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Abstract

Humans are remarkably good at performing visual tasks, but experimental measurements reveal 

substantial biases in the perception of basic visual attributes. An appealing hypothesis is that these 

biases arise through a process of statistical inference, in which information from noisy 

measurements is fused with a probabilistic model of the environment. But such inference is 

optimal only if the observer’s internal model matches the environment. Here, we provide evidence 

that this is the case. We measured performance in an orientation-estimation task, demonstrating 

the well-known fact that orientation judgements are more accurate at cardinal (horizontal and 

vertical) orientations, along with a new observation that judgements made under conditions of 

uncertainty are strongly biased toward cardinal orientations. We estimate observers’ internal 

models for orientation and find that they match the local orientation distribution measured in 

photographs. We also show how a neural population could embed probabilistic information 

responsible for such biases.

INTRODUCTION

Hermann von Helmholtz1 (and to some extent, Al-Hazen2) described perception as a process 

of unconscious inference, generating a best guess about the world given the available 

sensory measurements and an internal model of the world. When sensory information is 

degraded, reliance on an internal model becomes advantageous. When reaching for the light 

switch in a dim room, for example, the knowledge that it is likely to be near the door is 

usually beneficial.

The Bayesian framework provides a quantitative formulation of the inference problem, and 

has been used to explain aspects of human perception3–5, cognition6, and visuo-motor 

control7,8. A Bayesian observer’s internal model of an environmental attribute is represented 
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using a prior probability distribution. In order to achieve optimal inference, the observer’s 

prior should be matched to the actual distribution of the attribute in the environment, which 

we refer to as the environmental distribution. Here, we provide direct evidence that this 

requirement is satisfied for the perceptual task of estimating the orientation of local image 

structure.

To test the correspondence between the environmental distribution and observer’s prior, one 

must know or estimate these two distributions. Many previous studies have exposed 

observers to stimuli drawn from a known distribution7,8, and compared their behavior to that 

of an optimal observer with full knowledge of that distribution. Such an approach is limited 

by the ability of humans to internalize the statistics within the time frame of the experiment, 

and leaves open the question of what prior knowledge humans use under natural conditions. 

Alternatively, one can attempt to derive an environmental distribution from known 

properties of the environment and the image-formation process. For example, sunlight 

comes from above, and humans appear to make use of this information9. However, a precise 

description of the illumination in an arbitrary scene is extraordinarily complex, and thus, 

development of a direct expression for the illumination distribution is likely to be 

intractable. As another alternative, one can attempt to estimate the quantity of interest 

directly from a large collection of photographic images, generating a distribution by binning 

values into histograms4,10, or fitting a parametric form9,11,12. This process can also be 

difficult: Measurement of the distribution of retinal image motion, for example, requires a 

head-mounted video camera and eye-tracker, and an accurate algorithm for estimating 

motion from video footage. Local image orientation, on the other hand, is relatively easy to 

estimate, and we use a histogram of such estimates to approximate the environmental 

distribution.

Determination of an observer’s internal prior distribution can also be difficult. One can 

assume a particular parametric form and use it to fit perceptual bias data9,11, but this is only 

useful if the observer’s prior can be well approximated by the chosen form. Here, we use a 

recently developed methodology for estimating a non-parametric prior from measurements 

of perceptual bias and variability13. We show that the recovered observer’s prior and 

measured environmental distribution are well-matched, thus providing direct evidence that 

humans behave according to the rules of Bayesian inference in estimating the orientation of 

local image structure. In particular, we measured the distribution of local orientations in a 

collection of photographic images, and found it to be strongly non-uniform, exhibiting a 

preponderance of cardinal orientations. We also measured human observers’ bias and 

variability when comparing oriented stimuli under different uncertainty conditions, and 

found strong biases toward the cardinal axes when stimuli were more uncertain. The prior 

that best explains the observed pattern of bias and variability is well-matched to the 

environmental distribution. Lastly, the most distinctive and well-understood property of 

neurons in primary visual cortex is their selectivity for local orientation, and we show how a 

population of such neurons with inhomogeneities matching those reported in the 

physiological literature can give rise to both the observed perceptual biases and 

discriminability.
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RESULTS

We assume that the observer’s sensory measurements, internal prior model, and estimates 

are related to each other through an encoder-decoder observer model13, as illustrated in Fig. 

1 for the example of local orientation perception. Given a contour or edge with true 

orientation θ in the retinal image, the observer makes an internal measurement, m(θ), which 

is corrupted by sensory noise. Repeated presentations of the same stimulus result in slightly 

different measurements, and this collection of measurements can be described with a 

conditional probability function, p(m | θ). An estimator (decoder) is a function, typically 

nonlinear, that maps the noisy measurement to an estimate of the true orientation, θ̂(m(θ)). A 

Bayesian observer uses a particular estimator, optimized to minimize expected error for the 

given measurement noise and prior model (see Methods).

The Bayesian encoder-decoder model provides a framework for understanding two 

fundamental types of perceptual error: bias and variability13. Perceptual variability arises 

from the sensory (encoder) noise, which is propagated through the estimator, and limits the 

precision with which the observer can discriminate stimuli. Perceptual bias is the average 

mismatch between the perceived and true orientations, and primarily arises because a 

Bayesian estimator prefers interpretations that have higher prior probability from amongst 

those consistent with the measurement. The origin of these two types of error makes it clear 

that one cannot predict one from the other. In particular, the direction and magnitude of bias 

are determined by the slope of the prior, which need not have any relationship to the 

variability.

