in the laboratory [35]. The stud-
ies included in this review do not discriminate endosome-
derived from plasma membrane-derived EVs. In this review,
we use the term “EVs” rather than the term in the cited liter-
ature, thereby no longer distinguishing an endosomal or
plasma membrane origin.
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As a result, these tetraspanin proteins, including CD9,
CD63, and CD81, were regarded as markers to evaluate the
purity of the molecules after isolation. Additionally, physical
properties, such as particle size, were also characteristic during
the process of isolation via ultracentrifugation, density gradi-
ent separation, and polymer-based precipitation methods.

2. EVs in IBD

2.1. Microbiota-Derived EVs. EVs are produced by all
domains of life, including microorganism Gram-negative
and Gram-positive bacteria, archaea, fungi, and protozoa
[28, 36]. The alterations in microbiota colonizing intestines
have been implicated in the pathogenesis and development
of many diseases and particularly in IBD [37, 38]. The bal-
ance between host and commensal microbe in the intes-
tine is the key to maintaining a healthy human state, as
they can regulate the maturation and functions of IECs
and various immune cells. EVs released from both patho-
genic and commensal bacteria are important regulators of
host-pathogen communication that regulate immunomo-
dulation and the corresponding signaling pathways. For
instance, Pseudomonas aeruginosa OMV-mediated short
RNAs (sRNAs) reduced the secretion of IL-8 in IECs which
were induced by lipopolysaccharide (LPS). The enriched
sRNA52320 can attenuate OMV-induced KC cytokine secre-
tion and neutrophil infiltration [39]. On the contrary, the
EVs derived from the physiological fluids may also influence
the intestinal microbiota. A previous study used EVs from

the sera of Toll-like receptor (TLR) 2 knockout mice and
wild-type mice to interact with Lactobacillus or Bifidobacter-
ium which are common bacteria in the gut. The study found
that EVs significantly reduced the activity of TLR2/6 both in
Bifidobacterium and Lactobacillus, thus contributing to the
aggregation of pathogens [40]. EVs were first discovered
over 40 years ago. In 1967, Chatterjee and Das revealed the
excretion of cell wall material in Vibrio cholera by electron
microscopy. They found that Neisseria meningitides released
endotoxins in the form of cell wall blebs in vivo [41]. EVs
produced by commensal bacteria in the gastrointestinal tract
of animals are distributed throughout the gut lumen with a
variety of biomolecules, nucleic acids, enzymes, toxins, and
metabolites. The engagement of extracellular products from
commensal bacteria in immunomodulatory activities has been
noted since 1967 [41]. However, the mechanism involved has
not yet been studied completely or systematically.

Sometimes, microbiota-derived EVs serve as bad factors
in digestive tract homeostasis.Helicobacter pylori (Hp) infec-
tion can lead to gastritis, ulceration, or malignancy due to a
degree of adhesion to the epithelium. Furthermore, in 2003,
Ismail et al. revealed that there is no need for Hp to directly
contact the epithelium cell to cause gastritis and that OMVs
fromHp could be accepted by the host cells and further stim-
ulate various responses independently [42]. Recently, EVs
from enterohemorrhagic Escherichia coli (EHEC) O157
during growth were found to stimulate the production of
interleukin-8 (IL-8) in IECs via the TLR5 and TLR4/MD-2
complex signaling pathway [43]. They also deliver the
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Figure 1: Classification of extracellular vesicles according to the mechanism of generation. Extracellular vesicles include exosomes,
microvesicles, apoptotic bodies, out membrane vesicles, and membrane vesicles (not shown in the figure) in this review. Exosomes are
produced by budding from multivesicular bodies. Microvesicles are generated intracellularly from the extracellular membrane. Apoptotic
bodies are originated upon cell fragmentation during apoptotic cell death.
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hemolysin from EHEC to microvascular endothelial cells
and mitochondria, thus triggering apoptosis [44]. OMVs
from bacteria are the cargo of many various ligands of pat-
tern recognition receptors (PRR), including DNA, RNA,
lipoproteins, LPS, and peptidoglycan, which initiate proin-
flammatory signaling cascades. OMVs from commensal
Escherichia coli containing peptidoglycans that can colo-
nialize with Nucleotide Binding Oligomerization Domain
Containing 1 (NOD1), trigger the NOD1 signaling path-
way, and improve the expression of NF-κB, IL-6, and IL-8
[45]. In addition, OMVs can enter the IECs via clathrin-
dependent endocytosis and give rise to DNA damage [46].
In dextran sulfate sodium- (DSS-) induced colitis, the gut
microbiota regulate intestinal UDP-glucuronosyltransferase
1A1 (UGT1A1) through secreting cargo that can interact
with epithelial cells directly [47]. Vibrio cholera secrets EV-
associated Zn-dependent hemagglutinin protease (HAP),
and cholera toxins are transported to human IECs to induce
dose-dependent apoptosis [48, 49]. Furthermore, these EVs
internalized by IECs induce the expression of IL-8, GM-CSF,
and chemokines, such as CCL2, CCL20, and thymic stromal
lymphopoietin, in epithelial cells by activating the MAPK
and NF-κB pathways in a NOD1-dependent manner [50].

