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Abstract: Rapid detection of the foodborne pathogen Salmonella in food processing is of crucial
importance to prevent food outbreaks and to ensure consumer safety. Detection and quantification
of Salmonella species in food samples is routinely performed using conventional culture-based
techniques, which are labor intensive, involve well-trained personnel, and are unsuitable for on-site
and high-throughput analysis. To overcome these drawbacks, many research teams have developed
alternative methods like biosensors, and more particularly aptasensors, were a nucleic acid is used as
biorecognition element. The increasing interest in these devices is related to their high specificity,
convenience, and relative rapid response. This review aims to present the advances made in these
last years in the development of biosensors for the detection and the quantification of Salmonella,
highlighting applications on meat from the chicken food chain.
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1. Introduction

1.1. Salmonella and Food Contamination

Food contamination by pathogenic bacteria is a significant public health concern for consumers
worldwide. The economic consequences are also significant for the producers and the industry [1,2].
In the European Union, the second most frequently bacterial genus involved in gastrointestinal
outbreaks in human is Salmonella and more particularly the species Salmonella Enteritidis (S. Enteritidis)
and Salmonella Typhimurium (S. Typhimurium) [2–9]. In France, almost half of the the 1500 collective
foodborne infections recorded each year, are caused by bacteria belonging to the genus Salmonella.
Among the different serotypes, S. Enteritidis and S. Typhimurium particularly predominate in poultry
meat foods [10–16]. These bacteria, which are non-typhoid Salmonella are responsible for salmonellosis,
an infectious disease-causing acute gastroenteritis [17–20], which occurs in 95% of cases through
consumption of contaminated food, especially meat and eggs. Non-typhoid human salmonellosis
is considered to be a zoonotic disease, the main reservoir of Salmonella being the gastrointestinal
tract of mammals (cattle and pigs) and birds [21]. Livestock carrying these bacteria rarely develop
symptoms, making them almost impossible to detect. Since these bacteria are able to survive out of
their natural habitat, some fresh products like fruits and vegetables can be contaminated by the feces
of infected animals. Preventive approaches such as hazard analysis and critical control point (HACCP)
can considerably reduce the survival of pathogens during the process of food handling, preparation
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and storage. Therefore, identification and detection of microorganisms in the food processing play an
important role for preventing food outbreaks.

1.2. Salmonella Detection and Quantification by Conventional Methods

Conventional methods for isolation of bacteria are based on cultures grown on differential
agar media and subsequent colony counting (Figure 1) [22–25]. The basic steps for the detection of
Salmonella in food include a pre-enrichment in buffered peptone water and an enrichment in selective
media, followed by isolation on differential media and serological confirmation [26] (NF/EN/ISO 6579)
(Figure 2). However, interpretation of these tests is often difficult, making the method laborious and
time consuming. Moreover, two to four days are required to obtain the initial results, and four to six
additional days are necessary to confirm a positive result [1,2,8,19,22,27,28]. During this period of time,
commercialization of these food stocks is forbidden.
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Other drawbacks of conventional cultural methods are related to their low sensitivity, risk of
microbial contamination resulting in the growth inhibition of bacteria of interest, and presence of
viable but non-culturable bacteria (VBNC). The consequences of the presence of VBNC include
underestimation of viable cells number or an impossibility to isolate the pathogens from the
sample [8,29–32]. A VBNC state is commonly found in environmental and food samples due to
starvation of bacteria and to a large variety of stressful conditions, including growth inhibiting
temperature, anoxia, and non-optimal pH and salinity [33]. In food, it was reported that a VBNC state
was, in some cases, directly induced by food disinfection techniques [34–36]. Because these bacteria
cannot be detected by common techniques, they present an increased risk for consumers [37]. Some
authors have already shown that VBNC cells of Salmonella Typhi (S. Typhi), but also Escherichia coli
(E. coli) and Legionella pneumophila (L. pneumophila), as well as other bacteria, are still able to produce
virulence factors [38–40]. Therefore, in order to reach more robust results, standard microbiological
count methods are often combined with other automated or semiautomated detection techniques
involving DNA, antibody, or biochemical approaches (Figure 1). However, several drawbacks are still
encountered with these traditional methods (Table 1), and there is still a need for developing more
rapid, sensitive, and specific techniques for the detection and quantification of pathogens.
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SAMPLE
X g or X mL

DILUTION
1/10 in buffered peptone water at room temperature

INCUBATION
18h +/- 2h at 37°C +/- 1°C

Xylose-Lysine Desoxycholate (XLD) agar plate 
& second agar plate medium to choose

INCUBATION
24h +/- 3h at 37°C +/- 1°C

At least 1 colony for each medium or 4 
colonies if the first one is negative 

Nutrient agar plate

INCUBATION
24h +/- 3h at 37°C +/- 1°C

SEROLOGICAL
Confirmation

BIOCHEMICAL
Confirmation

RESULTS

0.1 mL of culture + 10 mL of Rappaport
Vassiliadis Soja (RVS) buffer

INCUBATION
24h +/- 3h at 41.5°C +/- 1°C

1 mL of culture + 10 mL of Müller-Kauffmann
au Tetrathionate-Novobiocin (MKTTn) buffer

INCUBATION
24h +/- 3h at 37°C +/- 1°C

Figure 2. International standard NF EN ISO 6579. This international standard is a horizontal method
used for the detection of Salmonella, including S. Typhi and S. Paratyphi, in products intended for
human consumption or animal feed and in environmental samples in the area of production and
handling of food.

Table 1. Advantages and drawbacks of the conventional methods used for the detection of Salmonella
in food.

Culture and
Colony-Based Methods Immunology Based Methods Polymerase Chain

Reaction
DNA Based

Methods

Advantages

Low coast
Sensitivity
Selectivity with
chromogenic media

Fast
Robust
Specificity
“Real time” analyses

Specific
Sensitive
Rapid
Accuracy
Detection of small
amounts of target
nucleic acid

Specific
Sensitive
Rapid
Reusability
Stability
Detection of small
amounts of target

Drawbacks

Labor intensiveness
Time-consuming
Low sensitivity
Microbial contamination
VBNC

Low sensitivity
Low affinity of the antibody to
the pathogen or other analyte
Interference from contaminants

False negative PCR
results
No distinction
between dead or
alive cells

No distinction
between dead or
alive cells

Progress

Association with DNA,
antibody, or
biochemical-based
methods

Association with other methods:
Immunomagnetic separation on
magnetic beads coupled with
matrix-assisted laser desorption
ionization time-of-flight mass
spectrometry, combination of
immunomagnetic separation
with flow cytometry

Reverse
Transcriptase PCR
(RT-PCR) to
distinguish live
and dead cells
Association with
another method,
the biosensors

Design of aptamers
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The development of new techniques with faster response time, better sensitivity, and selectivity
is very important to ensure consumers safety. Immunological methods based on specific antigen
and antibody binding have been developed for the detection of Salmonella [41–43]. For bacteria,
the targets of immunological assays (IAs) are either whole bacterial cells or specific cellular
components like lipopolysachharides or other biomolecules of bacterial outer membrane [1]. Among
them, enzyme immunoassay (EIA) [44], enzyme linked immunosorbent assay (ELISA) [45], flow
injection immunoassay [46], immunochromatography strip test (ICG) [47], and immunomagnetic
separation [20,48] have been extensively used. The most common format used for pathogens detection
is the ELISA, in sandwich format with direct or indirect labeling. Generally, the limit of detection
(LOD) of the ELISAs developed for pathogens ranges from 104 to 105 CFU/mL, with an analytical
time of 48 h, due to the need, for food samples, of a pre-enrichment step [49,50]. Magliulo et al. [42]
have developed a multiplex sandwich chemiluminescent enzyme immunoassay for the simultaneous
detection of E. coli O157:H7, Yersinia enterocolitica (Y. enterocolitica), S. Typhimurium, and Listeria
monocytogenes (L. monocytogenes). A new 96-well polystyrene microtiter plate was used in which
each main well contains four subwells, where monoclonal antibodies, specific for each bacteria, were
grafted. When introducing samples containing the targeted bacteria into the modified wells, bacteria
capable of specifically binding to the corresponding monoclonal antibody present in one of the four
secondary wells were trapped. Then, a mixture of peroxidase-labeled polyclonal antibodies was
allowed to bind to the bound bacteria and the peroxidase activity was measured after addition of
an enhanced luminol-based chemiluminescent cocktail using a low-light charge-coupled imaging
device. The limit of quantification (LOQ) was in the order of 104 to 105 CFU/mL for each species [42].
Generally, immunological methods permit real-time detection of microorganisms, within shorter times
as compared to cultural methods. However, these methods have some disadvantages including low
affinity, poor sensitivity, and potential interferences from contaminants [51] (Table 1).

Polymerase chain reaction (PCR) based methods have also been applied for the detection and
identification of bacteria in a large variety of samples [52–61]. Compared to other conventional
methods, PCR-based methods have shown better specificity, higher sensitivity, shorter analysis time,
and better accuracy [29] (Table 1). Salmonella have been detected using classical PCR, real-time PCR,
multiplex PCR, and reverse transcriptase PCR (RT-PCR) [62–71], sometimes in association with other
techniques like immunomagnetic separation [49,67,72]. All these methods can be applied to in situ,
real-time monitoring for many applications, including detection and characterization of Salmonella in
poultry, poultry products, and feeds. These techniques enable the detection of subdominant bacterial
populations, even in the absence of selective enrichment medium and in the presence of other dominant
populations. However, an enrichment step of a few hours is sometimes necessary before performing
qPCR to fulfil the requirements of national and international legislations for foodstuffs [73]. A study
of the specificity of the PCR detection method under varied enrichment protocols confirmed this
fact [2]. During this study, chicken meat samples (ground, boneless/skinless breast meat, and bone-in
breast meat with skin) from retail groceries were pre-enriched in buffered peptone water. A couple of
primers, ST11 and ST15, designed by Aabo et al. [74] were used to amplify a region of the random
fragment (429 bp) specific to all Salmonella spp. The use of buffered peptone water for pre-enrichment,
and Rappaport-Vassiliadis and tetrathionate Hajna broths for selective enrichment allowed a specificity
of 100% to be obtained. The use of only one pre-enrichment with buffered peptone water decreased
the sensitivity to 85%, while no pre-enrichment resulted in an impossibility to detect positive samples.
The same authors have demonstrated that a minimum pre-enrichment step of 12 h was necessary to
detect Salmonella by PCR at a limit of 100 CFU/mL [2]. Oliveira et al. [69] developed a PCR for the
generic detection of Salmonella spp. and the identification of S. Enteritidis, S. Gallinarum, S. Pullorum,
and S. Typhimurium in samples collected in poultry field. For each sample, a selective enrichment
was performed in Rappaport-Vassiliadis broth, followed by DNA extraction and PCR amplification.
The LOD obtained by PCR for Salmonella at the genus level was two cells for S. Typhimurium, eight
cells for S. Enteritidis, 1.1 × 103 cells for S. Gallinarum, and 1.8 × 105 cells for S. Pullorum. At the
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serovar level, the LOD was seven cells for S. Typhimurium, 1.2 × 103 cells for S. Enteritidis, 4.4 × 107

cells for S. Gallinarum, and 1.8 × 106 cells for S. Pullorum. These results were obtained in 48 h instead
of seven days. Similarly, Makino et al. [75] developed a PCR detection system for the specific detection
of twenty serovars of Salmonella by targeting the Salmonella enterotoxin gene (stn). The PCR was
realized after an enrichment step with trypticase soy broth or Salmonella enrichment broth. A detection
limit of one cell per one gram of fecal and minced-meat samples was obtained.