Psychophysical measurements of bias and variability

We conducted an experiment to estimate observers’ prior knowledge about orientation. We 

asked observers to compare the average orientations of two arrays of oriented Gabor patches 

(Gaussian-windowed sinusoidal gratings) (Fig. 2a). We assume that observers make local 

orientation estimates for each patch, and then average these to obtain an overall estimate of 

orientation for each array14. The low-noise stimuli (L, Fig. 2a left) had identical orientations 

whereas the high-noise stimuli (H, Fig. 2a right) were variable in orientation (individual 

Gabor orientations were drawn from a distribution with a standard deviation of about 22 

deg; see Methods). Observers viewed the two stimuli simultaneously, symmetrically 

displaced to the right and left of fixation, and were asked to indicate whether the mean 

orientation of the right stimulus was clockwise or counter-clockwise relative to that of the 

left stimulus. Comparisons were made between three stimulus combinations: L vs. L, H vs. 

H, and H vs. L.

The discrimination thresholds are of interest because they can be related to the standard 

deviation of the internal measurement distributions (see Methods). The two “same-noise” 

conditions (L vs. L, H vs. H; Fig. 2b and Supplementary Fig. 1a) provide an estimate of 

measurement noise for each class of stimuli. For the low-noise stimuli, all subjects exhibited 

better discrimination at the cardinals, a well-studied behavior known as the “oblique 

effect”15. Since there is no noise in the stimuli, these inhomogeneities must arise from non-

uniformity in the amplitude of the internal noise at different orientations. This effect is 

diminished with the high-noise stimuli, for which the inhomogeneous internal noise is 
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presumably dominated by external stimulus noise. As expected, discrimination thresholds 

are significantly higher for the high-noise stimuli than the low-noise stimuli, for all subjects 

(98% of all JNDs across orientations and subjects, sign test p ≈ 0). The cross-noise 

variability data (Fig. 2d and Supplementary Fig. 1c) show a moderate oblique effect whose 

strength lies between that of the L vs. L and H vs. H conditions (98% of H vs. L JNDs are 

larger than L vs. L JNDs, sign test p ≈ 0; 73% of H vs. L JNDs are smaller than H vs. H 

JNDs, sign test p < 0.0005).

A non-uniform prior will cause a bias in estimation. Biases are not observable when 

comparing same-noise stimuli, since both stimuli presumably have the same bias. Cross-

noise comparisons can be used to estimate relative bias13 (i.e., the difference between the 

low-and high-noise biases) by computing the difference between the mean orientation of the 

two stimuli when they are perceived to be equal. This represents the counter-clockwise 

rotation that must be applied to the high-noise stimulus to perceptually match the orientation 

of the low-noise stimulus. The relative bias is shown in Fig. 2c and Supplementary Fig. 1b. 

All subjects show a systematic bimodal relative bias indicating that a high-noise stimulus is 

perceived to be oriented closer to the nearest cardinal orientation (i.e., vertical or horizontal) 

than the low-noise stimulus of the same orientation. The relative bias is zero at the cardinal 

and oblique orientations, and as large as 12 deg in between. These relative biases suggest 

that perceived orientations are attracted toward the cardinal directions, and repelled from the 

obliques, and that these effects are stronger for the high-noise stimuli.

Estimation of observers’ likelihood and prior

If our human observers are performing Bayesian inference, what is the form of the prior 

probability distribution they are using? We assume our observers select the most probable 

stimulus according to the posterior density p(θ | m) (known as the maximum a posteriori 

(MAP) estimate). We note that the circular mean of the posterior produces similar estimates, 

because the posterior distributions are only slightly asymmetric (Supplementary Fig. 2). 

According to Bayes’ rule, the posterior is the product of the prior p(θ) and the likelihood 

function p(m | θ) normalized so that it integrates to one. We assume that the decoder is based 

on the correct likelihood function, which is simply the measurement noise distribution, 

interpreted not as a probability distribution over measurements, but as a function of the 

stimulus for a particular measurement. That is, we assume the observer knows and takes into 

account the uncertainty of each type of stimulus16 (see Methods).

The observer model of Fig. 1 provides a link between the likelihood and prior and the two 

experimentally accessible aspects of perceptual behavior — bias and variability. Perceptual 

variability is caused by variability in the estimates, θ̂(m(θ)), which arises from variability in 

the measurements, m(θ). Relative bias corresponds to the difference in orientation between 

two stimuli of different uncertainty, θL − θH, whose estimates are (on average) equal, θ̂H 

(mH (θH)) = θ̂
L (mL (θL)). Note that the two estimator functions, θ̂H and θ̂L, are noise-level 

dependent. These relationships allow us to estimate the likelihood width and prior (as 

functions of orientation), from the experimentally measured bias and variability13 (see 

Methods). Specifically, we obtain the likelihood functions directly from the same-noise 

variability data (Fig. 2b and Supplementary Fig. 1a). We represent the prior as a smooth 
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curve and determine its shape for each observer by maximizing the likelihood of the raw 

cross-noise data. The recovered priors of all observers are bimodal, with peaks at the two 

cardinal orientations (Fig. 3 and Supplementary Fig. 3).