In addition, microbiota-derived EVs may help to main-
tain the homeostasis of the intestinal tract. It is generally
known that the integrity of the gastrointestinal epithelial
layer, consisting of the physical and biochemical barrier, is
critical in fighting against various toxins and pathogens.
Apart from these cells, intestinal microbes, especially probi-
otic bacteria, can modulate barrier integrity by reducing gut
epithelial proinflammation, reinforcing tight junctions, and
other reciprocal interactions among commensal bacteria,
the epithelium, and the mucosal immune system. Escherichia
coli C25, the first colonized bacteria in the intestine, elicit a
mild proinflammatory effect on host epithelial cells with
upregulated TLR in vitro, which is considered to be the
mediator of a rapid but more controllable reaction to path-
ogenic bacteria in vivo [51]. Probiotic Escherichia coli Nis-
sle 1917 (EcN) act as beneficial colonizers in the human
gut by secreting the protein TcpC to regulate the expression
of tight junction protein in IBD [52]. However, the inde-
pendence of TcpC has been verified in probiotic E. coli-
derived EVs. In 2016, Alvarez et al. illustrated that EVs
from both EcN and ECOR63 have a strengthening ability
based on TcpC. EVs isolated from these probiotics can pro-
mote the upregulation of ZO-1 and claudin-14 and downreg-
ulation of claudin-2, thus helping the reinforcement of the
epithelial barrier, while the specific mechanism has not yet
been illustrated [53]. EVs from Bacteroides thetaiotaomicron
(BtMinpp) may protect enzymes from degradation by gastro-
intestinal proteases and promote intracellular Ca(2+) signal-
ing, thus maintaining the physiological responses of the
digestive system [54]. Meanwhile, EVs isolated from intes-
tinal microbiota have been evaluated in an experimental
IBD model. Owing to the complexity of the gut microbi-
ota, their roles are different: EVs from E. coli induce colon
epithelial cells to release the proinflammatory cytokine IL-
6, while Akkermansia muciniphila can alleviate this. The
oral application of EVs from A. muciniphila ameliorates

the levels of inflammation both in LPS-stimulated macro-
phages and IECs [55].

However, pathogenic EVs can disrupt intestinal barrier
integrity and exaggerate the invasion of harmful components
into the submucosa, thus contributing to the pathogenesis
of IBD. Campylobacter jejuni has been detected in many tis-
sues, such as lamina propria, and blood. Recently, C. jejuni
was reported to cleave cell-to-cell junction factors, such as
E-cadherin, and occlude facilitating the invasion of patho-
gens into IECs via serine protease HtrA and bacterial EVs
[56, 57]. The toxicity of HtrA proteins and their ortholo-
gues are nonnegligible in both prokaryotes and eukaryotes
[58]. The function of E-cadherin to establish and maintain
epithelial integrity has been discussed in many studies [59,
60]. Deleting the HtrA protein in C. jejuni can alter E-
cadherin shedding [61]. Furthermore, pretreatment with
methyl-beta-cyclodextrin partially blocks OMV-induced host
immune responses, demonstrating the effect of lipid rafts on
host cell plasma membranes during interactions with C. jejuni
OMVs [62].