To increase the accuracy and to decrease the time of analysis, some multiplex PCR methods were
developed allowing the simultaneous identification of multiple pathogens in one sample within a single
reaction [59,64,65,76–79]. Sharma and Carlson [80] developed a multiplex fluorogenic PCR assay for
the simultaneous detection of Salmonella and E. coli O157:H7 in meat and feces. In the case of Salmonella,
the set of primer was designed to amplify a junctional segment of virulence genes sipB and sipC.
The LOD was lower than 10 CFU/g in meat or feces artificially inoculated with Salmonella and grown
during six to 18 h in an enrichment broth. In a similar way, Yu et al. [79] developed a multiplex-PCR
(m-PCR) for the simultaneous detection of Salmonella spp., S. aureus, and L. monocytogenes using as
target genes, xcd, vicK and LMOf 2365-2721, respectively. A detection limit of 103 CFU/mL was achieved
for the simultaneous detection of the three pathogens. The m-PCR method has been used to detect
and identify Salmonella in poultry samples. For example, Soumet et al. [59] developed a multiplex
PCR-based assay (m-PCR) with the following three sets of primers: ST11-ST15 were selected for the
specific detection of the genus Salmonella (Aabo et al. [74]); S1-S4 [59] were specific for S. Enteritidis
from a gene associated with virulence [81]; while Fli15-Typ04 primers [59] were chosen from the fliC
gene, specific for S. Typhimurium. As described for classical PCR, the samples from swabs of poultry
houses were pre-enriched in phosphate-buffered peptone water for 24 h prior to multiplex PCR assay.
These authors showed that a poor sensitivity (107 Salmonella/mL) or even no amplified product was
obtained if m-PCR was applied directly from a pre-enrichment broth. An additional culture on a
modified semi-solid Rappaport-Vassiliadis (MSRV) medium was thus performed to obtain similar
results to those obtained from bacteriological methods [59]. The resulting MSRV-PCR assay provided a
result on Salmonella within 48 h. The authors estimated that the low sensitivity of direct m-PCR assay
may be explained by the presence of fewer Salmonella in pre-enrichment broth, which was lower than
the LOD evaluated as 104 Salmonella/mL).

Recently, Xiong et al. [82] developed a one-step multiplex PCR assay for Salmonella to simultaneously
identify and discriminate Pullorum and Gallinarum biovars. The genes targeted by this m-PCR were
the genes stn, I137_0860 and ratA. The unique gene I137_08605, present only in biovars Gallinarum
and Pullorum, was a common feature shared by these biovars, but was not present in any other
known Salmonella serovars or species. A deletion within the biovar Pullorum was evidenced by the
sequence analysis of ratA ROD in serovar Gallinarum strains. A total of 124 strains of various Salmonella
serovars and 42 strains of different non-Salmonella pathogens were tested, and the results showed
that S. Pullorum and S. Gallinarum could be identified and discriminated accurately. Moreover, this
m-PCR assay had a specificity of 100% and was able to quantify as low as 67.4 pg/mL of genomic DNA
and detect 100 CFU. Heymans et al. [83] developed a multiplex quantitative PCR for the simultaneous
detection and the differentiation of Salmonella species, S. Typhimurium, and S. Enteritidis in various
food matrices, in which these bacteria were detected by targeting the invA gene, the STM4200 gene, and
the SEN1392 gene, respectively, for which three sets of primer and probe were designed. Inclusivity
and exclusivity of 225 Salmonella and 34 non-Salmonella isolates were evaluated. The inclusivity of the
multiplex qPCR was 100% for all Salmonella isolates, including 72 and 53 isolates from S. Typhimurium
and S. Enteritidis, respectively. The exclusivity for Salmonella spp., S. Typhimurium, and S. Enteritidis
was 100%, 94.6%, and 100%, respectively. Non-Salmonella isolates led to negative results. The LOD was
determined for various matrices including poultry, meat, egg, herbs, and powdered milk. The LOD
values for qPCR and conventional culture methods (ISO and MSRV) were in the same order, allowing
the detection of Salmonella at approximately 10 CFU/25 g.
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Quantitative (real-time) PCR (qPCR) has often been reported for the quantification of Salmonella
in poultry samples [84–87]. The development of fluorescence-based techniques involving molecular
beacons, TaqMan, and SYBR Green probes has allowed increasing the sensitivity of these assays.
Malorny et al. [87] developed a duplex 5’ nuclease TaqMan qPCR assay for the specific detection of
S. Enteritidis in chicken carcass rinses and eggs. The authors have designed specific primers and a
TaqMan probe to target the Prot6e gene located on the S. Enteritidis specific 60 kb virulence plasmid.
They also used a second primer TaqMan probe set for the simultaneous detection of the invA gene.
The detection limit was less than 3 CFU/50 mL of carcass rinse or 10 mL of eggs. The sensitivity and
specificity as compared to the traditional culture-based detection method and serotyping were both
100% [87]. Similarly, Hein et al. [88] developed a qPCR TaqMan assay allowing the detection and
the quantification of Salmonella in different artificially contaminated foods after 16 h of enrichment in
buffered peptone water or universal pre-enrichment broth. The method was able to detect 5 CFU in
25 g of chicken meat, 2.5 CFU in 25 g of salmon and minced meat, and 5 CFU in 25 mL of raw milk [88].
Ellinggson et al. [89] developed a rapid real-time quantitative PCR for the detection of Salmonella spp.
in ready-to-eat beef products. The primers were designed to amplify a 251-base pair product from the
junction to SipB and SipC. One of the two probes used for the hybridization was labeled with fluorescein.
This method allowed the detection of one colony of Salmonella in 1 mL of food product within 12 h.
A control was realized with visual immunoprecipitate and cultural methods and a correlation of 100%
was obtained between these methods and the developed molecular method [89]. Cremonesi et al. [90]
developed an individual TapMan® real-time PCR for the simultaneous detection of 20 foodborne
pathogens including Listeria spp., Salmonella spp., Shigella spp., Escherichia coli, Campylobacter spp.,
Clostridium spp., and Staphylococcus aureus in complex alimentary matrices such as milk, cheese,
and meat. The accuracy of detection was determined by using ATCC strains as positive and negative
controls. For each assay, the achieved sensitivity was of 1pg of genomic DNA, which was equivalent
to approximately one CFU. The working ranges of this assay was between 108 CFU/g to 104 CFU/g
for S. enterica and the other studied strains. Four hours were required to perform the test. Recently,
Bai et al. [91] developed a multiplex real-time PCR for the detection and the quantification of Salmonella
enterica from cattle lymph nodes. The most conserved molecular targets of S. enterica retained for
the development of the assay were the genes invA and pagC. Potential false negative responses were
eliminated by adding as an internal control the 18S rRNA gene using a lymph node spiked with 10-fold
dilutions of a S. Typhimurium culture. To carry out the selection of primers and probes, the authors
used the DNA sequences available for invA, pagC, and 18S rRNA genes, as well as three Salmonella
serotypes (S. Typhimurium, S. Anatum, and S. Montevideo). For each target and for all three serotypes
the correlation coefficient of the standard curves was higher than 99% and the efficiency of the qPCR
amplification was comprised between 93% and 110%. An evaluation of the specificity of the assay
was carried out using cultural method versus qPCR on 36 Salmonella strains representing 33 serotypes,
38 Salmonella strains of unknown serotypes, 252 E. coli strains representing 40 serogroups, and 31 other
bacterial strains representing 18 different species. A collection of 647 cattle lymph node samples from
steers were tested and compared to the culture method of detection. The qPCR analysis of pre-enriched
and enriched lymph nodes showed a Salmonella prevalence of 19.8% and 94.9%, respectively. A majority
of qPCR positive pre-enriched samples were at concentrations between 104 and 105 CFU/mL. Culture
method allowed detecting Salmonella in 7.7% and 80.7% of pre- and post-enriched samples, respectively,
while 96.0% of pre-enriched and 99.4% of post-enriched culture-positive samples were also positive
by qPCR.

During the 2000s, a new molecular method called viability PCR (v-PCR) was developed for
the detection of viable cells [92–95]. This technique couples together PCR or qPCR with the use of
intercalating dyes such as propidium monoazide (PMA), ethidium monoazide (EMA), or a mix of
photo-reactive azide forms of phenanthridium (PEMAX). The v-PCR method is based on the integrity
of the bacterial cells, PMA, EMA, and PEMAX that are viability dyes named also intercalating dyes
which penetrate only into compromised membrane cells. Once inside the cell, these dyes can be
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covalently linked to DNA by photoactivation. In this case, the irreversible binding of photoactivated
EMA or PMA to DNA inhibits the amplification of the DNA from dead bacteria [92,93]. However, as for
conventional PCR-based DNA amplification methods, the efficiency of the v-PCR may be affected by
different events of the detection process, such as a decrease of dye efficiency due to chemical adsorption,
ineffective photoactivation due to the presence of organic compounds, degradation of nucleic acids,
or inhibition of polymerase activity. The concentration of cells, turbidity, salt concentration, and pH can
also interfere with the v-PCR results [92,96,97]. Indeed, Martin et al. [98] highlighted an inhibition effect
dependent on the PCR amplification product length. Three PCR targets of 95, 285, and 417 bp combined
with a PMA pretreatment to enumerate viable Salmonella cells in cooked ham were studied and only
the longer product achieved suppression of 108 CFU/g of heat-killed cells. A major limitation of the
of the v-PCR method for a wider use and its application in routine quality control is the incomplete
exclusion of dead micro-organisms leading to false positive signals, in particular with high background
of dead cells [95,98]. To improve the efficiency of the v-PCR, Dinh Thanh et al. [95] combined the
PEMAX dye with a double tube change and a double photo-activation step. These approaches allow
the neutralization of DNA signals of up to 5.0 × 107 dead cells per sample from both pure culture and
artificially contaminated food samples. There results show the potential of vPCR for high throughput
detection of live Salmonella cells in food samples, minimizing false positive signals [95].