Environmental orientation distribution

The prevalence of vertical and horizontal orientations in the environment has been 

previously suggested as the underlying cause of the anisotropy of orientation 

discriminability (i.e., the “oblique effect”)17. Here, we show that the environmental 

distribution of local orientation is quantitatively consistent with the orientation priors we 

have recovered from our human subjects, and thus explains the cardinal biases in their 

perception. Orientation content in images is often studied by averaging the Fourier 

amplitude spectrum over all spatial scales18,19. For the purposes of our study, we defined the 

environmental distribution as the probability distribution over local orientation in an 

ensemble of visual images17, measured at a spatial scale roughly matched to peak human 

sensitivity (approximately the same as the scale of our experimental stimuli).

We obtained our measurements from a large database of photographs of scenes of natural 

content. We estimated the local image gradients by convolution with a pair of rotation-

invariant filters20, identified strongly oriented regions, computed their dominant 

orientations, and formed histograms of these values. The resulting estimated environmental 

distribution indicates a predominance of cardinal orientations (Fig. 4b). We chose the spatial 

scale that corresponds most closely to our 4 cycle/deg experimental stimuli and human peak 

spatial frequency sensitivity of 2–5 cycle/deg21. We found that this choice did not heavily 

impact the results: The dominance of cardinal orientations was similar across spatial scales 

(Supplementary Fig. 4).

Observer’s priors vs. the environmental distribution

We compared the estimated human observers’ priors and environmental distribution, 

directly (as probability distributions), and also in terms of their predicted perceptual effects 

(bias and variability in cross-noise comparisons). The observers’ prior probability 

distributions and the environmental distribution all have local maxima at the cardinals and 

minima at the obliques, and the heights of the peaks and troughs are quite similar (Fig. 5a). 

We computed perceptual predictions of the trial-by-trial behavior of the Bayesian encoder-

decoder model, by comparing simulated responses to each pair of stimuli shown to our 

observers. We find the relative variability (Fig. 5b and Supplementary Fig. 1b) and bias 

(Fig. 5c and Supplementary Fig. 1c) are similar for a model that uses either the 

environmental distribution or the human observer’s prior, and both closely resemble the 

human behavior.

To assess the strength of this result, we also considered a null hypothesis that observers use 

a uniform prior (equivalent to assuming that observers perform maximum-likelihood 

estimation). A Bayesian-observer model with a uniform prior does not produce the distinct 

bimodal relative bias (black line in Fig. 5c and Supplementary Fig. 1b). Instead, this model 

either produces no bias (e.g., mean subject and subjects S1, S3, S4 and S5) or sometimes 

produces a small relative bias away from the cardinal orientations (e.g., subject S2). This 
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repulsive relative bias is due to the asymmetrical shape of the likelihoods near the cardinals, 

which pushes the low-noise estimates towards the cardinals more than the high-noise 

estimates. Further, the uniform-prior observer predicts little or no oblique effect for the 

cross-noise condition, unlike the human observers (black line in Fig. 5b and Supplementary 

Fig. 1c). This indicates that the human observers’ biases cannot arise purely from 

inhomogeneities in sensory noise, but require a non-uniform prior.

We also compared the ability of Bayesian encoder-decoder models with different priors to 

explain the raw experimental data. We computed the log likelihoods of the two non-uniform 

prior models and linearly rescaled them so that a value of zero corresponds to the uniform-

prior model (degrees of freedom = 0) and a value of one corresponds to the raw 

psychometric fits (d.f. = 24; Fig. 5d). In general, a Bayesian observer with the recovered 

observer’s prior (d.f. = 6) performs quite well, often on a par with the raw psychometric fits 

to the data. For the mean observer, a Bayesian observer using the environmental distribution 

(d.f. = 0) as a prior predicts the data even better than using the observer’s recovered prior 

and better than the psychometric fits. It is important to note that these models are not nested: 

The recovered observer’s prior is constrained to a family of smooth shapes (see Methods) 

and cannot fully capture the peakedness of the environmental distribution. These results 

provide strong support of the hypothesis that human observers use prior knowledge of the 

non-uniform orientation statistics of the environment.

DISCUSSION

We have demonstrated that humans exploit inhomogeneities in the orientation statistics of 

the environment and use them when making judgements about visual orientation. Whereas 

previous work has largely focused on variability in orientation estimation (i.e., the oblique 

effect), we have emphasized the importance of bias, which is essential for studying the prior 

used by the observer13. We have directly demonstrated a systematic perceptual bias towards 

the cardinals, which had been hypothesized in previous work22. We used the measured bias 

and variability to estimate observers’ internal prior distributions, and showed that these were 

well-matched to estimates of the environmental distribution, exhibiting significant peaks at 

the cardinal orientations. In addition, when used as prior probabilities in a Bayesian-

observer model, both distributions accurately predict our human observers’ perceptual 

biases.

Intuitively, one might have expected that a large bias would be a direct consequence of large 

variability, but our results indicate that this is not the case. Our observers’ orientation 

discriminability is worst at oblique angles, and best at the cardinals (Fig. 2b), but their biases 

are approximately zero at both the obliques and cardinals, and largest in-between (Fig. 2c). 