2.2. Enterocyte-Derived EVs. The essential function of the
intestinal epithelium is to form a barrier regulating the inter-
actions with luminal contents. It can also act as the underly-
ing immune system, regulating the inflammation response.
Through complex communication with the pathogens and
the immune system, IECs maintain intestinal homeostasis.

2.3. EVs Derived from IEC Regulation of Gut Immune
Cells. IECs promote the development of dendritic cells
(DCs) and macrophages with tolerogenic properties by pro-
ducing numerous immunoregulatory signals, including
TGF-β, thymic stromal lymphopoietin (TSLP), and retinoic
acid [63–65]. Professional antigen-presenting cells (APC)
have been verified to secrete major histocompatibility com-
plex- (MHC-) bearing vesicles called exosomes, which are a
subset of EVs [66]. Although IECs are not primarily APCs,
they constitutively express MHC I, MHC II, and HLA-DM
localized in vesicular structures from biopsies and HT-29
cells [67]. Additionally, EVs from these enterocyte cells can
be released from either the apical or basolateral side. They
preferentially interact with DCs and potentiate antigen-
presenting capacity [68]. The fact that IECs release EVs has
been known for more than ten years, and this investigation
complemented the lack of direct contact between IEC
and CD4+ T-cells [69]. Their EVs express immunomodu-
latory molecules, such as major histocompatibility complex
(MHC) class I and class II molecules, whose expression levels
are much higher in inflammatory conditions compared with
basal conditions [68–70]. MHC II is essential in initiating
adaptive immunity; its upregulation during B-cell develop-
ment suggests its role in consolidating B-cell maturation
[71]. The adaptive immune response is related to the high
expression of MHC I molecules in esophageal adenocarci-
noma development [72]. Except for the normal antigen-
presenting molecules enriched on EV surfaces, EVs derived
from IECs specifically display A33 antigens used to identify
the origin of the EVs [67, 68, 73]. EVs derived from IECs
have been demonstrated to be necessary for tolerogenic
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immune cells and directing appropriate innate and adaptive
immune cell responses in both physiology and pathological
states. Additionally, tolerogenic DCs are considered indis-
pensable for maintaining intestinal homeostasis [1]. EVs
derived from IECs carrying αβ6 activate LTGFβ in intestinal
tolerogenic DCs and Tregs, which first produces TGF-β.
After internalizing the EVs, DCs improve the expression
of TGF-β and finally induce the Treg cell and drive tolero-
genic responses [74]. Epithelial EVs may participate in this
tolerogenic process directly. In 2001, Karlsson et al. named
exosome-like structures as tolerosomes, which were isolated
from rat IECs and can induce antigen-specific tolerance
when administered to naive recipient rats intraperitoneally
[75]. In 2016, Jiang et al. demonstrated that EVs originate
from IECs containing TGF-β inhabited CD4+ cell prolifera-
tion under physiological conditions [76]. In posttrauma
immune dysfunction, the expression of CD63 (a specific
marker of exosome) and the epithelial cell-specific marker
epithelial cell adhesion molecule (EpCAM) were improved
greatly, illustrating that EVs from IECs induce DC apopto-
sis, suppress DC maturation, and inhibit the Ag-presenting
function of DCs [77]. The EpCAM induces the homophi-
lic interaction molecule between IECs and intraepithelial
lymphocytes in the physical mucosal epithelium and regu-
lates the positive effect of EVs on the intestinal tract
immune balance [76, 78].