As for classical PCR and m-PCR methods, an additional immunoprecipitation step may
be necessary to overcome the problems of inhibition induced by the food matrix. For instance,
Lynch et al. [48] studied the ability of an automated immunomagnetic separation system using
anti-Salmonella-modified Dynabeads to detect Salmonella spp. in poultry environmental samples as
compared with a standard culture-based method. The automated immunomagnetic separation system
was more reliable for the detection of Salmonella in artificially inoculated enrichment broth at a low
level and the sensitivity was 15.5% higher than the cultural method [48]. Similarly, Josefsen et al. [99]
developed a 12 h real-time PCR assay for Salmonella in meat and poultry, based on an 8 h pre-enrichment
followed by an automated DNA extraction with the help of paramagnetic particles. A validation of
the established method was realized with 100 minced meat and poultry samples and with artificially
inoculated reference samples and the results showed a relative accuracy of 99%, a relative sensitivity of
98%, and a relative specificity of 100%. [99]. Recently, Taha et al. [100] compared immunomagnetic
separation (IMS) followed by culture in CHROMagar Plus media, ELISA, and real-time PCR methods
for the detection and quantification of S. Typhimurium ATCC 13311 in chicken wing samples (25 g)
spiked with six different concentrations of bacteria ranging from 106 to 101. Spiked samples were
incubated in buffered peptone water for 4 h and the different methods were applied. For the RT-PCR,
the primers target was the invA gene. In comparison with the usual four-day cultivation method, the
culture on CHROMagar medium post IMS showed, in 23 h, the presence of light to purple colonies
corresponding to a Salmonella concentration of 1.6 CFU/mL with high sensitivity (99%). The combination
of the IMS with the ELISA method also demonstrated a high sensitivity (75%) allowing a Salmonella
concentration of 1.6 × 103 CFU/mL to be counted in 8 h while minimizing cross-reactivity, particularly
with many Enterobacteraceae. A higher sensitivity and a faster resolution time (7 h) were obtained by
combining the IMS with RT-PCR to detect a Salmonella concentration of 1.6 CFU/mL. Therefore, the
sensitivity of the IMS-RT-PCR and IMS-CHROMagar was higher than that of the IMS-ELISA [100].

The possible limitation of the PCR-based techniques lies in the difficulty of distinguishing
between viable and nonviable cells, as they both contain DNA. Moreover, PCR-based methods often
lead to false positives or false negative results [101], induced in some cases by the inhibition of
amplification reaction by matrix compounds (lipids and proteins in meat and dairy, polysaccharides
and polyphenols in vegetable and fruits), or by the degradation of the target nucleic acid sequences
in the sample [92,102–105]. Cross-contamination between samples may also occur. Another major
problem is the presence of PCR inhibitors in food samples [59]. Such inhibition can also be due
to the nature of the enrichment broth [106]. Therefore, some adjustments can be made including
the use of clean-up methods and the addition of facilitators of the PCR reaction [92,96,104,107,108].
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Nowadays, internal amplification controls to identify PCR inhibition are routinely used to confirm
the efficacy of the sample preparation and the success of the clean-up steps [105,109]. To overcome
this problem, removal of inhibitors from DNA extract or separation of bacteria from the samples
seems to be the solutions. Many methods have been reported for sample preparation, including
filtration, centrifugation, enzyme treatment, sample dilution, use of detergents and organic solvents,
and immunomagnetic separation [103].

The team of Resendiz-Nava [110] observed during a surveillance program for Salmonella that
conventional invA PCR assay led false positive signals for some bacterial isolates. It was thus decided
to perform an evaluation of the performance of the other published primers targeting the invA
gene. In this aim, a collection of strains of Citrobacter spp., E. coli, and Serratia spp. recovered
from poultry meat was tested in PCR targeting the invA gene, but all the selected invA gene
primers generated nonspecific signals. Comparable results have been reported by other teams like
Malorny et al. [109] and Scholz et al. [111] in reactions containing genomic DNA from non-Salmonella
isolates. Recent studies have reported a high specificity for invA PCR assays [83,91] but, unlike the
study of Resendiz-Nava et al. [110], the experiments were carried out using DNA obtained from type
strain collections. Resendiz-Nava et al. [110] and Kloska et al. [112] studies also revealed that, due to
its high specificity and amplicon size (~90 bp), the primer set ttr-6 + ttr-4 targeting the ttrA/C genes
(tetrathionate reductase subunit A/C) allowed discriminating between S. enterica and non-Salmonella
isolates. Comparable results were reported by Malorny et al. [113] using a set of 110 S. enterica strains,
representing 38 different serovars and 87 non-Salmonella strains. Therefore, PCR assays based on invA
gene amplification were not reliable for Salmonella detection. False positive results were commonly
obtained from Citrobacter spp., E. coli, and Serratia spp. isolates. Other loci, such as ttrA/C genes, should
be, thus, used for the accurate and reliable detection of this pathogen.

Immunomagnetic separation (IMS) is based on super-paramagnetic particles coated with
antibodies specific to the targeted bacteria. These modified paramagnetic particles can be introduced
in a culture medium or food sample to allow the capture and the concentration of the bacteria.
In a similar manner, magnetic particles modified with bacteriophages have been recently used
for the preconcentration of Salmonella from milk samples [114]. In this work, the detection was
realized using specific anti-Salmonella antibodies conjugated to horseradish peroxidase as an optical
reporter. A detection limit of 19 CFU/mL of milk samples was achieved within 2.5 h without any
pre-enrichment [114]. IMS is widely used due to several advantages like preconcentration of the target
bacteria into small volumes, reduction of matrix effect due to food components, and the simplification
of the pre-enrichment step. However, the assay efficiency is highly dependent on the antibody’s affinity
and specificity against the targeted bacteria. A high cross-reactivity of antibody may increase the risk
of false positive results [1,49,115].

Next generation sequencing (NGS) or whole genome sequencing (WGS) is transforming
the laboratory practices for foodborne disease investigations, and more particularly Salmonella
contaminations. Due to their lack of characterization of the Salmonella strains, and the difficulty
of tracking and delimiting the source of contamination, the use of conventional methods have been
gradually replaced by WGS [104]. Vohra et al. [116] developed a new approach based on WGS to
replace traditional methods such as colony subculture and serogroup identification. The method was
based on the use of the inherent differences in the genomes of S. enterica serovars and quantified the
dynamics of mixed serovar infections in vivo and their survival within the bovine lymphatic system to
predict their zoonotic potential. The strength of this approach is that the study of the bacterial strains
does not involve genetic manipulation and significantly reduces the number of animals required for
in vivo study of mixed infections.

During the last twenty years, biosensors have emerged as promising alternative tools for
environmental monitoring, clinical diagnostic and food analysis. They are based on the tight association
of a sensitive biological element and a physical interface, called transducer, which allows obtaining
an output signal. Biosensors are easy to use, versatile, low cost, portable and allow a real-time



Foods 2019, 8, 371 9 of 36

detection (Figure 3). Moreover, they can be used in dirty environments with minimal sample
preparation [8,27,117–133]. Basically, biosensors for bacterial detection generally use antibodies
as recognition element, but more and more devices are now developed based on nucleic acids, and
more specifically DNA aptamers.
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In the first part, this review explores and summarizes the immunosensors described for Salmonella
detection and quantification in food matrices and, if possible, in food from chicken chain. In a second
part, aptamers-based methods for Salmonella detection in the same matrix are described.

2. Biosensors for Salmonella Detection and Quantification

A biosensor is an analytical tool consisting of the close association of two elements (Figure 4).
The biological recognition element, sometimes called bioreceptor, is capable of interacting specifically
with the target molecule, while the transducer allows converting the biological signal into measurable
signal. Bioreceptors may be biocatalytic when they allow the transformation of target molecule
(enzymes, whole cells, organelles, etc.), or they may be non-catalytic when affinity antigens, antibody,
nucleic probes, aptamer, or tissue are used to simply bind the target molecule. The bioreceptor is
generally immobilized in close contact to the transducer surface and it must have a high specificity
and sensitivity towards his target to allow a response in a short time. According to the method of
transduction, biosensors may be divided in the following three main categories: optical, electrochemical,
and mass-sensitive sensors. Among the various reported biosensors, immunosensors have been the
most used for the detection of Salmonella.

Biosensors for bacteria detection [25,134] must allow the detection of a single bacterium in
a reasonably small sample volume (1–100 mL), and they should be able to discriminate between
individual bacterial species and other microorganisms or cells, and even other strains of the same
species. The precision may be less than 10%, with an assay time of between five to 10 min for a single
test. Ideally, a microbial sensor should be able to discriminate between live and dead cells and should
operate without pre-enrichment. However, biosensors described to date in the literature could not
meet all these requirements.
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2.1. Optical Biosensors

Optical biosensors are based on the measurement of a light signal (visible, ultraviolet and
infrared) resulting from a chemical and biological reaction, which is captured by an appropriate
transducer and converted into data format. Optical biosensors are represented by surface plasmon
resonance-based sensors (SPR), colorimetry-, fluorometry-, bioluminescence-, photoluminescence-,
and chemiluminescence-based sensors.

2.1.1. Surface Plasmon Resonance Biosensors

Surface plasmon resonance (SPR) is an optical technique for detecting the interaction of two
different molecules in which one is mobile and the other is fixed on a thin gold film. SPR spectroscopy
is a mass-sensitive sensor that detects the mass change in association with the change in the refractive
index at the surface due to the molecular binding event. Because the method strictly detects mass, there
is no need to label the interacting components, thus eliminating possible changes of their molecular
properties. Lan et al. [135] developed an optical surface plasmon resonance (SPR) biosensor to detect
the presence of S. Typhimurium in chicken carcass. Their SPR-biosensor allows the detection of S.
Typhimurium at 1 × 106 CFU/mL in chicken carcass (Table 2). Other teams have reported the detection
of S. Typhimurium in a similar range of 1 × 105 to 1 × 107 CFU/mL also using a SPR biosensor [136,137]
(Table 2).
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Table 2. Biosensors for Salmonella strains detection in food samples.

Microorganism Sample Matrix Bioreceptor Immobilization Method Transducer Limit of Detection Analyze
Time Working Range References

S. Typhimurium

Chicken carcass

Antibody to Common
Structural Antigens

(CSA-1)

Succinimidyl-6-(biotinamido)
hexanoate (HS-LC-Bioin) SPR

106 CFU/mL - - [135]

- - 107 CFU/mL - - [137]

Chicken carcass
wash fluid Direct reductive amination Integrated optic

interferometer

Direct assay:
107 CFU/mL

Sandwich assay:
105 CFU/mL

10 min - [136]

S. Typhimurium
Phosphate buffered

saline (PBS)
Pork

Antibody to CSA-1 Protein G FRET 103 cells/mL
105 cells/mL

5 min - [138]

S. Typhimurium
S. Enteritidis Poultry

- Capture: rabbit polyclonal
pAb-anti-Salmonella antibody

- Reporter: rabbit
pAb-3238 and mouse anti-S.