These results are consistent with a Bayesian observer that is aware of the environmental 

prior: The bias is approximately equal to the product of the variability and the slope of the 

(log) prior13. It is small at the cardinals because the variability is small (and the prior slope 

reverses sign), and it is small at the oblique orientations because the prior slope is small (and 

again, reverses sign). The well-known “tilt aftereffect”, in which adaptation to an oriented 

stimulus causes a subsequent reduction in variability and increase in bias, provides another 

example in which bias and variability do not covary23.
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Our observer model (Fig. 1) can be extended in a number of ways. For example, the 

decoding stage is deterministic, but could be made stochastic (i.e., incorporating additional 

noise). In the context of simulating our experimental task, this additional variability would 

act as a sort of “decision noise”, as has been used in may previous models of perceptual 

decision-making24. This would, of course, entail an additional parameter that would need to 

be constrained by data. Our model (as well as our experiment) is also currently limited to 

estimation of retinal orientation. However, perception is presumably intended to facilitate 

one’s interactions with a 3D world of objects and surfaces. A full Bayesian model of 

orientation perception should incorporate priors on the 3D orientation of contours, observer 

orientation, and perspective image formaton, and would perhaps aim to recover aspects of 

the 3D scene25. From this perspective, one can think of our model as effectively capturing a 

2D marginal of a full 3D orientation prior.

A critical advantage of the Bayesian modeling framework is that the fundamental 

ingredients (likelihood, prior) have distinct meanings that extend beyond fitting the data in 

our experiments. As such, the model makes testable predictions. Our perceptual 

measurements were obtained under a specific set of viewing conditions including stimulus 

size, eccentricity, duration, contrast, and spatial frequency, which jointly determine the 

measurement noise. If we were to repeat these measurements having altered one of the 

viewing conditions that does not covary with orientation in the environment (e.g., contrast), 

we would expect subject responses to be consistent with the same orientation prior26. For 

changes in viewing conditions that do covary with orientation in the environment (e.g., 

spatial frequency; Supplementary Fig. 4), we expect that a multi-dimensional prior (e.g., 

ref 10) would be required to explain the data.

The time scale over which priors are developed is an important open question in Bayesian 

modeling of perception. In some cases, priors appear to adapt over relatively short 

timescales7,8. In contrast, our observers seem to use priors that are matched to the statistics 

of natural scenes, as opposed to human-made or blended scenes (Supplementary Fig. 4), 

perhaps suggesting that they are adapted over very long time scales. Nevertheless, the 

variation in the recovered priors of our observers might reflect differences in their previous 

perceptual experience.

The question of whether orientation priors are innate or learned may also be related to the 

development of the oblique effect. In support of the innate hypothesis is evidence of the 

oblique effect in 12-month old human infants27, and a large variation in the strength of the 

oblique effect amongst observers raised in similar human-made environments28. In support 

of the hypothesis that the prior is learned in our lifetimes is evidence that the strength of the 

oblique effect continues to grow from childhood through adulthood29, and that early visual 

deprivation affects neural orientation sensitivity in kittens30 and humans31. Both of these 

hypotheses could explain the slight individual differences we saw in the strength of the 

oblique effect and shape of the prior. Lastly, the oblique effect has been shown to be 

consistent with retinal, not gravitational, coordinates32, while our environmental prior is 

most naturally associated with gravitational coordinates (assuming all photographs in the 

database were taken with the camera held approximately level). The simplest interpretation 
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is that the prior has emerged from retinal stimulation, but because humans tend to keep their 

heads vertical, retinal coordinates are generally matched to gravitational coordinates.

Finally, we consider the physiological instantiation of our encoder-decoder observer model 

(Fig. 1). The encoding stage of the model is most naturally associated with orientation-

selective neurons in primary visual cortex (area V1). Non-uniformities in orientation 

discriminability (the oblique effect) have been posited to arise because of non-uniformities 

in the representation of orientation in the V1 population. Specifically, a variety of 

measurements (single-unit recording33,34, optical imaging35, and fMRI36) have shown that 

cardinal orientations are represented by a disproportionately large fraction of V1 neurons, 

and that those neurons also tend to have narrower tuning curves33. Additional non-

uniformities have been reported in V1 and elsewhere (e.g., variations in gain, baseline firing 

rate, or correlations in responses), and these may also contribute to non-uniformities in 

perceptual discriminability.

Now consider the Bayesian decoding stage. For a uniform population of encoder neurons 

with Poisson spiking statistics, the log-likelihood may be expressed as the sum of the log 

tuning curves, weighted by the spike counts37,38 (for a non-uniform population, this needs to 

be corrected by subtracting the sum of the tuning curves). A decoder population could 

compute the log-posterior at each orientation by computing this weighted sum, and adding 

the log prior. The desired estimate would be the orientation associated with the decoder 

neuron having maximum response (i.e., “winner-take-all”). Although this is an explicit 

computation of the Bayesian estimator, and would thus generate the same perceptual biases 

seen in our subjects, several aspects of this implementation seem implausible39. In 

particular, the decoder utilizes an entire population of cells to “recode” the information in 

the encoder population, it must have complete knowledge of the encoder tuning curves as 

well as the prior, and the estimate is obtained with a winner-take-all mechanism that is 

highly sensitive to noise.

As an alternative, we wondered whether the optimal mapping from an encoder population to 

an estimate might be approximated by a simpler, more plausible computation (A.A. Stocker, 

N.J. Majaj, C. Tailby, J.A. Movshon, & E.P. Simoncelli, Front. Neurosci. Conference 

Abstract: Computational and Systems Neuroscience 2010. doi: 10.3389/conf.fnins.