2.4. IEC-Derived EVs Promoting Repairment and Regulating
the Inflammatory Response. EVs originated from IECs carry
the component promoting epithelial healing, coinciding with
the resolution of inflammation. Annexin A1 (ANXA1) facil-
itates the repair of intestinal mucosal wounds in a murine
model of colitis, and their release is elevated during wound
closure [79, 80]. In 2015, Giovanna et al. reported that EVs
derived from IECs containing ANAXA1 can be used to acti-
vate wound repair circuits and promote epithelial restitution.
During mucosal repair, ANAXA1 in EVs acted as an endog-
enous mediator of wound healing by binding to formyl
peptide receptors (FPRs) expressed on responsive cells [81].
In 2018, Zhang et al. identified that EVs isolated from the
mucosal-luminal interface of IBD patients contained defense
protein MPO [82]. The MPO function is to induce the oxida-
tion reaction by producing reactive oxidants, such as hypo-
halous acids [83–85]. The increased level of oxidative stress
can withstand the microbes in the gut of patients with IBD
[86]. However, EVs isolated from the intestinal lumen fluid
of patients with IBD had a proinflammatory effect on IECs
in vitro [87]. This discrepancy may be caused by the source
of the EVs. This is because intestinal lumen fluid is quite dif-
ferent from the aspirate of the mucosal-luminal interface.
The alteration of enterobacteria has already been linked with
gut-associated inflammation, which is itself a crucial risk fac-
tor for colon cancer. In 2015, Deng et al. revealed that entero-
toxigenic Bacteroides fragilis secreted EVs that could induce
the production of intestinal mucosa-derived EVs containing
elevated levels of sphingosine-1-phosphate, CCL20, and
prostaglandin E2 [88]. Additionally, CCL20 and prostaglan-
din E2 recruit Th17 cells through theMyD88-mediated path-
way [88]. Several studies have demonstrated the role of

sphingosine-1-phosphate in tumorigenesis [89–91]. These
studies also implicated a possible role of EVs derived from
normal intestinal mucosa in suppression of CCL20 and other
proinflammatory cytokines [88].

2.5. Immune Cell-Derived EVs. Previous studies have proven
the link between the abnormal immune responses and IBD.
Both the innate and adaptive immune responses contribute
greatly to the IBD pathogenesis. The innate immune
responses act faster to trigger the phagocytic responses and
antigen presentation, along with initiating the adaptive
immune system. These involve various immune cells, such
as the macrophages, DCs, neutrophils, and monocytes. Sev-
eral studies have shown the immune-stimulatory effects of
the EVs from DCs [92]. The inhibition of T-cell proliferation
by EVs derived from DCs has been proposed to play a key
role in suppression of the inflammation-related disease, such
as IBD [93, 94]. As compared to the nongene-modified
BMDC, TGF-β1 gene-modified BMDC can lead to the
release of immunosuppressive EVs that contain high levels
of TGF-β1 and elicit stronger inhibitory effects on the T-
cell proliferation [95]. In addition, much work has demon-
strated EVs from conditioned DC might promote IBD in
remission. The EVs derived from DCs treated with S. japoni-
cum-soluble egg antigens or IL-10 play a protective role dur-
ing acute IBD development [94, 96, 97]. Furthermore, EVs
from other immune cell can influence disease progression
in different ways. Intestinal mucosa polymorphonuclear neu-
trophil (PMN) infiltration is common in IBD. During the
infiltration of these immune cells, myeloperoxidase (MPO)
can be released into the extracellular environment. The
MPO release is common in acute and chronic inflammation.
During the progression of IBD, MPO can damage the gut
barrier. In 2019, Thomas et al. explored a new regulation
mechanism between MPO and PMNs during inflammation
[98]. With the help of EVs, MPO can be protected and deliv-
ered to IECs. The tissue-infiltrating PMNs together with
MPO enhanced the inflammatory response and inhibited
the wound closure through the regulation of the IEC migra-
tion and proliferation [98]. Similarly, Butin-Israeli et al. con-
firmed the role of EVs armed with the proinflammatory
microRNAs in mediating the accumulation of the double-
strand breaks (DSBs) in degenerated colonic epithelium
[99]. miR-23a and miR-155 in EVs can induce lamin B1-
dependent replication fork collapse and inhibit homologous
recombination (HR) by targeting the HR-regulator RAD51
[99]. The role of PMN-derived EVs in promoting DSB for-
mation and suppressing DSB repair through the downreg-
ulation of lamin B1 and Rad51 was confirmed again in 2019
[100]. Furthermore, there is another explanation for PMN
transepithelial migration. Butin-Israeli et al. showed that
during transepithelial migration, the EVs derived from
PMN were deposited on the IECs, leading to the loss of epi-
thelial cadherins while enhancing the PMN recruitment
[101]. Meanwhile, the other immune cell-derived EVs exhib-
ited high immunomodulatory capacity to be attractive
agents. EVs released by the granulocytic myeloid-derived
suppressor cells caused a decrease in the proportion of Th1
cells and an increase in the proportion of regulatory T-cells
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in colitis mice [102]. WNT/β-catenin signaling, one of the
major sources of WNT ligands [103, 104], is significant for
intestinal homoeostasis and the intestinal epithelium.
Macrophage-derived EVs can rescue the intestinal stem cells
and enhance the survival rate of the enterocytes after radia-
tion injury through the regulation of WNT function [105].