Enteritidis mAb-2F11

Sulfo- N-hydroxysuccinimide
(NHS)-LC-Biotin

BARDOT (bacterial
rapid detection using

optical scattering
technology)

103 CFU/mL 12 h - [139]

S. Typhimurium Borate buffer &
chicken extract

anti-Salmonella polyclonal
antibodies Covalent Quantum dot

nanoparticles 103 CFU/mL 30 min 0 to 106

CFU/mL,
[140]

S. Typhimurium phosphate buffer
saline

Antibodies against Salmonella
antigens Glass/TiO2/anti-S-Ab

Titanium dioxide (TiO2)
nanoparticles

Photoluminescence
- - 103 to 105

cell/mL
[141]

S. Enteritidis

Water
Milk DNA NHS FRET 102 CFU/mL

1.5 × 102 CFU/mL
2 h

102 to 3 × 103

CFU/mL
1.5 × 102 to 3 ×

103 CFU/mL

[142]

PBS
Shredded beef

Chicken
Turkey breast

- Capture: rabbit polyclonal
pAb-anti-Salmonella antibody
- Reporter: mouse monoclonal

antibodies

Sulfo-NHS-LC-Biotin Evanescent-based fiber
optic sensor

103 CFU/mL
107 to 108 CFU/mL

after 18 h of
enrichment

2 h - [143]

Salmonella spp. Buffer DNA Covalent EIS - - 0.1 µM–10 µM [144]

Salmonella Chicken Anti-Salmonella rabbit pAbs Dithio-bis-succinimidyl propionate
(DSP)

Immunosensors
combined with light
microscopic imaging

system (LMIS)

103 CFU/chicken - - [132]

S. Choleraesuis
PBS

Whole milk
(Test yes/no)

- Capture: 5F11-B11 monoclonal
antibody

- Detection:
11D8-D4 monoclonal antibody

Capture antibody: deposition onto the
LFA

Colloidal gold particles: sodium citrate
chemical reduction

LFA 5 × 105 CFU/mL
-

20 h - [47]
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Table 2. Cont.

Microorganism Sample Matrix Bioreceptor Immobilization Method Transducer Limit of Detection Analyze
Time Working Range References

S. Typhimurium
S. Enteritidis

PBS
Chicken (Test of

specificity)

- Anti-Salmonella rabbit pAbs
- Mouse anti–S.
Typhimurium

- Mouse anti–S. Enteritidis

Colloidal gold particles
Mousse antibodies were applied onto

the nitrocellulose membrane
LFA

104 CFU/mL
106 CFU/mL

100%
100%

5–15 min - [145]

S. Typhimurium Buffer Antibody to CSA-1 Carbodiimide
Flow injection
amperometry

immunofiltration assay
50 cells/mL 35 min 50–200 cells/mL [46]

S. Typhimurium Chicken carcass
washing samples

- Monoclonal fluorescein
isothiocyanate labeled

anti-Salmonella antibody
- Polyclonal rabbit

anti-Salmonella antibody

Biotin Potentiommetry 119 CFU/mL 15 min - [146]

S. Typhimurium Water Outer membrane porin protein
(OmpD) Carboxilated graphen-graphen oxide

Impedimetry
10 CFU/mL - - [147]

S. Enteritidis Buffer
Milk

Biotinylated rabbit
anti-Salmonella polyclonal

antibody
Neutravidin

106 CFU/mL
104 CFU/mL (with

nanoparticles)
105 CFU/mL (with

nanoparticles)

3 min - [148]

S. Typhi Buffer Rabbit anti-Salmonella spp.
polyclonal antibody Covalent 100 CFU/mL 5 min - [149]

S. Typhimurium

Buffer

Anti-Salmonella antibody

Polyethyleneimine
QCM

105 CFU/mL 5 h 105 to 109

CFU/mL
[150]

Protein A 106 CFU/mL - 106 to 108

CFU/mL
[151]

Polyethylenimine-glutaraldehyde and
dithiobissuccinimidylpropionate

coupling
- 25 min 5.3 × 105 to 1.2

× 109 CFU/mL
[152]

Polyvalent somatic O antibody
of Salmonella spp. Langmuir-Blodgett AWD 350+/−150 cells/mL 100 s 102 to 107

CFU/mL
[153]

Chicken breast Antibody to CSA-1 Protein A QCM

102 cells/mL (with
anti-Salmonella-

magnetic beads)

∆F 105–108

cells/mL
∆R 106–108

cells/mL

[154]

PBS
Chicken meat

Mouse monoclonal antibody
against S. Typhimurium EDC-NHS

10–20 CFU/mL
Validation: good

sensitivity
12 min [155]

QCM: Quartz crystal microbalance; SPR: Surface plasmon resonance; FRET: Fluorescence resonance energy transfer; LFA: Lateral flow assay; AWD: Acoustic wave device.
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2.1.2. Fluorescence-Based Sensors

Fluorescence resonance energy transfer (FRET) allows the measurement of the distance between
two chromophores (donor-acceptor pair). The transfer process is effective only if the distance between
the donor and the acceptor pair is smaller than 10 nanometers.

The detection of S. Typhimurium was achieved by a FRET optical fiber tip sensor using a
Salmonella antibody labeled with a FRET-donor fluorophor, Alexa Flur 546, and a protein G labeled
with the FRET-acceptor fluorophore Alexa Fluor 594 [138]. The binding of S. Typhimurium induced
conformation changes of the antibody, resulting in a decrease of distance between donor and acceptor
and an increase of fluorescence. The LOD of this FRET sensor was 103 cells/mL. The fiber probes were
applied for detecting S. Typhimurium at 105 CFU/g in homogenized pork samples [138] (Table 2). More
recently a team compared a fiber optic immunosensor and a light scattering sensor “BARDOT” (bacterial
rapid detection using optical scattering technology) for detecting S. Enteritidis and S. Typhimurium in
naturally contaminated poultry [139]. Using the fiber optic sensor, a detection limit of 103 CFU/mL
was obtained in less than 12 h for S. enterica, after selective enrichment in Rappaport-Vassiliadis broth.
The enriched samples were plated onto selective XLT4 agar and after 13–15 h of incubation the colonies
were scanned using BARDOT. Each individual colony scatter pattern was compared to a previously
designed scatter image library, S. enterica was identified, and the results were obtained within 24 h.
The authors [139] validated the used of BARDOT to detect S. enterica serovars (Table 2). Song et al. also
developed a biosensor for the detection of S. Enteritidis by FRET using a nicking enzyme and carbon
nanoparticles (CNPs) [142]. The surface of the CNPs was modified by the grafting of a particular
ssDNA containing two consecutive sequences. The first sequence was complementary to 16S rRNA
and the second was complementary to a molecular beacon tagged with a black hole quencher (BHQ1),
which was recognized by the nicking endonuclease. When the DNA of the S. Enteritidis was added to
the CNTs grafted with ssDNA, the connection between the CNT and the ssDNA was broken by forming
a dsDNA between the S. Enteritidis 16S rRNA sequence and its complementary DNA. Therefore,
a dsDNA was obtained which was connected to the ssDNA complementary sequence of the molecular
beacon tagged with a BHQ1. The addition of the nicking enzyme induced the cleaving of the molecular
beacon from the DNA, and a fluorescence signal appeared. In the absence of target, the molecular
beacon is not hybridized and cleaved because the CNTs and the particular ssDNA sequences are linked
with a covalent bond, which prevents the release of the sequence from the CNTs. This biosensor had a
linear response ranging from 102 to 3 × 103 CFU/mL in water and from 1.5 × 102 to 3 × 103 CFU/mL in
milk (Table 2). Another team [143], developed an evanescent wave-based fiber optic immunosensor
for the simultaneous detection of S. Enteritidis, L. monocytogenes, and E. coli O157:H7 in meat (beef,
chicken, and turkey). A sandwich format was used where biotinylated polyclonal antibodies were
grafted on the optical waveguides and were exposed to the bacterial suspensions or enriched food.
After 2 h of contact, Alexa Fluor 647-labeled monoclonal antibodies were added and the fluorescence
was quantified. This biosensor was able to detect each pathogen, individually or in mixtures, with a
LOD near 103 CFU/mL (Table 2). Kim et al. [140] developed a microfluidic nanobiosensor for the
detection of S. Typhimurium based on the use of quantum dot nanoparticles. The selective detection of
Salmonella was due to the use of anti-Salmonella polyclonal antibodies covalently immobilized onto
the quantum dot surface. Salmonella cells were extracted from the sample and concentrated using
superparamagnetic particles and a microfluidic chip. The same team [140] developed a portable
spectrofluorometer which was able to measure the fluorescence signal emitted by the quantum dot
nanoparticles linked to Salmonella cells. A correlation between the fluorescence response of the sensor
and the Salmonella Typhimurium cell concentration was obtained and the detection limit was evaluated
in borate buffer and chicken extract at 103 CFU/mL (Table 2).

2.1.3. Chemical Luminescence-Based Biosensors

Chemical luminescence biosensors are based on the measurement the light emitted during reactions
of bio-chemiluminescence, thermochemiluminescence, or electrogenerated chemiluminescence [156].
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Their major advantage is related to the high detectability of the light during the chemical reaction
without nonspecific signal.

Recently, Oh and Park [132] validated the use of immunosensors associated with a light microscopic
imaging system (LMIS) for the fast detection of Salmonella in chicken. The authors obtained a LOD of
103 CFU/25 g of chicken skin, which is lower than those of other reported sensors [132]. Immunosensors
combined with LMIS allowed a direct observation and enumeration of Salmonella (Table 2).

Current researches are focused on the development of low cost and rapid detection techniques,
with less sample treatments and less technical expertise but with high specificity. Lateral flow
assays (LFA) meet these criteria in terms of simplicity, rapidity, high specificity, sensitivity, versatility,
and long-term stability under different environmental conditions. LFA provides a good alternative to
realize qualitative and quantitative analysis and its advantages and disadvantages are presented in
Table 3 [157]. LFA have been developed and used for the analysis of hormones, heavy metals, bacteria,
virus, and toxins into variable matrices like human or animal fluids, food, water, and environment.
Classical LFA are performed over a strip, the different parts of which are arranged such that they
overlap each other on a plastic backing (Figure 5). These different parts are composed of a sample
application pad, a conjugate pad, a nitrocellulose membrane, and an adsorption pad at the end.
The nitrocellulose membrane is divided into test and control lines (Figure 5). All the reagents are
immobilized in the different parts of the strip and are activated during the migration of the liquid
sample. A lot of LFA have been reported for the detection of bacterial pathogens in various sample
matrices. Different types of colored revelation reagents can be used in LFA, for example, quantum dots
(QDs), carbon nanotubes (CNTs), magnetic particles (MPs), enzymes, gold nanoparticles (AuNPs),
and colored latex beads. Unipath commercialized the first LFA test named "Clearblue" for home
pregnancy tests. This test was based on the use of blue dye-doped latex particles. However, colloidal
gold nanoparticles (AuNPs) are still the most currently used as a label because of their easy synthesis,
visual detection, and stability [157–161]. Recently, Xia et al. [47] developed an immunological LFA
for the detection of entire cells of Salmonella Choleraesuis (S. Choleraesuis), using gold magnetic
bifunctional nanobeads as label. A sensitivity of 5 × 105 CFU/mL was obtained. This LFA was applied
to the detection of S. Choleraesuis in whole milk and the results were obtained after 20 h cultivation in
selective medium (Table 2). Another immunochromatographic assay was developed for the detection
of S. Typhimurium and Enteritidis in a single chip [145]. The assay was based on a sandwich format
involving two specific anti-S. Typhimurium and anti-S. Enteritidis antibodies immobilized on a
nitrocellulose membrane at separated test lines, while the other specific antibody to Salmonella spp.
was conjugated with gold nanoparticles. This LFA detected S. Typhimurium and S. Enteritidis in
culture medium at concentrations of 104 and 106 CFU/mL, respectively. Further analyses of spiked
chicken samples showed a specificity of 100% for the two Salmonella serovars [145] (Table 2). More
recently Viter et al. [141] developed an optical biosensor for the detection of Salmonella Typhimurium
based on the photoluminescence of TiO2 nanoparticles. Antibodies directed against Salmonella surface
antigens were immobilized on the surface of a glass coated with nanoparticles of titanium dioxide
(TiO2). At room temperature, the TiO2 nanoparticles exhibited an intense photoluminescence (PL) in
the visible range, which was modified upon Salmonella cells binding. This immunosensor allowed the
detection of Salmonella in the range 103 to 105 cell/mL.