2010.03.00298; also see ref. 40). We simulated an encoder population whose spiking 

responses were generated as samples from independent Poisson distributions, with mean 

rates (in response to an oriented stimulus) determined by a set of orientation tuning curves 

with non-uniformities approximating those found in V133–35,41 (Fig. 6a). We used a 

standard “population vector” decoder42, which computes the sum of directional vectors 

associated with the preferred orientation of each encoder cell, weighted by the response of 

that cell. This decoder is robust to noise (compared to winner-take-all), does not require any 

knowledge of the prior, and requires only the preferred orientation of each cell in the 

encoding population (as opposed to the entire set of tuning curves). We used the full neural 

encoder-decoder model to simulate per-trial decisions on the same stimuli shown to our 

human subjects. From these we computed discriminability for the same-noise conditions, 

and bias for the cross-noise conditions. Remarkably, we find that this generic decoder, when 

combined with the non-uniform encoding population (Fig. 6a), produces bias and 
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discriminability curves (Fig. 6d,g) that are quite similar to our human subjects (Fig. 5b,c). 

The narrower tuning near the cardinals leads to a substantial decrease in discrimination 

thresholds: Eliminating the non-uniform tuning widths (Fig. 6b) greatly reduces the oblique 

effect for the low-noise stimuli (Fig. 6e). The proportionally larger number of cells around 

the cardinals leads to a disproportionate influence on the weighted sum decoder, inducing 

biases toward the cardinals: Eliminating the non-uniform orientation preferences (Fig. 6c) 

substantially reduces the amplitude of the bias (Fig. 6i). And finally, eliminating both non-

uniformities (i.e., an equal-spaced population of neurons with identical tuning, as is 

commonly assumed in the population coding literature37,43,44) produces constant bias and 

discriminability curves, as expected (not shown).

The fact that this observer model is able to approximate the bias behavior of the optimal 

Bayesian decoder implies that the non-uniformities of the encoder are implicitly capturing 

the properties of the prior, in such a way that they can be properly utilized by a population-

vector decoder40. Recent theoretical work posits that the non-uniformities of neural 

populations reflect a strategy by which the brain allocates its resources (neurons and spikes) 

so as to optimally encode stimuli drawn from an environmental distribution45. The current 

work suggests that encoder nonuniformities may also serve the role of enabling a decoder to 

perform Bayesian inference without explicit knowledge of the prior39. If so, this solution 

could provide a universal mechanism by which sensory systems adapt themselves to 

environmental statistics, allowing for optimal representation and extraction of sensory 

attributes under limitations of neural resources.

METHODS

Psychophysical experiments

Five subjects participated. Subjects S2 and S3 were the first and second authors, 

respectively. Subjects S1, S4, and S5 were naïve to the aims of the experiment and were 

compensated $10/hour. All subjects had normal or corrected vision. Subjects stabilized their 

heads on a chin/forehead rest, and viewed the stimuli binocularly at a distance of 57 cm in a 

dark room.

Each stimulus consisted of an array of Gabor patches positioned on a randomly jittered grid. 

Each Gabor was composed of a high-contrast 4 cycle/deg sinusoidal grating windowed by a 

circular Gaussian whose full width at half height was 0.41 deg. The Gabors were on a gray 

background and the monitor was gamma linearized. The entire stimulus array subtended 10 

deg and contained roughly 37 Gabors. Two new random stimuli were generated for each 

trial, and displayed simultaneously 2.5 deg to the left and right of the fixation point. Stimuli 

were visible for 0.75 sec (0.5 sec for subject S2). For each stimulus, Gabor orientations were 

either identical (L), or drawn from a Gaussian distribution (H) with standard deviation 

individually pre-determined for each subject (see below). The three comparison conditions 

were randomly interleaved: L vs. L, H vs. H, and H vs. L.

A central fixation point was presented between trials and we did not control for eye 

movements. Randomly interleaved staircases (2-up/1-down and 2-down/1-up) adjusted the 

mean orientation of the comparison stimulus, while the mean orientation of the standard 
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stimulus remained fixed. On each trial, the standard was randomly positioned on the left or 

right, with the comparison on the other side. Subjects completed at least 7200 trials divided 

into 36 conditions (12 orientations of the standard for the 3 stimulus combinations), over at 

least six sessions. Subject S3 participated in an earlier version that was blocked by 

orientation. Before each session, subjects completed a few practice trials in the H vs. H 

condition with auditory feedback. These trials were not included in analysis, and there was 

no feedback during the main experiment.

For each condition, we fit a cumulative Gaussian psychometric function to the data using a 

maximum-likelihood criterion, resulting in an estimate of the mean (relative bias) and 

standard deviation σP (Just Noticeable Difference or JND). Because we used a two-interval 

task46, the standard deviation of the underlying likelihood is .

In an initial experiment, we determined a level of orientation variability for the H condition 

such that each subject’s H vs. H JNDs were roughly three times larger than their L vs. L 

JNDs. Subjects first ran the L vs. L condition with the standard oriented at 105 deg. We then 

fit a cumulative Gaussian and calculated its standard deviation σL. Next, we fixed the two 

stimuli at 105 deg and 105 + 3σL deg and used two randomly interleaved 2-down 1-up 

staircases to adjust the amount of orientation noise (applied to both stimuli). We fit a 

reflected cumulative Gaussian to these data (which ranged from 100% to 50% correct), and 

estimated the noise level that yielded 76%-correct performance. This noise level was used 

for the H condition in the main experiment (24.3, 21.8, 26.7, 19.2, and 20.0 deg for the five 

subjects respectively).