3. The Clinical Potential of EVs in IBD

As previously discussed, scientific interest in EVs has
been stimulated due to their key roles in cell-cell and cell-
organism communication. There is an urgent need to con-
vert these fundamental achievements into clinical applica-
tions. Therefore, an increasing number of studies regarding
EVs have been proposed to explore its role as a source of
diagnostic and prognostic markers or as promising pharma-
ceutical vehicles.

3.1. Clinical Potential of EVs as Biomarkers. In recent years,
multiple studies have investigated more precise markers of
cancer. One essential approach aimed at diagnosing the
development of cancer is based on the cargo of EVs. In
2014, Li et al. confirmed that using EVs was more amenable
to the development of a disease marker panel rather than
whole bile [106]. Likewise, a large body of work focusing on
purifying EVs, increasing the abundance of cargo, and
decreasing heterogeneity of the sample has been produced
[107–109]. In 2018, a laboratory-built high-sensitivity flow
cytometer was established for quantitative multiparameter
analysis of single EVs. According to the corresponding
report, the challenge of profiling and sizing the individual
EVs was conquered through this new method. The author
used this method to analyze blood samples from patients
with colorectal cancer and healthy controls, and they
obtained an accurate resolution and profile of EVs, thereby
identifying CD147-positive EVs as a sensitive biomarker for
colorectal cancer [110]. Similarly, miRNA in EVs can be an
essential biomarker for the detection of disease recurrence.
A previous study showed that the miR-17-92 cluster is highly
expressed in microRNAs in patients with a poor prognosis
[111]. IBD is known to potentially increase the risk of
developing cancer [112–114]. However, there is a lack of
promising biomarkers for the complicated surveillance of
IBD. In 2015, Polytarchou et al. demonstrated that miR-
214 is associated with the progression of IBD, and reducing
its expression can slow the development of colitis and
colitis-associated cancer in mice [115]. Interestingly, miR-
214 also has been detected in the EVs of many gastroenter-
ology cancers [116, 117]. In the meantime, isolating miR-
NAs from exosomes has been proven to be more stable
and reliable than biomarkers in many studies [118–120].
These findings imply the function of EVs to monitor the
cancer progression of IBD.

Circulating pathogenesis-related EVs have emerged as
promising biomarkers to monitor disease development and
as novel targets for future anti-inflammation therapies in
IBD. In 2017, Zheng et al. investigated the high sensibility
of salivary exosomal PSMA7 on IBD diagnosis [121]. This
study identified the proteins within EVs by using a liquid

chromatograph-mass spectrometer, and PSMA7 was shown
to be associated with inflammation and immune response
as well as depressive disorder in many studies [122, 123].
Rab proteins of the GTPase family are involved in selective
packaging and docking at the plasma membranes of EVs
[124]. With regard to the intestinal immune balance, the
numbers of RAB27A- and RAB27B-positive immune cells
increased in the colonic mucosa of patients with active ulcer-
ative colitis (UC) compared to the healthy controls [125,
126]. Double knockdown of Rab27A and Rab27B led to
interference in protecting mice from T-cell-transfer-induced
colitis, which authenticated the crucial role of Rab27-
mediated EVs in the treatment of IBD [127, 128]. All these
findings indicate that EV biogenesis acts as a key strategy
for the diagnosis and/or therapeutic potential of EVs in IBD.