Foods 2019, 8, 371 15 of 36

Table 3. Advantages and drawbacks of the biosensors and aptasensors technologies used for the
detection of Salmonella in food.

Optical Lateral Flow Assays Electrochemical Mass Based

Advantages - Easy to use
- High sensitivity

- Good reproducibility
- Very low shelf life
- Rapid
- Portable
- User-friendly
- Less interferences
- Adequate specificity

- User-friendly
- Miniaturization

- High sensitivity
- Portable
- Rapid
- Simple
- Stable output

Drawbacks
- Pretreatment of
sample may be
required

- Poor quantitative discrimination
- Reproducibility may vary from lot to lot
- Low signal intensity
- Pretreatment of sample may be required
- Mostly qualitative or semi-quantitative

- Low selectivity

- Low sensitivity
with liquid samples
- Interference
induces by
nonspecific bindingFoods 2019, 8, 371 15 of 38 

 

 
Figure 5. Structure of the lateral flow assay system. 

Table 3. Advantages and drawbacks of the biosensors and aptasensors technologies used for the 
detection of Salmonella in food. 

 Optical Lateral Flow Assays Electrochemical Mass Based 

Advantages - Easy to use 
- High sensitivity 

- Good reproducibility 
- Very low shelf life 
- Rapid 
- Portable 
- User-friendly 
- Less interferences 
- Adequate specificity 

- User-friendly 
- Miniaturization 

- High sensitivity 
- Portable 
- Rapid 
- Simple 
- Stable output 

Drawbacks - Pretreatment of sample 
may be required 

- Poor quantitative 
discrimination 
- Reproducibility may vary 
from lot to lot 
- Low signal intensity 
- Pretreatment of sample 
may be required 
- Mostly qualitative or 
semi-quantitative 

- Low selectivity 

- Low sensitivity with 
liquid samples 
- Interference induces 
by nonspecific binding 

2.2. Electrochemical Biosensors 

Electrochemical detection methods are increasingly used for identification and quantification 
of food borne pathogens due to several advantages such as rapidity, ease of use, cost effectiveness, 
and easy miniaturization. Electrochemical biosensors are classified into amperometric, 
voltammetric, potentiometric, impedimetric, and conductimetric, based on the measured 
parameters such as current, potential, impedance, and conductance, respectively. The electrodes 
used as transducers may be modified to improve the performance of the sensors, for example, by 
the conjugation of specific recognition elements (antibodies, oligonucleotides, etc.) to increase the 
specificity of the detection, or by the introduction of nanomaterials (carbon nanotubes, etc.) to 
increase the measured signal, and therefore decrease the LOD. 

2.2.1. Amperometry 

Amperometry is an electrochemical technique that allows the detection of electroactive 
compounds. It is based on the measurement of a current intensity at a fixed potential. 

Abdel-Hamid et al. [46] developed a flow-injection amperometric immunofiltration assay for 
the rapid detection of total E. coli and S. Typhimurium. A flow injection cartridge composed at the 
top of a porous nylon membrane was used as a support for the immobilization of anti-E. coli or anti- 
Salmonella capture antibodies. The working electrode, the reference electrode, and the counter 
electrode were positioned downstream. The liquid sample was injected through the cartridge and 
the immobilized antibody captured the bacterial. Peroxidase-labeled antibodies were then injected 

Figure 5. Structure of the lateral flow assay system.

2.2. Electrochemical Biosensors

Electrochemical detection methods are increasingly used for identification and quantification
of food borne pathogens due to several advantages such as rapidity, ease of use, cost effectiveness,
and easy miniaturization. Electrochemical biosensors are classified into amperometric, voltammetric,
potentiometric, impedimetric, and conductimetric, based on the measured parameters such as current,
potential, impedance, and conductance, respectively. The electrodes used as transducers may be
modified to improve the performance of the sensors, for example, by the conjugation of specific
recognition elements (antibodies, oligonucleotides, etc.) to increase the specificity of the detection,
or by the introduction of nanomaterials (carbon nanotubes, etc.) to increase the measured signal,
and therefore decrease the LOD.

2.2.1. Amperometry

Amperometry is an electrochemical technique that allows the detection of electroactive compounds.
It is based on the measurement of a current intensity at a fixed potential.

Abdel-Hamid et al. [46] developed a flow-injection amperometric immunofiltration assay for
the rapid detection of total E. coli and S. Typhimurium. A flow injection cartridge composed at the
top of a porous nylon membrane was used as a support for the immobilization of anti-E. coli or
anti- Salmonella capture antibodies. The working electrode, the reference electrode, and the counter
electrode were positioned downstream. The liquid sample was injected through the cartridge and
the immobilized antibody captured the bacterial. Peroxidase-labeled antibodies were then injected
and bound to captured bacteria. After the addition of the enzyme substrate, an amperometric signal
was recorded which was generated by reduction of enzymatic product. This immunofiltration system
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which was based on a sandwich immunoassay scheme was able to specifically and directly detect 50 to
200 cells/mL of E. coli or S. Typhimurium in 35 minutes, with a detection limit of 50 cells/mL for E. coli
or S. Typhimurium (Table 2).

2.2.2. Potentiometry

Potentiometry is one of the most common, cheap, simple and portable electrochemical technique.
It is based on the measure of a change of potential between two electrodes.

Dill et al. [146] were able to detect S. Typhimurium in carcass washing samples at a level as
low as 119 CFU within 15 minutes using the Threshold® immunoassay system. In a first step,
the analyte (Salmonella), a biotinylated anti-Salmonella antibody, a fluorescein-labeled anti-Salmonella
antibody, and streptavidin were mixed to form an immunocomplex in solution phase. The two
antibodies were necessary for the formation of analyte-immunosandwich complex. In a second
step, this immunocomplex was filtered through a 0.45 µm biotin-coated microporous nitrocellulose
membrane, leading to immobilization via biotin-avidin affinity. Finally, the binding of Salmonella-specific
immunocomplex was revealed by the addition of a urease-bound antifluorescein antibody. In presence
of urea, the urease converted the substrate into ammoniac and CO2, inducing a variation of pH at
the surface of the chip. The resultant pH change was monitored with time and the output signal is
reported in µV/s (Table 2).

2.2.3. Impedimetry

Electrochemical impedance spectroscopy (EIS) is an effective technique for sensing the binding
of compounds onto the surface of an electrode by measuring the characteristics of the electrode and
electrolyte interfacial properties, and more specifically the charge transfer resistance. EIS is especially
suited for the development of affinity-based biosensors as it allows the label-free detection of binding
events [133].

For the first time, Mutreja et al. [147] developed an impedimetric immunosensor based on
the use of a specific surface antigen, OmpD, as a biomarker for the detection of S. Typhimurium.
Anti-OmpD antibodies were used as detector probe to develop an immunoassay on graphen oxide
modified screen-printed carbon electrodes. Some water samples were artificially contaminated with
S. Typhimurium cells, and the impedance response was studied. The resulting immunosensor was
able to detect S. Typhimurium with a sensitivity of 101 CFU/mL [147] (Table 2). Another impedimetric
biosensor for S. Enteritidis detection was developed by Kim et al. [148] that detected the impedance
variation caused by the attachment of Salmonella cells onto corresponding antibodies immobilized
on interdigitated gold electrodes. This biosensor was able to detect S. Enteritidis cells at a level
of 106 CFU/mL in buffer within three minutes. The detection performances were enhanced by the
use of nanoparticles. Using nanoparticles, the sensor performances were greatly enhanced, with
detection limits of 104 CFU/mL and 105 CFU/mL of S. Enteritidis in buffer and milk, respectively
(Table 2). Another team used the nanoparticles [149] to develop an impedance immunosensor which
rapidly and sensitively detected Salmonella Typhi (S. Typhi) in small volume sample (10 µL). The cells
were tagged with gold nanoparticles via high-affinity antigen–antibody interactions and micron-gap
interdigitated electrodes were used to generate high electric field gradients near the electrode edges to
improve the signal collection efficiency. The signal from the linked gold nanoparticles was used for the
quantification of the cells present in the 10 µL of sample loaded into the sensor. The assay was achieved
in 5 minutes and a LOD of 100 CFU/mL was obtained (Table 2). More recently, an impedimetric
biosensor was developed by Guler Gokce et al. where a capture DNA probe was covalently immobilized
onto polyurethane/poly(m-anthranilic acid) (PU/P3ANA) nanofibers [144]. Both immobilization and
hybridization processes were investigated by electrochemical impedance spectroscopy (EIS). The
resulting DNA biosensor showed a linear response for DNA concentrations ranging from 0.1 µM to 10
µM and a high sensitivity (8.17 kΩ/µM) (Table 2). The sensor was selective to a single-base mismatch
and was stable up to one month.
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2.3. Mass-Based Biosensors

The transduction of mass-based biosensors consists of measuring the oscillation induced by small
mass variations on a piezoelectric crystal surface. Bulk wave (BW) or quartz crystal microbalance
(QCM), and surface acoustic wave (SAW) represent the two main types of mass-based sensors.
Mass-based detection often allows direct label-free analysis, with good sensitivity and high specificity.

Piezoelectric sensors for bacterial detection are generally coated with appropriate antibodies
and the sensor is directly introduced in the solution containing the target cells. When the cells bind
antibodies, the mass increase at crystal surface induces a proportional oscillation decrease. According
to the Sauerbrey equation, the frequency decrease is proportional to the mass change, which depends
on bacterial concentration.