We also ran a control experiment to ensure the relative bias was not induced by the 

rectangular frame of the monitor. Subject S2 viewed monocularly through a 16.8-degree 

circular aperture, 20 cm from the eyes, with a black hood that obscured everything except 

the stimuli. The stimuli were presented centrally in two temporal intervals of 0.4 sec each, 

with a 0.25 sec mask after each, consisting of non-oriented 4 cycle/deg noise. The relative 

bias was identical to the main experiment, ruling out the concern of an artifact.

Estimation of the likelihood functions

Fig. 7 (upper right) shows the formulation of the likelihood functions. The measurement 

distribution p(m | θ1) describes the probability of a sensory measurement given a particular 

stimulus value, and is displayed as a two-dimensional grayscale image. We assume that 

sensory noise is drawn from a von Mises distribution (described below) whose variance can 

be related to the same-noise variability data. The measurement distributions are vertical 

slices through this two-dimensional function, whereas the likelihoods are horizontal slices. 

Note that the likelihood function p(m1 | θ) is typically not normalized as a probability 

distribution. Although the measurement distributions are assumed symmetric, their width 

depends on orientation, and the resulting likelihood functions are generally asymmetric (see 

Fig. 7)47. Supplementary Fig. 5 shows the corresponding likelihoods for the mean subject.

To estimate the measurement noise, we fit functions to the same-noise JND data (Fig. 2b 

and Supplementary Fig. 1a, pale and dark gray curves). We used rectified two-cycle 

sinusoids peaking at the obliques for the L vs. L JNDs (jL (θ)=αL | sin(2θ) | +βL) and H vs. H 
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JNDs (jH (θ)=αH | sin(2θ) | +βH). We used least-squares minimization to estimate the 

parameters αL, βL, αH and βH for each subject, and computed confidence intervals for these 

estimates using the standard deviation of estimates obtained on 1,000 bootstrap samples of 

the data.. The prior will have a similar effect on the two stimuli in the same-noise 

conditions, leading to a negligible same-noise bias, as seen in our data. Our model of the 

measurement distribution is a von Mises function that peaks every 180 deg:

where κ is a concentration parameter, whose value was chosen so as to produce JND values 

matching the fitted j(θ).

Converting sensory measurements to Bayesian estimates

Fig. 7 shows how the Bayesian framework can be used to describe the decoding process. 

The estimator’s shape depends on both the measurement noise and prior; the bias is 

approximately the product of the likelihood width and the slope of the log of the prior13. The 

Bayesian decision-making process that produces simulated psychometric data is depicted in 

Fig. 8. The observer makes measurements mL (θL) and mH (θH), which are transformed by 

noise-appropriate estimators into values θL̂ and θ̂
H. Repeated measurements fluctuate due to 

sensory noise, resulting in a measurement distribution. This distribution is propagated 

through the estimator, resulting in a distribution of estimates. These distributions are then 

compared using signal detection theory46, resulting in a single point on a psychometric 

function.

Estimation of the observers’ priors

The human observers’ priors (Fig. 3 and Supplementary Fig. 3) were estimated by fitting 

the behavior of a Bayesian observer to the human data in the cross-noise condition. To avoid 

any preconceptions of what the prior ought to look like, we used a globally non-parametric 

model. Our only constraints were that it integrate to one, that it be periodic with period 180 

deg, and that the log prior be smooth and continuous. Stocker and Simoncelli13 also used a 

globally non-parametric model, in which the log prior was approximated as linear over the 

central span of the likelihood. This assumption could be wrong in our case, because the 

likelihoods are quite broad in a few cases (e.g., up to 30 deg standard deviation). Instead, we 

used cubic splines to smoothly interpolate between values of log(P(θi))) at neighboring 

control points θi and θi +1:

with the constraint that the neighboring splines’ first and second derivatives matched at the 

common boundary θi. The parameters of the model were the values of log(P(θi))) at six 

control points θi = {30, 60, 90, 120, 150, 180 deg}. Changing the number of control points 

resulted in similar recovered priors.
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Given a candidate prior P(θ), for each stimulus pair used in the experiment we simulated 

1,000 trials by drawing measurement samples from the appropriate measurement 

distributions. Each measurement leads to a likelihood function (the corresponding row of the 

pre-computed matrix, e.g., Fig. 7, upper right, and Supplementary Fig. 5), which is 

multiplied by the prior, and maximized to obtain the estimate. The 1,000 pairs of estimates 

were then compared to obtain the binary model response (“counter-clockwise” or 

“clockwise”), and the average of this set of binary decisions yielded a single point on the 

Bayesian-observer model-generated psychometric function (Fig. 8).

We estimated the best-fitting parameters of the log prior {log(P(θi))} for each human subject 

by maximizing the probability of their observed data, given the above model-generated 

psychometric functions. We performed bootstrapping by randomly sampling, with 

replacement, the raw crossnoise response data 1,000 times (this is separate from the 1,000 

measurement samples described above). If the subject performed n trials for a particular pair 

of orientations, then n responses were sampled from the corresponding data. The variation of 

the estimated priors across bootstrap replications is shown as the gray regions in Fig. 3.