3.2. The Clinical Potential of EVs on Treatment. Targeting
specific cargo and transmembrane integrin of EVs might alle-
viate the inflammation of intestines. In the intestinal tract,
the interaction between IEC and EVs is weaker in EpCAM-
knockout mice. In the meantime, the protective effect of
EVs has been decreased in IBD [76]. Genetic material within
EVs shows its potential therapeutic role in IBD. Bone mar-
row mesenchymal stem cells (BMSCs) transfected with lenti-
virus to overexpress miR-200b can release EVs packaged
with miRNA-200b. The miR-200b-EVs significantly sup-
pressed ZEB1 and ZEB2 to reverse the morphology in
TGF-β1-treated IEC-6 cells and ameliorate the TNBS-
(2,4,6-trinitrobenzene sulfonic acid-) induced colon fibrosis
histologically [129]. EVs secreted by mesenchymal stromal
cells (MSCs) have been proposed as important mechanistic
relievers in response to cellular inflammation through para-
crine effects [130–132]. In addition, Harting et al. demon-
strated that EVs from MSCs (MSC-EVs) stimulated with
TNF-α+IFN-γ attenuated the release of proinflammatory
cytokines in vitro [133]. Mao et al. proved the EVs derived
from human MSCs can relieve the phenotypes of IBD in
mice. After treatment with MSC-EVs in DSS-induced IBD
mice, the expression of the IL-10 gene increased while those
of the TNF-α, IL-1b, IL-6, iNOS, and IL-7 genes decreased
in the colon tissues [134]. Additionally, Yang et al. confirmed
the potential of BMSC-EVs in protecting the TNBS-induced
colitis model via attenuating oxidative stress and apoptosis
[135]. Generally speaking, IBD is caused by the breakdown
of innate immunity and the aberrant activation of the
immune system. Therefore, it is consequently conceivable
that EVs from the immune cells may be used as a new ther-
apeutic intervention of IBD. As mentioned before, EVs
derived from DCs can relieve the progress of disease via
immune-stimulatory or immune-suppressive effects. Mean-
while, some conditioned DCs secreted EVs to make prog-
ress against the IBD [97]. The recent wave of research on
EVs assists in the exploration of the utilization of artificial
nanoparticles in disease treatment. A considerable amount
of work has been performed regarding IBD treatment with
EV-like nanoparticles. In 2019, Han et al. expanded the
use of bioadhesive chitosan materials on colloidal-stable
nanotherapeutics. This exhibited safe and precise accumula-
tion to local diseased lesions in the gastrointestinal tract
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[136]. In 2018, Zahra et al. utilized intestinal organoids as
carriers of 5-ASA-loaded poly nanoparticles to alleviate
IBD [137]. Similarly, Bo et al. used mannosylated bioreduci-
ble cationic polymers to synthesize RNA interference nano-
particles to reduce cytotoxicity and promote treatment
effectiveness in IBD [138]. While innately derived from cells
and microbiota, EVs are much more biocompatible and sta-
ble when compared with nanoparticles. What is more, EVs
could also be engineered, thus indicating the therapeutic
role in disease such as IBD [139, 140].

Breast milk not only is rich in nutrition but also provides
a diverse array of microbiota and immunoglobulin. It may
shape the neonate gut immune system actively and convert
it toward a mature immune system capable of responding
appropriately to encountered antigens [141–143]. EVs in
milk are one of the most recently identified components that
may influence intestinal homeostasis. Therefore, the discov-
ery ten years ago that breast milk contains abundant immune
modulatory EVs has earned plenty of attention in this field of
study [144]. Additionally, breast milk EVs containing genetic
material and proteins delivered to infant mucosae offer novel
insights into the mechanisms of action for drug delivery in
the intestinal tract. EVs are quite stable even in simulated
gastric/pancreatic digestion [145] so that EV microRNAs
in human breast milk can be delivered to the intestinal
epithelia of infants [146]. Soon after, Liao et al. illustrated
that milk-derived EVs enter human intestinal crypt-like cells,
suggesting the possibility of EVs from breast milk altering the
neonatal mucosal conditions [147]. Several studies have
reported that treatment with milk EVs can significantly
increase IEC viability, proliferation, and stem cell activity
[148–150]. Breast milk reduces the incidence of necrotizing

enterocolitis (NEC), and EVs in breast milk offer a new path
in the mechanism for breast milk attenuating cell death in
intestinal epithelial cells, as well as the possibility of trans-
porting drugs in milk [151–154].