Prusak-Sochaczewski et al. [150] developed a QCM biosensor for the detection of S. Typhimurium.
The antibodies grafted on the crystal were selective for a structural antigen present in a large number of
Salmonella species. The sensor had a linear response between 105–109 cells/mL of microbial suspension.
It was shown that 5 h are required to analyze a sample at 105 cells/mL of S. Typhimurium. According
to the authors, the coated crystal was stable for six to seven days and the crystal could be reused if the
bacteria were removed using concentrated urea (8M) (Table 2). König et al. [151] used a similar sensor
for the detection of Salmonella, among other bacteria. The resulting sensor showed a linear response in
the range of 106–108 cells and, according to the authors, the sensor could be reused 12 times (Table 2).
The detection of S. Typhimurium was also described using a piezoelectric biosensor in a flow-injection
system [152]. In this case, anti-Salmonella spp. antibodies were immobilized onto a gold quartz
crystal surface using the polyethylenimine-glutaraldehyde (PEG) coupling technique. The results were
obtained in 25 minutes with a linear range of 5.3 × 105 to 1.2 × 109 CFU/mL (Table 2). Other authors
used the Langmuir–Blodgett method to immobilize polyclonal antibodies against S. Typhimurium
on the surface of a quartz crystal acoustic wave device [153]. This sensor showed a detection limit
of a few hundred cells/mL, a response time under 100s, a working range of 102–1010 cells/mL, and a
linear response between 102–107 cells/mL. According to the authors, the sensors preserved 75% of their
sensitivity over a period of 32 days (Table 2). Su et al. [154] developed a QCM immunosensor which
allow the detection of S. Typhimurium by simultaneously measuring resonance frequency and motional
resistance. The antibodies were immobilized onto the crystal gold surface via protein A interaction.
When analyzing chicken meat samples, the best results were obtained by measuring resonance
frequency, which was proportional to the S. Typhimurium concentration in the range of 105–108

cells/mL. The detection limit was even decreased to 102 cells/mL by using anti-Salmonella-modified
magnetic beads as a separator/concentrator agent during sample pretreatment (Table 2). Recently, a
QCM instrument with a microfluidic system for the rapid and real-time detection of S. Typhimurium
was developed by Salam et al. [155]. A gold sensor chip with two sensing areas was modified by
carbodiimide to allow the grafting of the anti-Salmonella monoclonal antibody (capture antibody)
on the active spot and the grafting of a mouse IgG antibody on the control spot. The recognition
of Salmonella cells by immobilized anti-Salmonella antibodies induced a change in frequency of the
quartz crystal resonator that was correlated to Salmonella concentration. Salmonella cells were detected
using either direct, sandwich, or sandwich assay with antibody-conjugated gold nanoparticles. The
highest sensitivity was obtained using gold nanoparticles modified antibodies, with a LOD near 10–20
CFU/mL Direct and sandwich assays had detection limits of 1.83 × 102 CFU/mL and 1.01 × 102 CFU/mL,
respectively. This sensor, developed by Salam et al., has shown good sensitivity and selectivity against
Salmonella despite the presence of endogenous bacteria in chicken meat samples (Table 2).

Despite these good performances, it must be stressed that detection and quantification of bacteria
using piezoelectric sensors may be a relatively long process in terms of incubation time and due to the
numerous washing and drying steps required before the measurement.
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3. Aptasensors for Salmonella Detection

When used as the molecular recognition elements, antibodies allow a direct and rapid detection
of Salmonella with high affinity and specificity. Despite these advantages, antibodies have several
drawbacks related to their laborious production and their relative instability [162]. To overcome the
limitations encountered with these immunoreagents, the development of alternative affinity molecules,
such as nucleic acids (DNA or RNA), has appeared as a promising solution. Classical nucleic acid
biosensors, also called genosensors, allow the detection of target specific genes, they are based on the
hybridization of a single-strand DNA (ssDNA) to its complementary strand. The strategy based on DNA
complementarity has already been exploited in DNA microarrays for several applications including
gene expression analysis, polymorphism studies, and genotyping [7,25,119,163–165]. In contrast,
aptamers are short oligonucleotides that are able to adopt a stable secondary structure capable of
binding a target molecule with high affinity and specificity. Due to their remarkable properties,
aptamers have become highly attractive for developing analytical tools such as biosensors for food
analysis, environment monitoring, and medical diagnostic [166,167]. As aptamers can be designed
for a great variety of targets, ranging for ions to whole cells, several aptasensors have already been
described for the detection of various microorganisms [168–170].

3.1. Aptamers Selection

Aptamers are short DNA or RNA molecules that can bind with high affinity and specificity to
their target molecules, which can be drugs, proteins, toxins, sugar, antibiotics, and bacteria. However,
RNA aptamers appeared to be less stable than DNA aptamers. The synthesis of aptamers presents
many advantages compared to the production of antibodies as it is fast, affordable, does not involve
animal production, and does not suffer from batch-to-batch variations. DNA aptamers are stable over
time are they are resistant to high temperatures, they generally show a high affinity for their target,
and they can be easily modified by chemical groups for immobilization or labeling purposes.

Aptamers are primarily selected through an entirely in vitro combinatorial biochemistry method,
called systematic evolution of ligands by EXponential enrichment (SELEX) (Figure 6). This process
consists of bringing the target molecule into contact with a single-stranded random oligonucleotide
library of DNA or RNA (approximately 1015 candidates). After partitioning and discarding the
non-binding oligonucleotides, the target-bound candidates are amplified and used in the next selection
round. Consecutive binding selection-amplification steps are repeated seven- to 15-fold, leading to
the selection of the more specific candidates [25] (Figure 6), which are then cloned and sequenced to
identify the consensus motif corresponding to the minimal sequence capable of highly specific binding
of the target [171] (Figure 6). The classical SELEX procedure has been already used for selecting
aptamers against a wide range of pathogenic microorganisms [25,172]. These aptamers are able to
bind to cell surface proteins, for example, the PilS protein of S. enterica type IVB pili [173]. In the same
manner, Joshi et al. [172] selected one aptamer targeting the outer membrane proteins (OMPs) of S.
Typhimurium. However, the classical SELEX method that can be used for purified and soluble protein
targets is often not adapted to membrane proteins as it requires the presence of cell membrane or a
co-receptor to fold correctly. For this reason, some alternative SELEX methods were developed where
a live whole cell is used as a target. This method, called whole-cell SELEX, was realized for the first
time by Bruno et al. [174] for the selection of DNA aptamers against the spores of a non-pathogenic
Bacillus anthracis strain. Since then, the whole cell-SELEX process has been applied by many teams
for the selection of aptamers against the food pathogen strains of the genus Salmonella. The whole
cell-SELEX was used for the selection of two DNA aptamers against S. Enteritidis and S. Typhimurium,
and more particularly against these bacteria in VBNC state [175,176]. These two cell-SELEX were
conducted in twelve rounds of selection with a positive selection step against viable S. Enteritidis and
S. Typhimurium. A negative selection step was added with a mixture of related pathogens including
E. coli, S. aureus, P. aeruginosa, and Citrobacter freundii with S. Typhimurium or S. Enteritidis. After
sequencing, two aptamers were retained for their high affinity to S. Enteritidis and S. Typhimurium
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strains (Table 4). Another team [177] selected a DNA aptamer for S. Typhimurium by cell-SELEX with
a relatively high binding affinity and with a dissociation constant (Kd) of 1.73 ± 0.54 µM (Table 4).
Similarly, Duan et al. [178] isolated another DNA aptamer for the detection of S. Typhimurium with
a Kd of 6.33 ± 0.58 µM (Table 4). A DNA aptamer for S. Typhimurium was also obtained after
10 rounds of selection and counter selection with a mix of S. Enteritidis, E. coli, and S. aureus [179].
Recently, a study focused on the selection of DNA aptamers toward live cells of S. Enteritidis and S.
Typhimurium by whole cell-SELEX. After 10 rounds of selection and a counter selection during the
seventh round with a mixture of S. Enteritidis, S. Typhimurium, P. aeruginosa, and E. coli, two DNA
aptamers for S. Enteritidis and one for S. Typhimurium were selected [180]. The two aptamers for S.
Enteritidis showed Kd values of 4.66 µM and 3.8 µM, while the aptamer for S. Typhimurium had a Kd
of 0.530 µM (Table 4). RNA aptamers have also been described for the detection of S. Typhi [173] and S.
Enteritidis [181] using classical SELEX with PiLS protein as target and the whole cell-SELEX protocol
(Table 4).
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Figure 6. Synoptic representation of the SELEX method for DNA library. Three main stages constitute
a general SELEX protocol, the incubation of the library with the target which is sometimes bound to a
support, the separation of the oligonucleotides linked to the target from the unbound oligonucleotides
from the library, and the amplification of the oligonucleotides linked to the target. For this representation,
the primers are modified with a fluorochrome for the forward primer and with biotinylated magnetic
beads. After the last stage, the amplified oligonucleotides (dsDNA) are denatured, in this representation,
with the help of magnetic beads which are retained by a magnet, and therefore only the ssDNA tagged
with the fluorochrome are used for the next round. The presence of the fluorochrome tracks the amounts
of aptamers selected during the SELEX process. For RNA-SELEX, some additional steps are included
first, i.e., an in vitro transcription to obtain an RNA library, and the reverse transcription of bound RNA
molecules to obtain cDNA and its subsequent amplification.
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Table 4. Aptamers selected against Salmonella strains by the SELEX method.

Microorganism Aptamers
Name

Target for
the SELEX Aptamer Sequences (5′-3′) Size

(Base) Kd References

DNA Aptamers

S. Typhimurium

33
OMPs

TATGGCGGCGTCACCCGACGGGGACTTGACATTATGACAG
40 - [172]

45 GAGGAAAGTCTATAGCAGAGGAGATGTGTGAACCGAGTAA

33 OMPs
TATGGCGGCGTCACCCGACGGGGACTTGACATTATGACAG

(from Joshi et al. [172]) 40
- [182]
- [183]

S8-7 Whole cell CTGATGTGTGGGTAGGTGTCGTTGATTTCTTCTGGTGGGG 40 1.73 ± 0.54 µM [177]

ST2P Whole cell CAAAGATGAGTAGGAAAAGATATGTGCGTCTACCTCTTGACTAAT 87 6.33 × 10−3
±

0.58 × 10−3 µM
[178]

C4 Whole cell ACGGGCGTGGGGGCAATGCCTGCTTGTAGGCTTCCCCTGTGCGCG 45 - [179]
S. Typhimurium St1

Whole cell
CCGATGTCCGTTAGGGCTCCTCCATAGAT 29 0.530 ± 0.01 µM

[180]
S. Enteritidis

Se-1 CACACCGGAAGGGATGCCACCTAAACCCC 30 4.66 ± 0.35 µM
Se-2 CACAGATGACGTCTGGCACATAATTAACAC 30 3.83 ± 0.10 µM

S. Paratyphi A Apt 22 Whole cell ATGGACGAATATCGTCTCCCAGTGAATTCAGTCGGACAGCG 41 47 × 10−3
±

3 × 10−3 µM
[184]

S. Typhimurium A2 - CCAAAGGCTACGCGTTAACGTGGTGTTGG 29 - [185]

S. Enteritidis - OMPs TCGGCAACAAGGTCACCCGGAGAAGATCGGTGGTCAAACTGCAT
AGGTAGTCCAGAAGCCGAACAAGCTGAGGATGAAGAACAACGGCT 89 - [131]