Estimating the environmental distribution

The distribution of orientations was computed from a publicly-available image database 

(Olmos, A. & Kingdom, F.A.A. McGill Calibrated Colour Image Database, http://

tabby.vision.mcgill.ca, (2004)) containing 653 2560 × 1920 TIF photographs of natural 

scenes, with a pixel size of 0.0028 deg. We gamma-linearized the images using camera 

parameters provided with the database, and converted to XYZ-space. Each image was 

normalized by its mean luminance and only luminance information (Y channel) was used. 

We decomposed each image into six spatial resolutions using a Gaussian pyramid48. At each 

scale, we used five-tap, rotation-invariant derivative filters20 to compute gradients (x- and y-

derivative pairs) centered on each pixel. We combined these into an orientation tensor49, the 

local covariance matrix of the gradient vectors computed by averaging their outer products 

over square regions of 5×5 pixels. We calculated the tensor’s eigenvector decomposition 

(i.e., PCA) and from it computed three quantities for each pixel: the energy (the sum of 

eigenvalues), the orientedness (the eigenvalue difference divided by the sum), and the 

dominant orientation (the angle of the leading eigenvector). Tensors centered on the two 

pixels closest to the borders were discarded. We created a histogram of dominant 

orientations for tensors that exceeded two thresholds: Their orientedness was greater than 

0.8, and their energy exceeded the 68th percentile of all the energy of the corresponding 

scale. We verified that our histograms were only weakly dependent on these two threshold 

values. Sub-threshold tensors were typically located in patches of sky, or in internal regions 

of non-textured objects. The histogram for each scale was converted to a probability density 

by dividing by the total number of supra-threshold tensors, thus providing an estimate of the 

probability distribution over orientation. We selected the scale whose derivative filters best 

matched the peak spatial frequency sensitivity of humans21 (2–5 cycle/deg) and the spatial 

frequency of the stimulus (4 cycle/deg). We also estimated the orientation distributions of 

scenes of primarily human-made content and blended scenes (e.g., an image of a tree and a 

house). These distributions also exhibit a preponderance of cardinal orientations, but the 

heights of the peaks differ (Supplementary Fig. 4).
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Simulated neural model

We created simulated populations of 60 orientation-tuned V1 neurons for each Gabor. We 

randomly sampled 8 out of the 37 Gabors from the stimulus, consistent with human 

perceptual pooling14. The neural responses were characterized by independent Poisson 

noise, with expected number of spikes bounded between 1 and 12. The populations had 

either uniform or non-uniform tuning-curve widths, and either uniform or non-uniform 

preferred orientations, resulting in four different models. We used von Mises tuning curves, 

which have been shown to provide good fits to empirical tuning curves50. For the models 

with uniform tuning-curve widths, the standard deviation of the tuning curves was 17 deg, 

which is typical of V1 orientation-tuned neurons34,41. Non-uniform tuning widths were 

chosen according to a von Mises function (plus a constant) centered at the obliques with a 

concentration parameter of 42 deg. This produced standard deviations consistent with 

neurophysiology in both average tuning width (17 deg) and ratio of oblique to cardinal 

tuning widths (approximately 3:2)34,41. Nonuniform preferred orientations were drawn from 

a von Mises distribution modified to peak at 0 and 90 deg with a standard deviation of 35 

deg, producing a ratio of the density of oblique to cardinal neurons consistent with 

neurophysiology (approximately 9:5)33,34. Simulations were run for the same conditions as 

shown to the human subjects: 12 orientations for each of three stimulus combinations. On 

every trial, we computed population vector estimates42 for the orientations of both stimuli, 

and a decision was made as to whether the comparison was counter-clockwise or clockwise 

of the standard.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Observer model for local 2D orientation estimation. Left panel: The environment. Each 

local edge has a true image orientation, θ. Central panel: The encoding stage, in which the 

observer obtains a visual measurement, m(θ), corrupted by sensory noise. Right panel: The 

decoding stage, in which a function (the estimator, black curve) is applied to the 

measurement to produce the estimated orientation, θ̂(m(θ)). Because of the sensory noise, 

the estimated orientation will exhibit variability across repeated presentation of the same 

stimulus, and may also exhibit a systematic bias relative to the true orientation.
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Figure 2. 
Stimuli and experimental results. (a) Stimuli are arrays of oriented Gabor functions (contrast 

increased for illustrative purposes). Left: A low-noise stimulus (L). Right: A high-noise 

stimulus (H) with mean orientation slightly more clockwise. Observers indicated whether 

the right stimulus was oriented counter-clockwise or clockwise relative to the left stimulus. 