siRNA has a potential therapeutic effect but has various
physiological limitations, including unstable delivery. Using
lipofection to encapsulate AF488 in milk whey EVs guaran-
tees their internalization by Caco-2 cells [155]. Recently, pro-
tein within EVs has been the subject of intense research, and
one such intestinal EV-containing molecule is TGF-β1.
Intestines produce EVs containing high levels of TGF-β1
that can alleviate the severity of IBD by inducing regula-
tory T-cells and immunosuppressive dendritic cells in DSS-
induced IBD mice [76]. Meanwhile, the endogenous mole-
cule annexin A1 (ANXA1) has been reported to promote
epithelial restitution in a colitis-induced mucosal damage
model. In signaling via binging to formyl peptide receptors
(FPRs), epithelial cells release the potent endogenous media-
tor ANXA1 as a component of EVs that promotes the repair
of intestinal mucosal inflammation. Leoni et al. also observed
the increased concentration of ANXA1 through EVs in the
sera of patients with IBD and found that it correlated with
disease severity [81]. Additionally, this correlation could con-
duce to EVs emerging as promising biomarkers not only to
monitor IBD progression but also to have potential effects
in future therapies. In fact, an in vivo proof of the study
regarding ANXA1 proved that encapsulated targeted poly-
meric nanoparticles (Ac2-26 Col IV NPs) accelerated the
recovery of intestinal inflammation in experimental IBD
mice [81]. Similarly, nanoparticles, artificial EVs loaded with
rifaximin, have high encapsulation efficiency, relatively high
loading capacity, and a predetermined in vitro release profile

Table 1: Various source of EVs related to IBD.

Source Mechanism Reference

Stem cell

Alternating COX2/PGE2 pathway [133] MSC

Inhabiting iNOS and IL-7 pathway [134] MSC

Attenuating oxidative stress and apoptosis pathway [135] BMSC

Inhibiting EMT by targeting ZEB1 and ZEB2 [129] BMCS

Milk

Stimulate intestinal stem cell activity [148] Breast milk

Activating the hypoxia-inducible factor signaling pathway [149] Yak milk

Inhibiting P53 pathway [150] Porcine milk

Inhibiting oxidative stress pathway [152] Breast milk

Immune cell

Inhibiting Th1 cells proliferation and promoting Treg expansion [102] Myeloid-derived suppressor cells (MDSC)

WNT/β-catenin signaling [51, 105] Macrophage

Inducing Th1 polarized CD4+ T-cells [93, 94] Dendritic cells

Enhancing the inflammation response via
proinflammatory microRNAs and MPO

[98–101] Neutrophil

Microorganism

Eliciting the release of proinflammatory IL-8 [51] Escherichia coli C25

Regulating ZO-1 and ZO-2 [53] Escherichia coli Nissle 1917

Promoting intracellular Ca(2+) signaling [54] Bacteroides thetaiotaomicron (BtMinpp)

Ameliorating the production of IL-6 [55] Akkermansia muciniphila

COX2: cyclooxygenase 2; PGE2: prostaglandin E2; iNOS: inducible nitric oxide synthase; IL-7: interleukin 7; EMT: epithelial-mesenchymal transition; ZEB1:
zinc finger E-box binding protein 1; Th1: T helper cell; Tregs: T regulatory cells; WNT: wingless/integrated; IL-8: interleukin 8; ZO-1: zonula occluden-1; IL-6:
interleukin 6; MSC: mesenchymal stem cell; BMSC: bone mesenchymal stem cell; MDSC: myeloid-derived suppressor cells; BtMinpp: Bacteroides
thetaiotaomicron.
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[156, 157]. These studies regarding cargo manipulation sug-
gest that EVs may be beneficial as drug delivery vehicles. So
far, relevant EV studies considering practical clinical applica-
tions are usually preclinical studies based on animal or cell
models. This indicates that further studies are required to
explore the application prospects in clinical settings. How-
ever, such research is still in its infancy and should not be
underestimated, whether in diagnosis or treatment.

4. Conclusion

In the current review, we discussed the source (Table 1), cargo,
and origin of EVs and their roles in the pathogenesis and pro-
gression of IBD. We mainly focused on EVs from microbiota
and enterocytes to clarify the relationships among EVs, micro-
biota, and intestinal inflammation (Figure 2). In addition, the
clinical potential of EVs as biomarkers and their therapeutic
effects on IBD were summarized.
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