S. Typhi - IVB Pili GGGAACAGUCCGAGCCUCACUGUUAUCCGAUAGCAGCGCGGGAU
GAGGGUCAAUGCGUCAUAGGAUCCCGC 71 - [102]

S. Enteritidis SENT-9 Whole cell CTCCTCTGACTGTAACCACGCACAAAGGCTCGCGCATGGTGTGTA
CGTTCTTACAGAGGT 60 7 × 10−3 µM [176]

S. Typhimurium STYP-3 Whole cell GAGTTAATCAATACAAGGCGGGAACATCCTTGGCGGTGC 39 25 × 10−3 µM [175]

- OMPs
TTTGGTCCTTGTCTTATGTCCAGAATGCGAGGAAAGTCTATAGCAG

AGGAGATGTGTGAACCGAGTAAATTTCTCCTACTGGGATAGGTGGATTAT
(modified from Aptamer 45 of Joshi et al. [172])

96 - [186,187]

RNA Aptamers

S. Typhi S-PS8.4 IVB pili UCACUGUUAUCCGAUAGCAGCGCGGGAUGA 30 8.56 × 10−3 µM [173]

S. Enteritidis S 25 Whole cell GGGUUCACUGCAGACUUGACGAAGCUUGAGAGAUGCCCCCUGAUG
TGCAUUCUUGUUGUGUUGCGGCAAUGGAUCCACAUCTACGAAUUC 90 - [181]
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In conclusion, whole cell-SELEX appears as a very efficient procedure for the selection of aptamers
against pathogens, as it does not need any isolation and purification of the target component. Moreover,
the aptamers are selected when the targets are in their native conformation on the cell surface, so that
they are able to recognize the whole bacteria with a higher specificity, by sometimes binding several
sites of the cell membrane. In Table 4, the different aptamers developed against different Salmonella
species and serovar are summarized and, as can be seen from the table, Kd value for most of the
aptamers ranges from 7 × 10−3 to 4.6 µM, demonstrating their good affinity.

3.2. Aptamers as Ligands for Magnetic Separation

Due to their high affinity, the aptamers can be used as a ligand to realize a magnetic capture or
separation of the target from its matrix. For example, an aptamer (S8-7) selected by whole cell-SELEX
(Table 4) was successfully used for the magnetic capture of S. Typhimurium cells in buffer [177].
The strain capture was followed by qPCR detection. The LOD of the aptamer magnetic capture qPCR
assay was from 102 to 103 CFU, equivalent to S. Typhimurium in 290 µL of sample [177]. This study
provides proof-of-concept that biotinylated aptamers selected by whole cell-SELEX method can be
used in a qPCR-based capture-detection platform dedicated to S. Typhimurium. Another example is
the selection of DNA aptamers against the outer membrane proteins (OMPs) of S. Typhimurium [172]
(Table 4). The aptamer, named 33, was selected and bound to magnetic beads to allow the capture of S.
Typhimurium into whole carcass chicken rinse samples. S. Typhimurium extracted from the matrix
were detected and quantified by using real-time PCR. The same team showed interesting results with
detection limits of 101 to 102 CFU of S. Typhimurium for 9 mL of rinsate in a pull-down assay format,
and detection limits of 102 to 103 CFU in 25 mL of rinsate in recirculation format [172].

3.3. Optical Aptasensors

According to the used transducers, four types of aptasensors have been described for Salmonella
detection, involving surface plasmon resonance (SPR), surface-enhanced Raman (SER), and fluorescence
or chemiluminescence detection [188].

3.3.1. Surface Plasmon Resonance Aptasensors

As described before, SPR spectroscopy is a mass-sensitive sensor that detects the mass change.
When the incident light at a critical angle of incidence enters into the resonator with two different
refractive indexes, it leads to resonation of the electrons of the metal [188]. SPR aptasensors are
label-free, can be miniaturized to become portative, and the analysis can be easily automated.

Recently, Yoo et al. [189] developed a single localized surface plasmon resonance (LSPR) sensor
for the detection and identification of three different bacterial species, including S. Typhimurium. This
system was based on a multispot gold-capped nanoparticles array chip composed of a dielectric layer
comprised of a thin gold layer on a silica nanoparticles-absorbed glass slide. Each species-specific
aptamer was immobilized on each spot of the chip. For S. Typhimurium the authors used the aptamer
sequence already obtained by Joshi et al. [172] (Table 4) and the resulting aptasensor showed a detection
limit of 30 CFU/mL (Table 5).
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Table 5. Aptasensors for Salmonella strains detection in food samples.

Microorganism Sample Matrix Aptamer Reference Immobilization
Method Transducer Limit of

Detection
Analyze
Time Working Range References

S. Typhimurium Buffer

33 from Joshi et al. [172] Gold surface
Thiolated aptamers SPR 30 CFU/mL - 104–109 CFU/mL [189]

Unknown:
obtained from Dr. Srinand
Sreevatsan’s group

Gold nanoparticles
thiolated aptamers SERS 102 CFU/mL 45 min 102–103 CFU/mL [190]

S. Paratyphi A City water Apt22 Free: DNAzyme Chemiluminescence 104 CFU/mL - 104–108 CFU/mL [184]

S. Typhimurium

Buffer
33 from Joshi et al. [172]

Avidin-biotin

Fluorescent

5 CFU/mL - 101–105 CFU/mL [191]

ST2P

25 CFU/mL - 50–106 CFU/mL [178]

Buffer
Shrimp samples
(Validation)

Free: Flow
cytometry 5 × 103 CFU/mL - 3.8 × 104–3.8 × 107 CFU/mL [192]

Buffer
Water from Tai Lake
(Validation)

33 from Joshi et al. [172] Streptavidin-biotin Optical-UV 7 CFU/mL - 50–106 CFU/mL [7]

Buffer A2 Adsorption 105 CFU/mL 20 min - [185]

Buffer
Milk (Validation) 33 from Joshi et al. [172] Avidin-biotin Fluorescent 15 CFU/mL - 102–105 CFU/mL [193]

S. Enteritidis Milk - Streptavidin-biotin LFA 101 CFU/mL - - [131]

S. Typhi Phosphate buffer - EDC-NHS-amine Potentiometry - 60 s 0.2–106 CFU/mL [102]

S. Enteritidis
Buffer

SENT-9 Self-assembled
monolayer (SAM)

Impedimetry

600 cells/mL 10 min
103–105 CFU/mL

[176]

S. Typhimurium STYP-3 - [175]

S. Typhimurium

Buffer
Pork (Validation) 33 from Joshi et al., [172] Gold nanoparticles

thiolated aptamers 3 CFU/mL - 2.4–2.4 × 103 CFU/mL [194]

Buffer 33 from Joshi et al., [172]
Self-assembled
monolayer (SAM)

1 CFU/mL
40 min

6.5 × 102 to 6.5 × 108 CFU/mL [182]
Eggs 6.5 × 103 to 6.5 × 107 CFU/mL

Buffer
Apple Juice
(Validation)

Aptamer 45 from Joshi et al.,
[172] with length modification

Covalent 3 CFU/mL - 102–108 CFU/mL [186]

EDC-NHS-amine 6 CFU/mL - 101–108 CFU/mL [187]

S. Typhimurium

Milk S8-7 from Dwivedi et al. [177] Amine QCM 100 CFU/mL 10 min 100–4 × 104 CFU/mL [195]

Buffer
Chicken meat 33 from Joshi et al., [172]

Thiolated aptamers
– glutaraldehyde -
rGO-CHI

DPV 101 CFU/mL - 101 to 106 CFU/mL [183]

QCM: Quartz crystal microbalance; SPR: Surface plasmon resonance; SERS: Surface-enhanced Raman spectroscopy; and LFA: Lateral flow assay.
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3.3.2. Surface-Enhanced Raman Spectroscopy Aptasensors

Surface-enhanced Raman spectroscopy (SERS) is a surface-sensitive technique that enhances
Raman scattering by molecules adsorbed on rough metal surfaces or nanoparticles [188]. When the
light gets through the media, the incident photons and molecules collide with each other and the
molecular vibrational/rotational energy and photon energy superimpose, producing the scattering
spectrum due to the change of frequency [188].

Ravindranath et al. [190] developed a SERS aptasensor that allows the simultaneous detection of
S. Typhimurium, S. aureus, and E. coli O157:H7. An aptamer for S. Typhimurium and two antibodies
for S. aureus and E. coli were immobilized onto gold, silver, and silver-gold core-shell nanoparticles,
respectively, labeled with Raman dye molecules. The results showed a good specificity and sensitivity
of the SERS aptasensor that simultaneously detected the three bacteria within 45 minutes, with a
detection limit of 102 CFU/mL (Table 5).

3.3.3. Chemiluminescent Aptasensors

Chemiluminescence corresponds to the light radiation produced by a particular kind of molecule
that are able to adsorb chemical energy. This method had a high sensitivity, is simple, inexpensive,
and can easily be miniaturize.

Recently, Yang et al. [184] used the SELEX method to isolate a DNA aptamer against S. Paratyphi
A, which was called Apt22 (Table 4). The authors designed a detection probe (P0) by melting Apt22
sequence (P2) with a horseradish peroxidase mimicking DNAzyme (P1). P0 was allowed to bind
by noncovalent self-assembly with single-walled carbon nanotubes (SWNTs). When the targets,
S. Paratyphi A and hemin, were added, they bind to the P2 and P1 sequences, respectively, resulting in
P0 dissociation from SWNTs and formation of an active hemin/G-quadruplex DNAzyme. The liberated
DNAzyme then act as a catalyst for the generation of chemiluminescence signal through the oxidation
of luminol by H2O2. This detection system was validated for the detection of S. Paratyphi A in
artificially contaminated city water samples with a detection limit of 104 CFU/mL (Table 5).