(b) Variability for the same-noise conditions for representative subject S1 (left column) and 

the mean subject (right column), expressed as the orientation discrimination threshold (i.e., 

the “just noticeable difference”, or JND). Mean subject values are computed by pooling raw 

choice data from all five subjects. Error bars indicate 95% confidence intervals. Dark gray 

and light gray curves are fitted rectified sinusoids, used to estimate the widths of the 

underlying measurement distributions. Pale gray regions indicate ± 1 s.d. of 1,000 

bootstrapped fits. (c) Cross-noise (H vs. L) variability data (black circles). The horizontal 

axis is the orientation of the high-noise stimulus. (d) Relative bias, expressed as the angle by 

which the high-noise stimulus must be rotated counter-clockwise so as to be perceived as 

having the same mean orientation as the low-noise stimulus.
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Figure 3. 
Recovered priors for subject S1 and mean subject. The control points of the piecewise cubic 

spline (see Methods) are indicated by black dots. The gray error region shows ± 1 s.d. of 

1,000 bootstrapped estimated priors.
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Figure 4. 
Natural image statistics. (a) Example natural scene from Fig. 1, with strongly oriented 

locations marked in red. (b) Orientation distribution for natural images (gray curve).
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Figure 5. 
Comparison of human observers’ priors and environmental distribution for subject S1 (left 

column) and the mean subject (right column). (a) Human observers’ priors (black curves, 

from Fig. 3) and environmental distribution from natural images (medium gray curve, from 

Fig. 4b). (b) Cross-noise variability data (circles, from Fig. 2c) with predictions of the two 

Bayesian-observer models using each of the three priors shown in (a) and the uniform prior. 

The uniform prior predicts little or no effect of stimulus orientation on discrimination (light 

gray curves). In contrast, both the environmental prior (medium gray curves) and the 

recovered human observers’ priors (black curves) predict better discrimination at the 

cardinals, as seen in the human observers. (c) Relative bias data (circles, from Fig. 2d) with 

the predictions of Bayesian-observer models using three priors shown in (a). The uniform 

prior predicts no bias or a small bias in the opposite direction (e.g., Supplementary Fig. 1c, 

subject S2). In contrast, both non-uniform priors predict the bimodal bias exhibited by 

human observers. (d) Normalized log likelihood of the data for Bayesian-observer models 

using two different priors: environmental distribution (medium gray bars) and the recovered 

observer’s prior (dark gray bars). Error bars denote the 5th and 95th percentiles from 1,000 
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bootstrap estimates. Values greater than one indicate performance better than that of the raw 

psychometric fits, whereas values less than zero indicate performance worse than that 

obtained with a uniform prior.
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Figure 6. 
Simulations of neural models with non-uniform encoder, and “population vector” decoder. 

(a) Tuning curves of an encoder population with non-uniform orientation preferences and 

non-uniform tuning widths based on neurophysiology (only a subset of neurons shown). 

Neurons preferring 45 deg and 90 deg stimuli are highlighted in black. (b) Tuning curves of 

a population with non-uniform preferences and uniform widths. (c) Tuning curves of a 

population with uniform preferences and non-uniform widths. (d–f) Variability for the 

same-noise conditions for the populations in (a–c): L vs. L (dark gray) and H vs. H (light 

gray). (g–i) Relative bias for the cross-noise condition (H vs. L) for the populations in (a–c). 

The fully non-uniform population (a) produces variability and bias curves similar to those 

exhibited by humans (Fig. 2b,d and Supplementary Fig. 1a,c). Girshick, Landy, Simoncelli
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Figure 7. 
Derivation of the estimator θ̂(m(θ)). In all three grayscale panels, the horizontal axis is 

stimulus orientation θ, the vertical axis is the measured orientation m(θ), and the intensity 

corresponds to probability. Upper-left panel: The mean observer’s prior, raised to the 

power of 2.25 and re-normalized for visibility, is independent of the measurements (i.e., all 

horizontal slices are identical). Upper-right panel: The conditional distribution, p(m | θ). 

Vertical slices indicate measurement distributions, p(m | θ1) and p(m | θ2), for two particular 

stimuli θ1 and θ2. The widths of the measurement distributions are the average of those for 

the low- and high-noise conditions for the mean observer (multiplied by a factor of 10 for 

visibility). Horizontal slices, p(m1 | θ) and p(m2 | θ), describe the likelihood of the stimulus 

orientation, θ, for the particular measurements, m1 and m2. Note that the likelihoods are not 

symmetric, because the measurement distribution width depends on the stimulus orientation. 

Bottom panel: The posterior distribution is computed using Bayes’ rule, as the normalized 

product of the prior and likelihood (top two panels). Horizontal slices correspond to 

posterior distributions p(θ | m1) and p(θ | m2), which describe the probability of a stimulus 

orientation given two particular measurements. Red dots indicate MAP estimates (the modes 

of the posterior) for these two likelihoods, θ̂(m1) and θ̂(m2). Circular mean estimates yield 

similar results (see Supplementary Fig. 2). The red curve shows the estimator θ̂(m) 

computed for all measurements. An unbiased estimator would correspond to a straight line 

along the diagonal.
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Figure 8. 
Example cross-noise comparison. The vertical axis is the measured orientation m(θ), and the 

horizontal axis is estimated stimulus orientation θ̂(m(θ)). Measurements corresponding to 

low-noise stimuli, mL (θL) (dark gray), or high-noise stimuli, mH (θH) (light gray), enter on 

the left. Each measurement is transformed by the appropriate nonlinear estimator (solid 

curves) into an estimate (bottom). The estimators correspond to those of the mean observer 

exaggerated for illustration as in Fig. 7. The high-noise estimator exhibits larger biases than 

the low-noise estimator. The sensory noise of the measurements propagates through the 

estimator, resulting in estimator distributions (note these should not be confused with the 

posteriors). Comparison of these distributions produces a single point on the psychometric 

function.
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