3.3.4. Fluorescent Aptasensors

Fluorescent aptasensors are mainly based on the fluorescence polarization or fluorescence
intensity change produced by the interaction of targets and fluorescent probe labeled aptamers [188].
A fluorescent bioassay was developed in 2012 for the simultaneous detection of S. Typhimurium and
S. aureus using two aptamers immobilized on magnetic nanoparticles (Table 4) [191]. The secondary
modification of nanoparticles with NaYF4,Yb, Er/Tm, allowed the emission of a luminescent signal
when the complexes were laser-excited at 980 nm. This luminescent signal was amplified by the
magnetic separation and concentration. A LOD of 5 CFU/mL was obtained for S. Typhimurium
(Table 5) [191]. In another study, Duan et al. [178] selected an aptamer (ST2P) against S. Typhimurium
by the whole bacterium-based SELEX method (Table 4). Some ST2P aptamers were conjugated
to magnetic nanoparticles for capture purpose, while others where labeled with a fluorescent dye
(FAM) for detection purpose. As several copies of each type of aptamer were able to recognize and
bind the bacterial strain, the quantification of S. Typhimurium was possible after a simple magnetic
separation, and the observed LOD was 25 CFU/mL (Table 5). Using the same aptamer sequence, Duan
et al. [192] developed a flow cytometry bioassay for S. Typhimurium using quantum dots (QDs) as
fluorescent markers (Tables 4 and 5). The detection limit of this bioassay was 5 × 103 CFU/mL for
S. Typhimurium. To overcome the use of complex analytic equipment, such as cytometers, some
authors used nanogold particles as markers, allowing a naked eye reading or a simple colorimeter
to obtain the result. Yuan et al. [7] developed a sandwich assay complex using a capture aptamer
immobilized on microplate wells, allowing bacterium recognition, a revelation aptamer coupled with
gold nanoparticles (AuNPs), and silver staining amplification (Table 4). The described bioassay had a
LOD of 7 CFU/mL (Table 5).
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A similar bioassay was described using label-free aptamers that adsorbed on the surface of
unmodified AuNPs for the detection of E. coli O157:H7 and S. Typhimurium [185] (Table 4). The detection
was carried out by the aggregation of the AuNPs induced by the presence of the target bacteria, which
was associated with a red-to-purple color change upon high-salt conditions. This system allowed
detecting as low as 105 CFU/mL S. Typhimurium, within 20 min and a specificity of 100% (Table 5).
More recently, Wang et al. [193] developed a sandwich-type fluorescent aptameric assay allowing
the simultaneous detection of S. aureus and S. Typhimurium, based on the aptamers described
by Joshi et al. [172] (Table 4). Signal probes consisted of the aptamers labeled with multi-color
lanthanide-doped time-resolved fluorescence nanoparticles, while aptamers immobilized on Fe3O4

magnetic nanoparticles were used as capture probes. Due to the magnetic separation and concentration
of Fe3O4 nanoparticles, detection limits were 15 CFU/mL (Table 5).

3.3.5. Colorimetry-Based Aptasensors

Bayraç et al. [196] developed a sandwich-type aptamer-based colorimetric platforms were the
aptamer against S. Enteritidis was selected by cell systematic evolution of ligands by EXponential
enrichment (cell-SELEX). The authors selected two aptamers with a Kd of 0.971 and 0.309 µM after
12 rounds of cell-SELEX. The two aptamers were used to develop two sandwich-type capillary detection
platforms, where the detection of the bacteria was based on color change visible to the naked eye.
For the two aptamers the detection limit was of 103 CFU/mL in cell suspension and milk samples [196].

3.3.6. Flat Substrate Aptasensors

The detection limit has been decreased to 104 cells by silver enhancement. The team of
Fang, developed a particular lateral flow assay for the detection and quantification of Salmonella
Enteritidis [131] (Table 4). For the detection, two aptamers against different outer membrane proteins
of S. Enteritidis were used. One of the aptamers was used to realize the magnetic bead enrichment
and the second was used as a template to carry up a strand displacement amplification (SDA). Finally,
the single-strand DNA obtained by SDA was detected with a lateral flow biosensor. The LOD of this
bioassay was 101 CFU of S. Enteritidis (Table 5).

3.4. Electrochemical Aptasensors

Electrochemical aptasensors constitute the immobilization of the aptamers (DNA or RNA) onto
the electrodes surfaces with or without a second element, which add an electrochemical activity. In the
presence of the target, a change in the structure of the aptamers on the electrode surface occurs, that
induced a variation in the electrochemical signal (current, impedance, potential, or conductance). This
variation has been analyzed and the result was correlated with the target concentration or with the
presence of the target in the case of an on/off biosensor.

Electrochemical aptasensors combine the high specificity of the recognition between the target
and the aptamer with the high sensitivity of the electrochemical biosensors.

3.4.1. Potentiometry

Zelada-Guillén et al. [102] developed a label-free potentiometric aptasensor for detecting S. Typhi
(Table 4). The aptamer sequence was modified with a five-carbon spacer and an amine group at the
3’ end and was covalently immobilized into a layer of carboxylated single-walled carbon nanotubes
(SWCNTs) by a π–π stacking interaction [197]. The couple aptamer SWCNT corresponds to the
sensing and the transducing layer of the sensor. When the target was absent, the aptamers were
self-assembled on carbon nanotubes by the π–π stacking interaction. In presence of the target, S. Typhi,
a conformational change in the aptamer appeared and the phosphate groups were separated from
the SWCNT that induced a charge change and a variation of the recorded potential. This biosensor
allowed the detection of S. Typhi, in phosphate buffer, from 0.2 CFU/mL to 106 CFU/mL in a short
response time of 60 s (Table 5).
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3.4.2. Impedimetry

An aptamer-based impedimetric sensor for the typing of bacteria (AIST-B) in particular S.
Enteritidis was developed by Labib et al. [176] (Table 4). First, DNA aptamers were selected by
cell-SELEX technique after twelve rounds of selection. The most specific aptamer with the best binding
affinity to S. Enteritidis was used for the development of an impedimetric sensor via self-assembly
onto gold nanoparticles-modified screen-printed carbon electrode. Their aptasensor could detect 18
cells of S. Enteritidis in 30 µL (600 cells/mL) in 10 min and was able to distinguish S. Enteritidis from
the other species S. Typhimurium and S. Choleraesuis (Table 5). The team of Labib also developed
an aptamer-based sensor designed for the detection of live cells and also for the detection of VBNC
cells of S. Typhimurium [175] (Table 4). First, a highly specific DNA aptamer against S. Typhimurium
was selected by cell-SELEX technique after twelve rounds of selection and a sequencing step. Finally,
the DNA sequence with high binding affinity was integrated onto gold nanoparticles-modified
screen-printed carbon electrode to develop an impedimetric sensor. Their aptamer-based viability
impedimetric sensor (AptaVISens-B) was able to detect at least 18 live cells in 30 µL of sample
(600 cells/mL) and was able to distinguish live and heat killed S. Typhimurium (Table 5). Some
researchers developed some impedimetric biosensors with a better LOD. Ma et al. [194] developed an
electrochemical biosensor based on a glassy carbon electrode modified with graphene oxide and ssDNA
aptamer against Salmonella linked on gold nanoparticles for the specific detection of Salmonella genus.
They used the aptamer sequence previously obtained by Joshi [172] (Table 4). The Salmonella cells were
incubated on the modified electrode and the electrochemical impedance spectrum was measured. This
aptamer-based electrochemical biosensor had a linear relationship between 2.4 CFU/mL and 2.4 ×
103 CFU/mL and a detection limit of 3 CFU/mL (Table 5). Another team developed an impedimetric
biosensor with a modified electrode were a copolymer, the poly [pyrrole-co-3-carboxyl-pyrrole], was on
the surface of the electrode and the aptamer were grafted on the polymer [186] (Table 4). This label-free
electrochemical biosensor was suitable for the detection of S. Typhimurium in the concentration range
of 102 to 108 CFU/mL with a LOQ of 100 CFU/mL and a LOD of 3 CFU/mL (Table 5). Recently, another
label-free impedimetric aptamer-based biosensor for S. Typhimurium detection was developed by
Bagheryan et al. [187] (Table 5). This biosensor was designed by grafting a diazonium supporting layer
onto screen printed carbon electrodes and by the chemical immobilization of the aminated aptamer
obtained from the work of Joshi et al. [172] (Table 4). This impedimetric aptasensor had a linear
respond, on a logarithm scale from 101 to 108 CFU/mL with a LOQ of 101 CFU/mL and a LOD of 6
CFU/mL. Their aptasensor was able to discriminate S. Typhimurium from six other bacteria strains.
They also validated the ability of the biosensor to detect S. Typhimurium in artificially contaminated
apple juice samples at concentrations of 102, 104, and 106 CFU/mL.

More recently, Ranjbar et al. [182] developed an electrochemical aptasensor based on the use of
nanoporous gold as a substrate for S. Typhimurium detection. A thiol functionalized aptamer against
S. Typhimurium (Table 4) was linked to the surface of NPG/Au/GCE via self-assemble monolayers
(SAMs) formation. Using EIS, this aptasensor was capable of detecting S. Typhimurium in a wide
linear dynamic range 6.5 × 102 to 6.5 × 108 CFU/mL with a LOQ of 6.5 × 101 CFU/mL and LOD of
1 CFU/mL, and was able to distinguish live cells from dead [182]. The biosensor was tested with real
samples. Eggs were spiked with different amounts of Salmonella (6.5 × 103 to 6.5 × 107 CFU/mL) and
the recovery of the sensor was comprised between 84.61% and 109.07%. The results were obtained in
40 min [182].

3.4.3. Differential Pulse Voltammetry (DPV)

Dinshaw et al. [183] developed an electrochemical aptasensor using electrochemically-reduced
graphene oxide-chitosan (rGO-CHI) composite as a conductive substrate for the detection of Salmonella
enterica serovar Typhimurium whole cell. The biorecognition element of this aptasensor was a
thiol-functionalized aptamer against the outer membrane protein of Salmonella (Table 4) immobilized
on rGO-CHI by using glutaraldehyde as the crosslinker. The aptasensor exhibited a low LOD of
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101 CFU/mL for S. Typhimurium. They have also tested the aptasensor with artificially spiked raw
chicken samples and the results were in line with the results obtained with pure cultures. This
aptasensor was specific to Salmonella and could distinguish between Salmonella enterica cells and
non-Salmonella bacteria (S. aureus, K. pneumonia, and E. coli).

3.5. Mass-Based Aptasensors

Quartz crystal microbalance aptasensors are based on the immobilization of the aptamer on the
quartz crystal. When the aptamer recognizes and retains the target, the load on the surface of the quartz
increases and the oscillation frequency of the quartz varies and is correlated to the mass adsorbed on
the quartz. This aptasensor is simple and has a high sensitivity.

Ozalp reported on a sensitive strategy for the detection of S. Typhimurium cells in food samples
based on the combination of an aptamer-based magnetic separation system, for a rapid enrichment of
target pathogens, and a QCM analysis for specific and real-time monitoring [195] (Table 4). The system
could capture S. Typhimurium cells in 10 min from milk samples and the QCM allowed the specific
detection of the strain. A linear response ranging from 100 to 4 × 104 CFU/mL cells was obtained,
as well as a LOD of 100 CFU/mL (Table 5). Moreover, the aptamer sensor can be regenerated by the
addition of a NaOH solution at the surface of the QCM crystal.

4. Conclusions

The common strategies for the detection of the foodborne pathogen Salmonella spp. consist of the
gold standard conventional microbiological culturing techniques, PCR methodologies, and immunology
techniques. In addition to these methods, the development of novel strategies involving biosensors and,
more particularly, aptasensors is a real alternative for the rapid and low-cost detection of foodborne
bacteria. Now, aptamers can be easily selected using SELEX technology that includes a variety of
techniques that are flexible and tunable enough to target any compound of interest. The high selectivity
of aptamers has allowed the development of sensitive and selective aptasensors for the determination
of Salmonella spp. strains (Tables 2 and 5) in various food matrices. All these researches for the selection
of new aptamers against Salmonella spp., as well as the promising results achieved for the detection
of Salmonella, show that aptamer-based technologies could become a real alternative to conventional
strategies for the detection of other foodborne pathogens.
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